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ABSTRACT 
 
The purpose of this study was to investigate the dynamics of laser light attenuation during cryogen spray cooling (CSC).  
Two detection schemes were used to approximate collimated and diffuse light transmittance measurements of 
continuous-wave (λ = 594 nm) and pulsed (λ = 585 nm) laser light during application of short (20-100 ms duration) 
cryogen spurts on a glass substrate.  High-speed video images were also obtained during CSC.  Collimated light 
transmittance varied considerably during CSC.  Comparison of collimated and total transmitted light detection indicated 
that the diffuse component was substantial.  Light attenuation occurred despite transparency of the liquid cryogen layer.  
Light scattering by cryogen results in a diverging laser beam incident on the skin surface.  Since specular reflectance at 
the cryogen-skin interface may differ for diffuse light, further study of light scattering during CSC is warranted.  Due to 
the differences in optical properties of glass and skin, experiments on skin need to be performed to extrapolate our 
results to the clinical scenario.  For dermatologic procedures such as laser port wine stain and vascular lesion removal, 
hair removal, and nonablative skin rejuvenation, recommended τd are 10-80 ms.  This range of τd appears to be 
appropriate, although more studies are required to arrive at a definite conclusion. 
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1.  INTRODUCTION 
 
Cryogen spray cooling (CSC) is a technique used to precool skin during laser therapy.  The selective cooling provided by 
CSC spatially confines reduced temperatures to the epidermis, which counteracts unwanted epidermal heating by the 
ensuing laser pulse.  CSC is used clinically during laser-mediated dermatological procedures such as treatment of port 
wine stains (PWS) [1-6] and hemangiomas [7-9], hair removal [10], and nonablative skin rejuvenation [11, 12] 
 
During CSC, atomized cryogen droplets propagate from the delivery nozzle to the skin surface.  Initial droplets reach the 
skin surface and rapidly remove heat from the skin.  At later stages of the spurt, the rate of droplet deposition may 
exceed the rate at which the droplets evaporate, resulting in formation of a liquid cryogen pool on the skin surface.  The 
cryogen pool eventually evaporates as frost forms on the skin surface due to condensation of water vapor present in the 
local environment. 
 
Thus, CSC is characterized by a dynamic surface boundary condition.  Previous studies have established that incident 
laser light is attenuated during CSC.  Anvari et al. [2] sprayed cryogen on the surface of dry collagen films and measured 
an 85-90% transmittance of 585-nm laser light.  Majaron et al. [13] sprayed a 2-s cryogen spurt into a glass cup and 
measured 80% transmittance of pulsed Er:YAG (λ = 2.94 µm) laser radiation.  Pope and MacKenzie [14] measured 
>97% transmittance of pulsed 755-nm laser light during CSC of glass.  A limitation of these reported transmittances is 
that information on the relative timing of these measurements with respect to the cryogen spurt is not provided. 
 
The purpose of this study was to investigate laser light attenuation by the cryogen film/frost layer.  Medical-grade, FDA-
approved cryogen was sprayed on a glass slide, and continuous-wave (CW) and pulsed laser light transmittance during 
CSC was measured.  High-speed video images during CSC were obtained and correlated with the time-resolved 
transmittance measurements. 
 



2.  MATERIALS AND METHODS 

 
2.1.  Basic Experimental Setup 

 
A commercial cryogen delivery system (Dynamic Cooling Device (DCD), Candela Corporation, Wayland, MA) was used 
in all experiments.  The test cryogen was refrigerant R134a (-26°C boiling point temperature at 1 atm) and is the cryogen 
currently used in clinical laser PWS and hemangioma treatments [1-3, 6, 7, 9, 15].  The DCD was triggered using a relay 
switch controlled by a digital pulse generator (Model DG535, Stanford Research Systems, Sunnyvale, CA). 
 
Cryogen spurts of 20-, 60-, and 100-ms durations (τcry) were delivered to one surface of a 1-mm-thick glass slide.  The 
distance between the DCD handpiece nozzle exit and glass slide was approximately 5 cm and was kept constant for all 
experiments.  Since laser light was incident normal to the glass slide surface (see below), the cryogen was delivered at a 
15-30° angle with respect to the normal.  After each cryogen spurt, the glass slide surface was wiped with methanol-
soaked lens-cleaning tissue to remove dry cryogen residue.  Following each cryogen spurt, sufficient time was provided 
for the slide temperature to return to ambient temperature. 
 

