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Abstract—Circulating tumor cells (CTCs) photoacoustic
detection systems can aid clinical decision-making in the
treatment of cancer. Interaction of melanin within melanoma
cells with nanosecond laser pulses generates photoacoustic
waves that make its detection possible. This study aims at:
(1) determining melanoma cell survival after laser pulses of
6 ns at k = 355 and 532 nm; (2) comparing the potential
enhancement in the photoacoustic signal using k = 355 nm
in contrast with k = 532 nm; (3) determining the critical laser
fluence at which melanin begins to leak out from melanoma
cells; and (4) developing a time-resolved imaging (TRI)
system to study the intracellular interactions and their effect
on the plasma membrane integrity. Monolayers of melanoma
cells were grown on tissue culture-treated clusters and
irradiated with up to 1.0 J/cm2. Surviving cells were stained
with trypan blue and counted using a hemacytometer. The
phosphate buffered saline absorbance was measured with a
nanodrop spectrophotometer to detect melanin leakage from
the melanoma cells post-laser irradiation. Photoacoustic
signal magnitude was studied at both wavelengths using
piezoelectric sensors. TRI with 6 ns resolution was used to
image plasma membrane damage. Cell survival decreased
proportionally with increasing laser fluence for both wave-
lengths, although the decrease is more pronounced for
355 nm radiation than for 532 nm. It was found that melanin
leaks from cells equally for both wavelengths. No significant
difference in photoacoustic signal was found between wave-
lengths. TRI showed clear damage to plasma membrane due
to laser-induced bubble formation.

Keywords—Time-resolved imaging, Plasma membrane,

Laser–cell interaction, Photoacoustic detection.

INTRODUCTION

Detection of circulating tumor cells (CTCs) in
human blood and lymph systems has the potential to
aid clinical decision-making in the treatment of can-
cer.2,4,8,20 The presence of CTCs may signify the onset
of metastasis, indicate relapse, or may be used to
monitor disease progression. Initial CTC detection
systems were based on histopathologic techniques and
have been proven to be time-consuming and subject to
reviewers interpretation. Non-optical means exist for
CTC detection, including reverse transcriptase poly-
merase chain reaction (RT-PCR).19,27 Even though
PCR led to increased sensitivity and specificity of
detection, and removed the subjective influence inher-
ent in earlier CTC detection methods, its clinical
implementation is not feasible due to their complexity
and concerns regarding the specificity of PCR in
detecting CTC due to inconsistency of results and
amplification of false products.19 The use of immuno-
histochemistry for CTC detection relies on antibody
recognition of a cancer-specific marker. Immunohis-
tochemistry has shown conflicting opinions about its
reliability and specificity.19 CTC detection is still an
uncertain research area and optimal detection has yet
to be achieved.

Design and construction of a circulating melanoma
cell (CMC) detection system is based on the fact that
melanoma cells contain a great amount of melanin and
less than 5% of melanomas are amelanotic.29,32 Since
melanin is a strong optical absorber for the whole
visible spectrum,9 laser irradiation has been used
to induce acoustic responses in melanin in vivo.11
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Based on this principle, a previous study proposed the
use of photoacoustic waves for rapid and accurate
in vitro detection of CMCs obtained from routine
blood draws from metastatic melanoma patients33; the
authors demonstrated that at least ten phantom mel-
anoma cells are necessary to maintain a strong
photoacoustic signal. A more recent study attempted
detection of circulating cells, nanoparticles, and con-
trast agents in vivo34; the authors reported threshold
sensitivity as low as a single cancer cell in the back-
ground of 107 normal blood cells.

While in vivo detection becomes feasible, imple-
mentation of this concept in vitro has several advan-
tages: it is fast, inexpensive, and minimally invasive.
In vitro detection entails obtaining the mononuclear
cell layer (MNCL) derived from lysing and spinning a
blood sample from a melanoma patient in a centri-
fuge. The resulting MNCL is mixed with 20 mL of
normal saline and introduced into a flow system
consisting of a pump, a fluid receiver, a transparent
flow chamber with an integrated acoustic sensor, and
a pulsed laser (k = 450 nm; 5 ns pulse duration) sys-
tem which creates the conditions for acoustic wave
generation.33 Unfortunately, while larger fluences
inevitably result in stronger photoacoustic signals,
thus increasing the signal-to-noise ratio (SNR),
excessively high optical absorption inside the CMC
produces localized laser-heat generation that may lead
to bubble formation. Bubble formation inside cells
may lead to plasma membrane damage, thereby
allowing melanin to leak from the cell, and thus
preventing continuous photoacoustic detection. The
ideal operation condition for a system of this type in a
clinical application is to have a continuous detection.
For this, it is necessary to ensure that the plasma
membrane remains undamaged after laser irradiation,
so the melanin does not leak from the cell and diffuse
into the circulating solution, reducing the SNR of the
photoacoustic signal.

