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IMPORTANCE OF ENVIRONMENTAL CHAMBERS 
TO AIR POLLUTION MODELS

• Chemical mechanisms are critical components of models for 
predictions of secondary pollutants such as O3 and PM 

• Mechanisms in current pollution models have many uncertain 
estimates, simplifications and approximations

• Environmental chambers, simulating atmospheric reactions 
under controlled conditions, are essential to:
• Developing predictive mechanisms when basic mechanistic 

data insufficient, e.g., for aromatics
• Testing approximations and estimates for almost all VOCs 

under simulated atmospheric conditions
• Testing entire mechanisms under varied conditions

• Results of experiments are influenced by chamber effects, so 
developing an appropriate chamber effects model is important



W. P. L. Carter      10/1/04 UCR EPA Environmental Chamber 3

NEED FOR IMPROVED CHAMBER FACILITY FOR 
REDUCING CHEMICAL MECHANISM UNCERTAINTY

• Chamber effects and analytical limitations make most previous 
chambers unsuitable for simulating low ambient pollutant levels 

• Large volume chambers are needed to reduce chamber effects, 
for studies of low volatility VOCs and PM, and to permit use of 
equipment with high sampling rates

• Largest current chambers are outdoors. But outdoor chambers 
are difficult to control and characterize for model testing

• Need to test predictions on how temperature affects O3 and PM 
formation. Current chambers not suitable for this.

• Most U.S. chambers lack the analytical instrumentation needed 
to monitor many important trace species

• The new UCR U.S. EPA Chamber was funded and 
constructed to address these needs
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DESIGN CHARACTERISTICS OF NEW CHAMBER 
FACILITY

• Indoor chamber design used for maximum control and 
characterization of conditions

• Dual reactor design for experimental productivity and to simplify 
reactivity assessment

• Largest practical volume for indoors (two ~100,000-L reactors)

• 200 KW filtered argon arc solar simulator

• Replaceable Teflon reactors in “clean room” to minimize 
background

• Positive pressure reactor volume control to minimize dilution 
and minimize contamination 

• Temperature controlled to ±1oC in ~5oC to ~50oC range.

• Improved array of analytical instrumentation and provision for 
additional instrumentation in the future
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DIAGRAM OF UCR EPA CHAMBER
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DIAGRAM OF REACTOR AND FRAMEWORK
(One of Two)
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PHOTOGRAPHS OF CHAMBER AND LIGHTS
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LIGHT SOURCE AND SPECTRUM
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SUMMARY OF CHARACTERIZATION RESULTS

• Contamination or dilution by enclosure air is negligible when run 
on positive pressure control. (Volume decreases as sample is 
withdrawn)

• Light intensity with Argon arc lamp at 80% recommended 
maximum power gives NO2 photolysis rate of 0.26 min-1

• Characterization results indicate chamber effects are 
comparable or lower than in other Teflon film chambers 

• Both chamber radical source and NO2 offgasing can be 
represented by HONO offgasing at rates comparable to those 
observed in the SAPHIR chamber

• Good side equivalency in gas-phase results obtained when the 
same experiment is simultaneously run in the two reactors 
(except for some NOx offgasing-sensitive runs) 
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DERIVATION AND VALUES OF MAJOR CHAMBER 
CHARACTERIZATION PARAMETERS

Model pure air and CO 
– air runs
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HONO OFFGASING PARAMETER VS. RUN NO.
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COMPARISONS OF RADICAL SOURCE 
PARAMETER VALUES FOR VARIOUS CHAMBERS
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SUMMARY OF CHAMBER PROJECTS TO DATE

• Funded by U.S. EPA

• Funded chamber construction and initial characterization

• Initial exploratory experiments:
• Low NOx experiments with selected VOCs
• Reactive organic gas (ROG) surrogate – NOx experiments at 

varying ROG and NOx levels
• Incremental reactivity of m-xylene and n-octane at varying 

ROG and NOx levels

• Status: complete. Report in preparation

“Development of a Next-Generation Environmental 
Chamber Facility …”
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SUMMARY OF CHAMBER PROJECTS TO DATE

• Funded by the California Air Resources Board

• Primary objective is to evaluate the SAPRC-99 mechanism 
using previous and new low NOx environmental chamber data

• A limited number of low NOx ROG surrogate runs carried out for 
this project

• Data from the CSIRO and TVA chambers also used in this 
evaluation

• Project completed. Reporte available at 
http://www.cert.ucr.edu/~carter/absts.htm#lnoxrpt

“Development and Evaluation of a Gas-Phase Atmospheric 
Reaction Mechanism for Low NOx Conditions”
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SUMMARY OF CHAMBER PROJECTS TO DATE
(continued)

• Funded by U.S. EPA

• Objective is to provide data to evaluate OBMs using well-
characterized chamber data

• ROG Surrogate – NOx experiments at varying ROG and NOx
with measurements of key radical and “indicator” species