2.2.  High-Speed Image Acquisition 

 
Images of cryogen spurts sprayed on glass were acquired with a high-speed CCD-based imaging system (Fast-Cam Super 
10K, Photron USA, San Jose, CA).  The camera was oriented normal to the glass surface.  The frame acquisition rate 
was 1000 frames per second (fps), corresponding to a pixel window size of 256×240.  Additional lighting was provided 
by a fiber-optic illuminator (FO-150, Chiu Technical Corporation, Kings Park, NY).  Image sequences were stored on a 
mini-DV tape with a dedicated recording unit (Video Walkman GV-D900 NTSC, Sony, Tokyo, Japan).  A total of 5000 
images were captured per cryogen spurt.   
 

2.3.  CW Laser Light Detection 

 
A HeNe laser (λ = 594 nm, Model 1677, Uniphase, Manteca, CA) served as the CW light source.  Emitted laser light was 
attenuated by two linear polarizers (Model 069-0120, OptoSigma, Santa Ana, CA) mounted on rotational translation 
stages.  The power incident on the glass slide was ~17 µW.  The beam profile was gaussian with a 1/e2 spot diameter of 
3 mm measured using the knife-edge technique [16]. 
 
A silicon photodiode (Model 818-SL, Newport Corp., Irvine, CA) detected the transmitted laser light.  An iris aperture 
set at a 1-mm-diameter opening was mounted to the photodiode.  The distance d between the front surface of the glass 
slide and the photodiode surface was set at 2.5, 17.5, and 32.5 cm.  The aperture was used to reduce the amount of 
detected diffuse light and thus offer an approximation of collimated light transmittance (Tc).  This approximation was 
more valid as d was increased.  
 
The voltage output of the photodiode was acquired with a connector block (Model BNC-2110, National Instruments, 
Austin, TX) connected to a data acquisition board (Model PCI-MIO-16E-4, National Instruments).  Software written in 
LabVIEW (Version 5.1, National Instruments) was used to control the timing between CSC and data acquisition. 
 
In the experiment, a cryogen spurt was delivered to the glass slide surface.  Laser light transmission was monitored prior 
to, during, and after CSC, for a total of 20 seconds.  In this paper, the initial one-second periods will be discussed only.  
Five measurements were taken at each slide-detector separation and for each τcry. 
 



2.4.  Pulsed Laser Light Detection 

 
A clinical pulsed-dye laser system (Model SPTL-1b, Candela Corporation) equipped with a DCD was used in this study.  
The laser emitted 450-µs-long pulses at a wavelength of 585 nm.  The radiant exposure incident on the glass slide was 
3.5 J/cm2.  Cryogen was sprayed on the glass slide prior to pulsed laser irradiation.  The delay time (τd) between the end 
of the cryogen spurt and the onset of the laser pulse was varied (τd = 10, 50, 100, and 500 ms).   
 
Incident laser light was detected using a joulemeter (Model J25-LP-1, Molectron Detector Inc., Portland, OR) connected 
to an energy meter (Energy Max 500, Molectron Detector Inc.).  The detector was placed at two distances d away from 
the glass slide (4.7 and 17.5 cm) and measurements were taken with and without a 1-mm-diameter aperture placed in 
front of the detector.  For convenience, the presence or absence of the aperture in front of the detector will be hereafter 
referred to as “apertured” and “nonapertured” detection, respectively. 
 
Energy measurements were taken before (Qmax) and at a time τd after CSC (QCSC).  Transmittance T [%] was calculated 
by the ratio QCSC/Qmax.  At least three measurements were taken for each experimental condition.  All data is reported as 
mean + standard deviation. 
 
 

3.  RESULTS 
 

3.1.  High-Speed Image Acquisition 

 
Figure 1 shows a montage of images acquired during a 100-ms cryogen spurt at 1000 fps.  A typical sequence of dynamic 
events occurring during and after a cryogen spurt includes the following.  A pool of cryogen liquid droplets formed on 
the surface of the glass slide, followed by frost formation in the periphery of the pool (Figure 1, t = 150-200 ms).  As 
boiling ceased in more central regions of the sprayed area, frost formed progressively closer to the center of the sprayed 
area (t = 500 ms) until a continuous layer of frost was present on the surface (t =1076 ms).  Eventually, the frost melted, 
beginning at the periphery (images not shown). 
 
From the acquired image sequences, a characteristic time τcfl was quantified, representing the time between the 
beginning of the cryogen spurt and the timepoint at which a continuous frost layer was present.  Our initial hypothesis 
was that at t = τcfl, light transmittance would be at a local minimum.  Mean values are summarized in Table 1. 