Survival of pigmented melanoma cells after irradi-
ation with laser pulses of 40 ns and 300 ls at
k = 694 nm has been studied before.1 The authors
compared the effects of pulse duration using mela-
noma cells of a mouse-pigmented melanoma cell line
(B-16) and a human non-pigmented melanoma cell line
(FaDu). It was found that pigmented melanoma cells
died only when irradiated with 40 ns pulses, whereas
the non-pigmented cells remained viable for both pulse
durations. In addition, they demonstrated acoustic
wave transients when 8.5 ns laser pulses at k = 532
and 625 nm were used; these transients are from 2.5 to
3-fold higher for k = 532 nm wavelength as compared
to 625 nm; however, melanosome’s optical absorption
coefficient at k = 532 nm is only 1.75 times higher
as compared to k = 625 nm according to the

experimental expression la = 1.7091012k23.48 pre-
sented in Ref. 9 where la is the absorption coefficient
and k is the wavelength expressed in nanometers.
Unfortunately, they did not show data for cell survival
after irradiation with 8.5 ns.

There are experimental,21,23 numerical,6 and theo-
retical26 studies that focus on bubble formation around
microabsorbers, such as melanosomes and absorbing
microbeads in water after laser irradiation with nano-
and micro-second pulse durations. Experimental
studies3,16,22,28 have revealed that (a) the threshold
fluence for bubble formation increases with pulse
duration as heat transfer increases; and (b) there is a
transition from bubble-driven (mechanical) to protein
denaturation-driven (thermal) cell death as the pulse
duration is longer. These studies, however, focused on
retinal pigment epithelium (RPE) melanosomes. Thus,
the motivation for the work presented in this article is
the lack of equivalent information melanoma cells
from cutaneous origin.

It has been proven that CTCs are photoacoustically
detectable using laser pulses of 5 ns duration, 450 nm
wavelength, and 0.450 J/cm2 fluence.33 However, this
wavelength is difficult to obtain at that pulse duration,
as it requires a frequency-tripled Q-switched laser
system to pump an optical parametric oscillator
(OPO). An OPO is a complex non-linear optical system
that increases by a factor of 2—the cost of the laser
system used for photoacoustic excitation-detection of
CTCs, and it requires maintenance from experienced
technicians.

The purpose of this study is to better understand the
laser–melanoma cell interactions to assist in the design
of an in vitro photoacoustic CTC system developed
specifically for pigmented melanoma cell detection.
The specific objectives of this study on human mela-
noma cells are to:

(a) Determine melanoma cell survival after laser
pulses of 6 ns33 at wavelengths that are feasi-
ble to obtain (e.g., second and third harmon-
ics of a Nd:YAG, Q-switched laser: k = 532
and 355 nm), and where melanin is still a high
linear optical absorber (the 1 ns difference
between the pulse duration in some of the
experiments in this study and those in Weight
et al.33 should not be of consideration).

(b) Study a potential enhancement of the
photoacoustic signals using k = 355 nm in
comparison to k = 532 nm, since melanin
linear absorption at 355 nm is higher than at
532 nm by a factor of 4.

(c) Determine whether melanin leaks from mela-
noma cells and the critical laser fluence at
which this happens, which would adversely
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affect the SNR of continuous photoacoustic
detection.

(d) Develop a time-resolved imaging system with
nanosecond resolution to study the intracel-
lular interactions (e.g., laser-induced bubble
formation) within the melanoma cells, and
their effect on the plasma membrane integrity.

MATERIALS AND METHODS

Cell Culturing and Sample Preparation

HS936.T (C1) cells were grown as a monolayer in
Dulbecco’s Modified Eagle Medium (American Type
Culture Collection ATCC, Manassas, VA, USA) with
10% horse serum and 1% of Penicillin–Streptomycin
on 6-well cell culture clusters until the culture was
confluent. Media were changed every other day.
Incubator atmosphere was at 37 �C, 5% CO2 and
90% humidity. Cell monolayers were rinsed with
phosphate buffered saline (PBS), and harvested from
tissue culturing wells adding Cellstripper (Mediatech,
Inc., Herndon, VA, USA) and incubating for 5 min at
37 �C. The cells were resuspended in PBS at a con-
centration of 2.5 9 106 cells/mL, and sedimented by
low-speed centrifugation. Cells were washed and
resuspended in PBS twice, and placed on 24-well tis-
sue culture-treated clusters at a cell density of
500 cells/mm2.