• Collaborated with Bill Brune of Penn State University to provide
OH, HO2, and “OH reactivity” measurements using LIF

• Successfully completed 20 dual-chamber surrogate experiments 
with radical measurements; 40 separate ROG/NOx irradiations

• Report and journal articles in preparation

“Experimental Evaluation of Observational Based Methods 
for Evaluating the Sensitivity of O3 to VOCs and NOx”
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SUMMARY OF INITIAL EVALUATION EXPERIMENTS

0.2 – 4.2 ppmC

Toluene: 0.6 – 0.16
Xylene: 0.18
CO: 25 - 50

0.4 – 0.5

~0.6

HCHO: 0.4 – 0.5
CO: 15 - 80

0.35 – 0.50

Varied

VOC Range (ppm)

15-202Formaldehyde - CO - NOx

~0.2 - 31564*Ambient Surrogate - NOx

5 - 306Aromatic - NOx + CO

5 - 254Toluene or m-Xylene - NOx

5 - 252Propene - NOx

10 - 252Ethene - NOx

8 - 252Formaldehyde - NOX

0 - 20032Characterization

NOx Range 
(ppb)RunsRun Type

* Includes later experiments carried out for the EPA OBM study
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FITS TO ∆([O3]-[NO]) FOR SAPRC-99 MECHANISM 
FOR THE INITIAL EVALUATION EXPERIMENTS
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LOW NOx SURROGATE EXPERIMENT
(ROG SURROGATE = 300 PPBC, NOx = 2 PPB)

Concentration (ppm) vs Time (minutes)
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EXAMPLE DATA FROM AN OBM EXPERIMENT
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SUMMARY OF CHAMBER PROJECTS TO DATE
(continued)

• Funded by the California Air Resources Board

• Objective is to reduce uncertainties in O3 impact estimates of 
major types of coatings VOCs where reactivity data needed

• Environmental chamber incremental reactivity experiments 
being carried out for various types of petroleum distillates, and 
Texanol®, an important component in water-based coatings

• Experiments carried out at two ROG and NOx conditions and 
evaluated using SAPRC-99 mechanism

• Most experiments completed, data now being analyzed

“Evaluation of Atmospheric Impacts of Selected Coatings 
VOC Emissions”
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SUMMARY OF CHAMBER PROJECTS TO DATE
(continued)

• Funded by the South Coast Air Quality Management District

• Primarily supplements CARB architectural coatings reactivity 
project to allow for additional work:
• PM measurements during reactivity experiments
• Incremental reactivity experiments with ethylene and 

propylene glycols, benzyl alcohol, and butyl carbitol

• Limited experiments to investigate interactions between glycols 
and aerosols for availability assessment

• Experiments near completion and being analyzed

“Environmental Chamber Studies of VOC Species in 
Architectural Coatings And Mobile Source Emissions”
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SUMMARY OF CHAMBER PROJECTS TO DATE
(continued)

• Funded by the California Air Resources Board

• Major effort is updating and improving the SAPRC mechanism:
• Updating to be consistent with current literature
• Improving performance for aromatics and low ROG/NOx

• Developing condensed version for models to replace CB4

• Includes limited funding to support mechanism update effort 
(primarily for aromatics) (~10 runs)

• Project is now underway

“Updated Chemical Mechanisms for Airshed Model 
Applications”
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SUMMARY OF CHAMBER PROJECTS TO DATE
(continued)

• To be funded by the U.S. EPA

• Primary objective is to support research utilizing chamber for O3
and secondary PM mechanism evaluations

• Experiments to be conducted include:
• Studies of temperature and humidity effects on O3 and SOA
• PM and SOA formation characterization experiments
• Study effects of variable ROG and NOx on and SOA

• Approved for funding. Waiting for contract paperwork

“Utilization of a Next Generation Environmental Chamber 
Facility ...”
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SUMMARY OF CHAMBER PROJECTS TO DATE
(continued)

• Carried out in collaboration with Dr. David Cocker of CE-CERT

• Funded in part by the SCAQMD and EPA projects and in part by 
other CE-CERT programs

• Experiments include
• PM characterization and background experiments, and 

experiments for comparison with data from other chambers
• Studies of SOA formation from aromatics and the ROG 

surrogate mixture under various conditions

• Work is underway. Some manuscripts submitted for publication

PM Characterization and Secondary PM Formation 
Assessment Studies
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FUTURE RESEARCH DIRECTIONS

• Continue O3 reactivity and mechanism evaluation experiments 
as currently underway

• Utilize the capabilities of chamber for well-characterized SOA 
studies needed for SOA model development and evaluation

• Investigate temperature and humidity effects on O3 and SOA

• Obtain instrumentation needed for NO3, N2O5, HOx, and other 
trace species to improve capabilities and utility of this facility

• Serve as a resource for collaborative studies where 
environmental chamber measurements under highly controlled 
and characterized conditions would be useful

• Serve as test bed for instrumentation for ambient monitoring