3.1.  CW Laser Light Detection 

 
Figure 2 shows plots of collimated 594-nm laser light transmittance Tc as a function of time for τcry =  20-, 60-, and 100-
ms, respectively.  The light transmittance changed considerably over the initial one-second interval.  For τcry = 20 ms, an 
increase in slide-detector separation d resulted in an increased duration during which Tc < 100%.  For all three d, Tc 
eventually reached ~100%.  The trends were different for longer cryogen spurts.  For d = 2.5 cm,  Tc eventually reached 
~100%.  However, for longer d, Tc remained below 100% during the same period.  Furthermore, the 60- and 100-ms 
transmittance curves measured for d = 17.5 and 32.5 cm were similar in shape, with Tc(d = 17.5 cm) consistently greater 
than Tc(d = 32.5 cm).   

3.2.  Pulsed Laser Light Detection 

585-nm pulsed laser light transmittances are plotted in Figure 3 for select values of τd and for two d.  T(d = 4.7 cm) was 
greater than T(d = 17.5 cm) for all τcry and τd.  Also, T was lower in apertured detector measurements for all τcry and τd. 
 
 



Before spurt t = 3 ms t = 50 ms

t = 100 ms t = 150 ms t = 200 ms

t = 500 ms t = 1076 ms

Before spurt t = 3 ms t = 50 ms

t = 100 ms t = 150 ms t = 200 ms

t = 500 ms t = 1076 ms  

Figure 1.  High-speed video image sequence obtained during CSC of glass.  The cryogen spurt duration was 100 ms.  The 
curved object on the left side of the image is a reflection of a nearby object.  The images shown for t < 100 ms are 
taken during the cryogen spurt.  The boiling liquid cryogen layer and frost ring are evident in the t = 150 and 200 
ms images.  At t = 1076 ms, the frost layer is continuous.  The white scale bar is 5-mm long. 

 

Table 1.  Summary of time required between onset of cryogen spurt (duration = τcry) and initial timepoint at which a 
continuous frost layer is visible (τcfl). 

 
τcry [ms] τcfl [ms]

20 205
40 428
60 631
80 830
100 1025  
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Figure 2.  Time-resolved transmittance curves during CSC of glass.  Cryogen spurt durations = (a) 20 ms, (b) 60 ms, and 
(c) 100 ms.  The three curves in each plot represent transmittance measured by an apertured (1-mm-diameter) 
detector at three slide-detector separations d (see legend).   
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Figure 3.  Transmittance values measured using pulsed laser light during cryogen spray cooling.  Apertured (“ap”) and 
nonapertured (“no ap”) detectors were used.  Two slide-detector separations [(a) 4.7 cm and (b) 17.5 cm]were 
investigated.  The numbers in the legend correspond to cryogen spurt duration.  The lines connecting the data 
points are shown to separate data sets and do not represent the expected time-resolved transmittance curves. 



4.  DISCUSSION 
 
Ideally, the substrate used in CSC studies should be in vivo human skin.  Unfortunately, in vivo light transmittance 
measurements are not possible due to the optical turbidity of skin at visible laser wavelengths.  A limitation of using 
substrates such as glass (this study), aluminum [17] and copper [18, 19] is that thermal properties of these materials differ 
from those of human skin.  Anvari et al. [20] studied heat transfer dynamics during CSC of four different materials and 
quantified differences in heat extraction among substrates.  These results suggested that heat transfer parameters 
identified during CSC of one material cannot be used to provide absolute predictions of heat transfer during CSC of a 
different material.  Nevertheless, qualitative trends can be ascertained from measurements taken during CSC of a 
material with considerably different thermal properties than human skin. 
 
The pool of liquid cryogen on the glass surface was readily evident from observation of the high-speed digital images 
(Figure 1).  When images were acquired in a previous study [21] during CSC of in vivo human skin, the liquid cryogen 
film was not readily apparent.  Since the temperature and thermal diffusivity of human skin are higher than for glass, 
heat was transferred more rapidly to the cryogen droplets during CSC of human skin, resulting in a shorter residence 
time of the liquid pool.  This observation is in qualitative agreement with data obtained by Choi and Welch [22] in which 
the residence time was an order of magnitude shorter during CSC of room-temperature gelatin tissue phantoms than for 
CSC of in vivo human skin.   
 