Laser Irradiation

Figure 1 shows a schematic of the optical system
used to irradiate the samples. Laser irradiation was
performed using a Q-switched, Nd:YAG laser and it
also has three high-power output ports for the funda-
mental, second and third harmonics; 1064, 532, and
355 nm wavelengths, respectively.

The second harmonic laser beam delivered to the
cell cultures was collimated and resized to e22 spot
diameter of 1 mm, using a combination of convergent
LC ( f = 125 mm) and divergent LD ( f = 250 mm)
lenses. The energy per pulse was varied using an
attenuator made of a half-wave plate HWP1 and a
polarizer P1, and it was monitored with a previously
cross-calibrated energy meter EM (Ophir, Logan, UT,
USA) to a second energy meter placed at the target’s
position. The sample was mounted on a 3D translation
stage that allowed easy repositioning of the sample. By
means of a pellicle beam splitter BS, in line with the
Nd:YAG beam, a continuous wave, 0.5 mW, 543 nm
wavelength He–Ne laser (Thorlabs, Newton, NJ,
USA) served as aiming beam. A total of four pulses
were delivered to each sample. Each pulse was

delivered at a fresh site; therefore, a single cell was
never irradiated more than once. Cells were not irra-
diated using a single pulse with a large spot size
because with such a large spot, the laser fluence that
can be achieved with our laser is not high enough to
induce damage to the cells. Laser irradiation with the
third harmonic (k = 355 nm) was possible by remov-
ing the mirror RM and it was carried out in the same
way as it was done with the second harmonic. The
distance between lenses LC and LD was adjusted to
give the same spot size (as in the second harmonic case)
at the sample and the delivered energy was adjusted by
using various neutral density (ND) filters.

Cell Damage Determination

Immediately following laser irradiation, a 0.08%
solution of Trypan blue, used as a viability assessment
dye, was added to the whole sample, including irradi-
ated and non-irradiated cells. Cells were collected from
the well cluster and counted using a hemacytometer.
The reactivity of Trypan blue is based on the fact that
the chromophore is negatively charged and does not
interact with the cell unless the membrane is damaged.
Therefore, all the cells which exclude the dye are
undamaged. Control samples were kept without laser
irradiation during the experiment. Long-term effects
were not considered as they are irrelevant for contin-
uous photoacoustic CTCs detection.

Melanin Leakage Determination

Immediately following laser irradiation, samples of
cells and PBS were collected in Eppendorf tubes. Cells
and PBS were then separated by centrifugation at
80009g for 3 min. Absorbance of the resulting mixture
of PBS and melanin from the control and laser-
irradiated samples was measured in a nanodrop spec-
trophotometer (Thermo Scientific, Wilmington, DE,

FIGURE 1. Experimental setup for laser irradiation of mela-
noma cells with nanosecond laser pulses with k 5 355 and
532 nm. Second or third harmonic was delivered to the sam-
ple inserting or removing the removable mirror (RM). HeNe
laser serves as aiming beam. Target’s holder was displaced in
the X–Y direction to provide four laser pulses to each sample
without overlapping of laser exposure on the same cells.
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USA) at 220 nm. This spectrophotometer was chosen
because it handles sample volume about 3 lL. Differ-
ences in PBS absorbance as a function of laser fluence
with respect to control samples indicate that there is
melanin diluted in PBS that came from the laser-
damaged cells.

Comparison of Photoacoustic Signals for k = 355
and 532 nm

To compare the amplitude of the photoacoustic
signal produced by both wavelengths, the experimental
setup shown in Fig. 2 was built. Either the second or
the third harmonic from a Surelite OPO PLUS (Con-
tinuum, Santa Clara, CA, USA), Nd:YAG, Q-swit-
ched laser system that emits 5 ns laser pulses were
used. The laser beam was focused into a 1-mm spot
diameter through a focusing lens and reflected through
a right angle prism onto an acrylic well-holder posi-
tioned on top of a laboratory-made, unfocused type,
polyvinylidene fluoride (PVDF) ultrasonic transducer
with sensitivity 0.71 mV/bar. The well-holder con-
tained 50 lL of a 1% intralipid acrylamide disk that
was used to protect the transducer. 25 lL of sample
suspension was pipetted into the well for testing and a
newly made scattering disk was used for each indi-
vidual test. The signal from the PVDF transducer was
sent to a signal amplifier and then into an oscilloscope.

The concentration used for each test was
1 9 106 cells/mL of suspension. The total irradiated
volume was 1 lL so the total number of cells irradiated
was 1000. In addition, to lessen the effects of cell
clumping, the cells were irradiated while suspended in
Tryple E.

The photoacoustic signal was quantified as the
integrated pressure, which is the result of integrating

the oscilloscope trace from 1.6 to 2.5 ls, the calculated
acoustic depth of the irradiation well. Integrated
pressure units are [volts Æ seconds]. The thickness of
the acrylimide scattering disk was 2.5 mm, although
there are some curving effects due to fluid adhesion to
the walls of the cuvette. A typical absolute waveform
taken at 1 J/cm2 at 32 dB amplification is shown in
Fig. 3.

TRI of Laser Irradiated Cells

The experimental setup for TRI of laser–cell inter-
action is shown in Fig. 4. It consists of 2 ns laser sys-
tems electronically synchronized. The first, used as the
pump, was the EKSPLA laser system previously
described (Nd:YAG 1). The second, used as probe, was
a Brilliant (Quantel, Les Ulis Cedex, France), Q-swit-
ched, Nd:YAG laser that emits 6 ns laser pulses at the
fundamental k = 1064 nm (Nd:YAG 2). This probe
wavelength was chosen because melanin has lower
absorption as compared to 532 and 355 nm.

Both beams were brought co-linear onto the sample.
The green/UV pump beam was resized by means of
lenses LC ( f = 125 mm) and LD ( f = 250 mm) to
increase laser fluence on the sample. The delivered
energy was varied and recorded in the same way than
for the cell damage experiment. The probe beam was
slightly focused onto the sample with lens L1
( f = 250 mm). A magnified image of the sample is
formed by an aspheric lens L2 ( f = 6 mm) and
L3 ( f = 400 mm) onto a charge-coupled device
(CCD) camera (Hamamatsu, Lake Forest, CA, USA).

FIGURE 2. Experimental setup for comparison of photoa-
coustic pressure at k 5 355 nm and 532 nm. The laser pulse is
brought to the melanoma cells (sample) through a focusing
lens and a prism. The cells are contained in an acrylic well and
diluted in Tryple E to avoid cell clumping. The PVDF ultra-
sonic transducer is protected from laser damage with a 1%
intralipid acrylamide disk.

FIGURE 3. Absolute value of a typical waveform obtained
with oscilloscope for comparison of photoacoustic signal at
k 5 355 and 532 nm. Signal was integrated from 1.6 3 1026 to
2.5 3 1026 s to include the calculated acoustic depth of the
irradiation well. Laser fluence was 1 J/cm2, k 5 532 nm and
data acquisition was at 32 dB amplification. Inset shows the
raw signal as it was acquired with the oscilloscope.
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A long-pass filter with cut-off wavelength at k =

610 nm (RF) positioned in front of the CCD blocked
scattered light from the green pump beam.

The delay generator (DG) provided the electronic
pulses required to externally trigger both laser systems
at 10 Hz repetition rate with a relative delay. Single
laser pulses from the pump beam were selectively
released by a mechanical shutter (MS) (Uniblitz,
Rochester, NY, USA) that opens its aperture for
100 ms allowing only one laser pulse pass through it.
Simultaneously, the signal out of the SG was divided
and also sent to trigger the CCD whose exposure time
was set to 100 ms. This exposure time and the long-
pass filter guaranteed that only light from the probe
pulse was captured by the CCD.

The pump laser beams for these experiments have a
Gaussian intensity profile with e22 diameter of
910 lm. The diameter of the pump and probe laser
beams overfill the CCD field of view.

RESULTS

Cell Damage Determination

Figure 5 shows the normalized cell survival of
melanoma cells as a function of the average fluence of
the four laser pulses incident on each sample at 532
and 355 nm wavelengths. Cell survival is calculated
according to

C ¼ Nundamaged

Ndamaged þNundamaged
ð1Þ

where C is cell survival, Nundamaged is the number of
undamaged cells, and Ndamaged is the number of dam-
aged cells. The denominator in Eq. (1) is the total
number of cells per well, not the total number of
irradiated cells. Cell survival of irradiated samples was
normalized with respect to the average cell survival of
control samples, which were not irradiated at all.