Since the thermal properties of the gelatin (70% water by mass) used in Ref. 22 were expected to be similar to those of 
human skin, the difference in cryogen residence time suggests that substrate temperature may play a significant role in 
governing the overall CSC dynamics.  During each light transmittance measurement, the temperature of the glass slide 
remained at or below room temperature.  Since glass is almost perfectly transparent to visible light, the temperature of 
the slide is unchanged by the incident laser light.  During 585-nm laser irradiation of skin, light is absorbed primarily by 
melanin in the epidermis and blood in the dermis, leading to an increase in local temperature.  Heat diffusion from these 
regions towards the skin surface leads to elevated superficial temperatures and may affect the overall CSC dynamics.  In 
particular, a temperature rise decreases the residence time of the cryogen film and frost [23].  Future studies should 
experimentally address the role of substrate temperature on CSC. 
 
A preliminary integrating-sphere-based study showed that time-resolved light transmittance curves were virtually 
identical for four visible HeNe laser wavelengths [(543, 594, 612, and 633 nm), unpublished data].  These results suggest 
that cryogen film/frost layer attenuation properties are similar for light wavelengths of 585 and 594 nm.  Unfortunately, 
the lack of wavelength-resolved cryogen optical property data makes it difficult to extrapolate the comparison to longer 
wavelengths such as the 755-nm and 2.94-µm light used in other studies in which transmittance was measured [13, 14].   
 
Previous studies [24, 25] have assumed that cryogen absorption is similar to that of ice.  Ice absorption coefficients at 
585 nm, 755 nm, and 2.94 µm are approximately 6.8 × 10-4, 0.01, and 11825 cm-1, respectively [26].  If we assume a 
maximum cryogen film thickness of 6-100 µm [24, 27] and Beer’s law light attenuation, the transmittance values at the 
three wavelengths are ~100%, ~100%, and ~0%, respectively.  Except for 755-nm, the measured data differ 
considerably from the theoretical predictions.  The transmittance of 585-nm radiation at τd = 10 ms after the end of a 
100-ms cryogen spurt is 45% (Figure 3a).  Majaron et al. [13] measured 80% transmittance of 2.94-µm light through a 
several-mm-thick liquid cryogen layer after a 2-s cryogen spurt.  One possibility is that ablation of ice occurred during 
the laser pulse.  Since the absorption coefficients of ice and water at 2.94 µm are similar [26, 28], results of skin ablation 
studies at 2.94 µm can provide insight into ice ablation rates.  Even if ablation of cryogen occurred, skin ablation rates 
measured by Walsh and Deutsch [29] suggest that light transmittance would still be approximately 0%.  These results 
suggest that the cryogen has different optical properties from ice.  We are in the process of measuring collimated and 
diffuse reflectance and transmittance during CSC using an integrating sphere.  These measurements can be used in 
conjunction with inverse light transport models such as the adding-doubling method [30] to calculate time-resolved 
effective absorption and reduced scattering coefficients of the cryogen. 
 
CW light transmittance measurements provide a continuous record of light transmittance during CSC.  Apertured light 
detection offers a measure of collimated light attenuation.  The collimated light transmittance (Tc) trends observed for 
20-ms cryogen spurts are considerably different from the 60- and 100-ms data (Figure 2).  Measurements by Aguilar et 
al. [31] suggest that cryogen spurts shorter than 30 ms are not fully developed.  Thus, the difference between the 20-ms 



data and 60- and 100-ms measurements may be explained by the differences in cryogen flow characteristics and cryogen 
layer dynamics. 
 
For τcry = 20 ms, the transmittance curves in Figure 2a seem to be offset in time but not in decrease of Tc.  For τcry = 60 
and 100 ms, the measurements at various d are in phase with one another but with an offset dependent on d [Figure 2(b-
c)].  This is probably due to light scattering by the cryogen film/frost layer.  The collection solid angle from the laser 
spot is different for each apertured detector position d.  As d increases, the effective collection angle decreases, resulting 
in a decreased probability of detecting scattered light.   
 
Pulsed 585-nm laser light detection measurements were obtained to simulate the clinical scenario as closely as possible.  
Although the transmittance of 585- and 594-nm radiation through the cryogen film/frost was approximately the same, 
the peak laser irradiance (7800 W/cm2 versus 2.4 × 10-6- W/cm2, respectively) differed by several orders of magnitude.  
If cryogen film/frost layer absorption were significant, then a difference in CSC dynamics and hence transmittance may 
have occurred due to direct heating of the cryogen.  Preliminary measurements of pulsed laser light transmittance at 
different radiant exposures suggest that effects of light absorption on transmittance are negligible (unpublished data). 
 