In the range of laser fluences used for photoacoustic
detection of melanoma cells in suspension, we found
that the amount of undamaged cells decreases by 40
and 50% for the 532 and 355 nm wavelengths,
respectively, with increasing fluence. The decay of cell
survival at both wavelengths is described by exponen-
tial curves. The slopes of both curves were found to
have significant difference when compared through
non-linear, one phase exponential decay fit with
p< 0.0001 using GraphPad Prism v.5.00. Neverthe-
less, for the highest fluences, cell survival tends to be
the same at both wavelengths; this means that for such
high fluences, the higher absorption for the shorter
wavelength is no longer important.

Melanin Leakage Determination

Figure 6 shows absorbance values of the resulting
mixture of PBS and melanin when human-pigmented
melanoma cells were irradiated. Data are shown nor-
malized with respect to the average of the resulting
mixture absorbance of control samples. It is plausible
that the large dispersion of data is due to the variable

FIGURE 4. Experimental setup for TRI of melanoma cells.
Lasers Nd:YAG 1 as pump (k 5 355 or 532 nm) and Nd:YAG 2
as probe (k 5 1064 nm) are externally triggered and syn-
chronized by DG at 10 Hz repetition rate. Second or third
harmonic from Nd:YAG 1 laser is released to the sample
inserting or removing RM. MS and CCD camera are triggered
by a signal generator (SG); both MS and CCD camera’s shutter
are open for 100 ms to ensure that only one pump and one
probe pulses irradiate the sample and get to the camera,
respectively, when the lasers are triggered at 10 Hz repetition
rate.

FIGURE 5. Normalized cell survival of melanoma cells irra-
diated with 6 ns laser pulses with k 5 355 and 532 nm. Sig-
nificant difference was found in the curves for both
wavelengths according to statistical analysis with p < 0.0001.
Cell survival was normalized according to Eq. (1) (see body of
the text), where the total number of the cells in the sample,
and not only cells reached by laser, contributed to the cal-
culation. Each data point is the average of five measurements
with its corresponding error bars.
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amount of melanin contained in melanoma cells, just
as it is for melanosomes.9 However, it is evident that
PBS absorbance increases with increasing laser fluence,
suggesting that plasma membrane is being damaged by
the laser pulse and thus melanin is leaking from the
cell.

Comparison of Photoacoustic Signals
for k = 355 and 532 nm

Figure 7 shows the integrated pressure generated by
the laser–cell interaction as a function of laser fluence
for both wavelengths tested. Each data point is the
result of averaging five sets of data acquired; each data
set is the average of 16 laser shots. As expected, the
integrated pressure increases with fluence for both
wavelengths. However, the dependence of the inte-
grated pressure on wavelength is not obvious at first
sight; therefore, a two-way ANOVA was performed
(with a = 0.05) twice: first by considering the whole
data up to 1 J/cm2 and, second, by only considering
fluences up to 0.6 J/cm2.

The resulting p-values from the first two-way
ANOVAfor the two individual factors in the experiment
(wavelength and fluence) are 0.9942 and <0.0001,
respectively, whereas the p-value for the interaction
between them is 0.0011. Such p-values indicate that
while the fluence and the interaction between fluence
and wavelength are statistically significant for pre-
dicting the integrated pressure, the wavelength by itself
is unimportant. In contrast, for the second ANOVA,
the p-values were 0.007 and <0.0001 for wavelength

and fluence, respectively, whereas for the interaction of
both the p-values were 0.2737, meaning that both flu-
ence and wavelength are statistically significant for the
integrated pressure prediction, whereas the interaction
between them is not.

TRI of Melanoma Cells

TRI allowed imaging melanoma cells a few nano-
seconds right after its interaction with the pump laser
pulse. Figure 8 shows images taken: (a) before, (b)
50 ns after melanoma cells were irradiated using a 6-ns
laser pulse with fluence of 0.3 J/cm2 at k = 355 nm.
Figure 8b shows the melanoma cell when ‘‘boiling’’
bubbles are being formed within the cell.

Figure 9 shows images (a) before, (b) 50 ns after
irradiation using a 6-ns laser pulse with fluence of
0.65 J/cm2 at k = 532 nm. Arrows in Fig. 8a show the
melanoma cells without damage prior to laser expo-
sure. Arrows in Fig. 8b show the same cells post-laser
exposure when the plasma membrane has been obvi-
ously damaged. These results show solid evidence of
plasma membrane damage after irradiation with 6 ns
laser pulses for both laser wavelengths.

DISCUSSION

Our results show that the amount of undamaged
cells after laser irradiation decreases from 40 to 50% in
an exponential decay as a function of delivered fluence.
At k = 355 nm, the amount of cells that survive laser
irradiation did not decrease further for fluences higher
than 0.35 J/cm2, whereas at 532 nm the amount of
undamaged cells does not decrease for fluences higher

FIGURE 6. Normalized PBS absorbance as a function of
laser fluence. Absorbance was measured using a nanodrop
spectrophotometer with k 5 220 nm. Laser irradiation was
carried out at k 5 355 and 532 nm. Data normalization was
done with respect to the average of data points obtained with
control samples (fluence 5 0).

FIGURE 7. Comparison of photoacoustic signal for k 5
532 nm and 355 nm as a function of fluence. Wavelength was
found to be of significant difference for fluences up to 0.6
J/cm2, whereas it was not for fluences higher than 0.6 J/cm2.
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than 1 J/cm2. It is worth noting that for the higher
fluences cell survival tends to the same value. For such
fluences, the error bars for both wavelengths in Fig. 5
overlap. The reason for this is because four pulses were
delivered to each sample, but the samples were dis-
placed after each pulse, so any given region within the
sample received only one pulse and adjacent regions
may have not been reached directly by the laser beam.
Therefore, the fact that the amount of undamaged cells
did not change after certain fluence indicates that all
the cells reached by pulses at or above such fluence
were killed. It should be mentioned here that all the
cells in the sample contributed to the cell survival
percentage. A very similar curve was obtained irradi-
ating mouse melanoma cells (B-16) with 40 ns laser
pulses at 694 nm in a previous study, although their

methodology for laser irradiation and assessing cell
survival was different.1 In this study, we use shorter
laser pulses and wavelengths. Therefore, it is reason-
able to expect stronger laser–melanosomes thermo-
mechanical interactions.

In a related study where single blast-transformed
lymphocytes were irradiated with a similar laser pulse
duration than in our experiments, the authors tested
three different methods to detect damaged cells.15 They
found differences in the amount of cells damaged by
pulses of the same energy, suggesting that some cells of
the same kind are more susceptible to laser damage
than others. This may be a plausible explanation for
our experiments too, since we observed as much as
20% variation in damage for the same laser fluence
and wavelength.

FIGURE 8. TRI of melanoma cells (a) before and (b) 50 ns after a single, 6 ns laser pulse, k 5 355 nm, 0.3 J/cm2 was delivered to
cells. Arrows in (a) show undamaged cells before laser exposure, whereas arrows in (b) clearly show cells where microbubbles
were induced by the laser pulse.

FIGURE 9. TRI of melanoma cells (a) before and (b) 50 ns after a single, 6 ns laser pulse, k 5 532 nm, 0.65 J/cm2 was delivered to
cells. Arrows in (a) show undamaged cells by laser exposure, whereas arrows in (b) clearly show cells that where the plasma
membrane was totally destroyed by microbubbles induced by the laser pulse.
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Measurements of absorbance of the mixture of
melanin and PBS (Fig. 5) showed that its absorbance
increased as laser fluence increased. We observed up to
a four-fold increase in the PBS absorbance for the
higher fluences tested with respect to the control sam-
ples. Data obtained showed large dispersion due to the
inherent variability of melanin contained in melanoma
cells, just as it is for melanosomes.9 It was not possible
to establish a dependence of melanin and PBS mixture
absorbance with the wavelength used to irradiate the
cells, meaning that both wavelengths damage the cells
and melanin, consequently, leaks from them. None of
the previous studies about interactions of pigmented
melanoma cells or RPE with Q-switched nanosecond
laser pulses reported melanin concentration in the cell
culturing/PBS medium post-laser irradiation.

Data of integrated pressure as a function of fluence
up to 0.6 J/cm2 in Fig. 7 indicate that the 355 nm
wavelength offers an advantage to maximize the SNR
compared with the 532 nm, as expected due to the
four-fold increment in the melanin absorption coeffi-
cient at that wavelength. This is in agreement with the
information provided in Fig. 5, where cell survival up
to that wavelength is clearly higher for 532 nm as
compared to the 355 nm.