A direct comparison between the pulsed 585-nm and CW 594-nm data could be drawn only for apertured light detection 
at d = 17.5 cm (Figures 2 and 3b).  For τd < 100 ms, the 20-ms pulsed and CW Tc data differed by as much as 50%.  The 
60- and 100-ms pulsed and CW data agreed more closely, but discrepancies in Tc as high as 20% still existed.  At τd = 
500 ms, the differences between pulsed and CW Tc data were even more pronounced.  For these experiments, two 
DCDs were used because the measurements were taken in two different laboratories.  Future experiments should focus 
on the use of a single cryogen delivery device for all measurements to eliminate any potential problems caused by 
differences between the two DCD units.  Also, pulsed laser light transmittance data needs to be obtained at additional 
timepoints to improve the time resolution of the transmittance “curves”.   
 
From the limited data, it is evident that T was at a local maximum at τd = 10 ms or 50 ms (Figure 3).  Typical clinical 
CSC parameters for PWS therapy are τcry = 30 ms and τd = 30 ms.  For other dermatological procedures such as laser 
hair removal or nonablative skin rejuvenation, recommended τd = 10-80 ms.  This range of τd appears to be appropriate, 
although more data points are needed and optical-thermal modeling performed to arrive at a stronger conclusion. 
   
The time sequence of high-speed images (Figure 1) portrays the rapid changes that occur at the surface boundary of a 
sprayed object.  The pool of cryogen liquid that forms during CSC appears to be transparent to visible light.  At t = 150 
and 200 ms after the onset of a 100-ms cryogen spurt, the glass surface is covered primarily by liquid cryogen (Figure 1).  
However, Tc(d = 2.5 cm) decreases to 85-90% at these timepoints (Figure 2c), indicating that the clear liquid film layer 
can attenuate incident laser light.  Since an apertured detection scheme was used, the decreased Tc is due in part to 
scattering of light out of the reduced photodiode field of view.   
 
At t = τcfl (Table 1), Tc appears to plateau for all τcry (Figure 2).  Interestingly, as the annular frost ring begins to close, Tc 
decreases for d = 2.5 cm but increases for d = 17.5 and 32.5 cm.  Intuitively, it would seem that a white (e.g., visibly-
scattering) frost layer would cause an overall decrease in Tc.  The reason for these trends is unknown.  Simultaneous 
measurements of laser light transmittance and capture of high-speed images would provide a better understanding of 
how cryogen film dynamics affect light transmittance. 
 
Our pulsed Tc measurements (Figure 3) involved the use of an apertured detection scheme and thus consisted primarily 
of collimated light transmittance.  Assuming an isotropic detector, the nonapertured detector at d = 4.7 cm measured all 
light scattered at angles up to 15° with respect to the normal of the glass surface, so light scattered at larger angles was 
not detected.  Thus, the difference between the transmittance measured in the nonapertured and apertured detection 
schemes provides a gross understimate of the quantity of diffuse light scattered by the cryogen film/frost.  Nevertheless, 
the calculated difference is as great as ~30% (Figure 3a), indicating that a considerable portion of the transmitted light 
consists of diffuse light.  The results also suggest that the quantity of diffuse light depends on τcry and τd. 
 
The practical effect of light scattering is a reduction in the quantity of collimated light and an increase in the quantity of 
diffuse light.  Diffuse light reaching the cryogen/skin interface will either couple into the skin or reflect from the 
cryogen-skin interface.  The effective reflectance of skin may differ for light incident at a nonzero incident angle with 
respect to the normal.  Once light enters the skin, the angle of incidence on the skin surface is not important due to the 
highly scattering nature of soft tissue to visible light [32].  Since the optical properties of glass and skin differ 



dramatically, it is necessary to conduct experiments involving skin or skin phantoms to understand how the data 
obtained in this study compare with light transport in skin. 
 
Knowledge of the angular spread of the laser light after passage through the cryogen film and frost can lead to an 
improved understanding of combined CSC/laser treatment of vascular lesions such as PWS.  A goniometer can be used 
to measure the scattering pattern of incident laser light by a sample [33].  A modified goniometric-based setup may 
provide experimental data on light trajectory that can be used as input into Monte Carlo models [34] to ascertain the 
effects of light scattering on the light distribution in skin.   
 

5.  CONCLUSIONS 
 
In this study, time-resolved measurements of laser light attenuation during CSC were obtained.  Light transmittance 
varied considerably during CSC.  Measurements of collimated light transmittance with an apertured detection scheme 
suggested that light scattering by the cryogen film/frost was significant.  Pulsed light detection using apertured and 
nonapertured detectors indicated that a substantial portion of the transmitted light was diffuse.  More studies are 
required to ascertain the effects of light scattering by the cryogen film on laser PWS dermatologic surgery. 
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