The cross over of the integrated pressure in Fig. 7 for
fluences higher than 0.6 J/cm2 can be attributed to the
fact that the total number of cells reached by the laser
pulse are damaged at 355 nm, whereas there are still
undamaged cells reached by laser at 532 nm, as shown
in Fig. 5. The integrated pressure measured in these
experiments has two components: the photoacoustic
pressure resulting from thermoelastic expansion of the
melanosomes within melanoma cells and the pressure
originated by the so-called ‘‘giant photoacoustic effect’’
resulting from bubble formation around laser-heated
particles. This effect has been reported before in Ege-
rev5 and Lin and Kelly17 and references therein. The
pressure resulting from the giant photoacoustic effect
has been proven to be higher than that from thermo-
elastic expansion of heated particles.5

There could be various mechanisms that damage
cells due to laser irradiation with a few nanosecond-
long laser pulses. Temperature increment within
CMCs due to linear absorption of laser light by mel-
anosomes can be calculated under thermal confine-
ment conditions, when the optical absorption
coefficient is well known.14

DT ¼ laF

qCp
ð2Þ

where DT is temperature increment, la is the optical
absorption coefficient of melanosomes at the irradia-
tion laser wavelength, F is fluence or radiant exposure,

and q and Cp are density and specific heat at constant
pressure of CMC, respectively. As the different
absorbers within a cell are of submicron scale (mela-
nosomes containing melanin, in our case), thermal
confinement conditions require the pulse duration to
be shorter than the thermal relaxation time, defined
as7,15

s ¼ d2

a
ð3Þ

where s is thermal relaxation time, d is characteristic
length, and a is thermal diffusivity. For a melanosome
1 lm in diameter6 and thermal diffusivity of
1.37 9 1027 m2/s,30 relaxation time is 7.3 ls, which is
three orders of magnitude longer than our 6 ns laser
pulses; thus, thermal confinement conditions are ful-
filled in our experiments. Although some authors
provide other definitions of thermal relaxation time,3,10

with the melanosome size and thermal diffusivity pre-
sented here, the thermal relaxation time is two orders
of magnitude longer than the laser pulses used for
these experiments. Even though more complex theo-
retical heat transfer models have been developed to
study radial and temporal temperature distributions
surrounding laser-irradiated absorbing micro-
spheres,3,14,16,21,26 the approximation provided by
Eq. (2) is valid for the purposes of this study.

Thermal denaturation of biomolecules in the cell
may also be another mechanism of cell damage. Pro-
tein denaturation kinetics has been studied within a
time resolution of several hundred of microseconds.10

For thermal denaturation, an extrapolation of the
Arrhenius equation leads to denaturation temperatures
between 370 and 470 K for time range from pico- to
nanoseconds. This temperature range is well above the
threshold for bubble formation around melanosomes;
in other words, like in the case studied here, it would be
very difficult to kill cells thermally in the nanosecond
time regime.

The most likely damage mechanism for the case
studied herein is expansion of laser-induced bubbles
inside cells around melanosomes. Laser-induced bub-
bles without optical breakdown formation have two
possible formation mechanisms: boiling and/or cavi-
tation.21,23–25 As melanoma cells contain a large
amount of melanosomes (containing melanin), these
serve as nucleation centers for bubble formation.
When bubbles around single melanosomes expand
they merge forming larger bubbles that disrupt the cell
membrane as they expand. Boiling nucleation on
melanosomes and absorbing beads has been studied
previously.21,23 In these studies, experimental results
show that the threshold fluence for bubble formation
decreases linearly with increasing ambient temperature
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for different laser pulse durations. The authors
extrapolated their data and showed that a bubble is
formed around the melanosomes for 12 ns pulse
duration at 532 nm wavelength when a temperature of
136 ± 23 �C is reached. Table 1 shows calculations of
the temperature increment calculated with Eq. (2) for
the lowest and highest fluences used in our experiments,
considering the thermal properties in Gerstman et al.7

and the absorption coefficients of skin melanosomes in
Ref. 9 and not retina melanosomes. Our calculations
show that the temperature increments are well above
the reported nucleation temperatures for the highest
fluence, whereas with the combination of lowest fluence
and absorption coefficient, temperature increments are
near and below nucleation temperatures.

Another study reports detection of laser-induced
bubbles in hemoglobin solution and in individual red
blood cells at temperatures as low as 30 �C.14 Other
authors have experimentally studied bubble formation
at temperatures below 100 �C in absorbing solutions,
gels, and soft tissues.24,25 Under stress confinement
conditions, tensile stresses are responsible for a change
of phase below 100 �C, thereby reducing the threshold
fluence for bubble formation. Tensile stresses in those
experiments are the result of the material optical
properties and experiment geometry, in which a com-
pression wave experiments a reflection with opposite
sign becoming a tensile wave because of the acoustic
mismatch at the boundary. For a melanosome 1 lm in
diameter and with acoustic velocity of water, the
acoustic confinement time is about 0.7 ns, which is one
order of magnitude shorter than the pulse duration in
these experiments; however, if two melanoma cells 10
or 20 lm in diameter contained a large amount of
melanosomes and were very close to one another, then
an acoustic characteristic length in the order of the cell
size can be considered, and stress confinement condi-
tions could be fulfilled. Although the complex geome-
try of the interior of individual cells makes it difficult
to affirm that this is the case herein, this mechanism for
laser-induced bubble formation inside cells has been
proposed previously,14 and some of our data for low
fluence combined with the low-absorption coefficient
of melanosomes seem to suggest that this mechanism is
indeed plausible.

In the study where a similar experiment with mela-
nocytes was carried out,18 the authors reported that the
cell was not ‘‘blown to pieces’’; unfortunately, they do
not specify at which fluences this phenomenon occu-
red. In our case, it is evident that the cell membranes
were disrupted and, therefore, melanin leaked out and
diluted in the PBS solution, which was determined with
the nanodrop spectrophotometer.

There is evidence that UV and VIS radiation pro-
duce damage to subcellular structures via photosensi-
tization, a process in which a molecule absorbs light
and produces reactive species that alter cellular mole-
cules and initiate cellular responses, e.g., apoptosis.12,13

It was proven that when Rose Bengal is used as pho-
tosensitizer, 532 nm light induces oxygen singlets,
whereas 355 nm radiation induces both oxygen singlets
and highly reactive free radicals. Free radicals were
found to damage membrane functions more effectively
than oxygen singlets.12 Furthermore, for the 355 nm
wavelength, melanoma cells are more likely to go
through a combination of photochemical decomposi-
tion biomolecules due to the UV light31 than the
532 nm wavelength. These biological and chemical
mechanisms, along with a stronger photothermal
interaction of melanosomes with UV light, may
explain the differences in the cell survival rate we ob-
serve at both wavelengths.

Long-term effects on cell viability were not consid-
ered in this study as these are not significant for the
design of the CMC photoacoustic detection system and
are beyond the scope of this investigation. Further
research with shorter time resolution is required for
better understanding of the boiling phenomenon. The
required time resolution is possible by synchronizing
the pump nanosecond laser pulse with a femtosecond
laser as a probe pulse.

CONCLUSIONS

Four main conclusion statements can be extracted
from this study:

(1) There is statistically significant difference in
the amount of cells that survive laser irradia-
tion for both wavelengths. k = 355 nm kills
cells at a higher rate (vs. fluence) than k =

532 nm.
(2) There is statistically significant difference in

the integrated pressure resulting from irradi-
ation of melanoma cells with both wave-
lengths up to 0.6 J/cm2, as expected due to the
four-fold increment in the melanin absorption
coefficient at k = 355 nm with respect to
k = 532 nm.9 For fluences higher than

TABLE 1. Temperature increment and properties of CMC
calculated according to Eq. (2).

k (nm) Reference la (cm21) f (J/cm2) DT (K)

532 9 555 1.3 213

555 0.063 10

355 9 2268 0.912 610

2268 0.063 42

Properties of melanosome extracted from indicated references.
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0.6 J/cm2, the higher amount of damaged cells
at 355 nm may be due to the superposition of
pressure induced by the thermoelastic expan-
sion of melanosomes and that resulting from
the giant optoacoustic effect.

(3) The post-laser irradiation absorbance of the
mixture of melanin and PBS increases equally
for the two wavelengths, which suggests that
although the k = 355 nm irradiation is killing
cells at a greater rate, melanin is leaking from
them just as much as it does for k = 532 nm
irradiation.

(4) The main plasma membrane damage mecha-
nism is microbubble formation within the cell,
although it is not linearly correlated to laser
energy absorption only; thus, mechanisms
other than laser light absorption contribute to
the plasma membrane damage. From a prac-
tical standpoint, k = 355 nm wavelength does
not offer a much larger SNR of the photoa-
coustic signal with respect to k = 532 nm.
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