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Abstract: This paper studies the problem of privacy-preserving average consensus in multi-
agent systems. The network objective is to compute the average of the initial agent states while
keeping these values differentially private against an adversary that has access to all inter-
agent messages. We establish an impossibility result that shows that exact average consensus
cannot be achieved by any algorithm that preserves differential privacy. This result motives
our design of a differentially private discrete-time distributed algorithm that corrupts messages
with Laplacian noise and is guaranteed to achieve average consensus in expectation. We examine
how to optimally select the noise parameters in order to minimize the variance of the network
convergence point for a desired level of privacy.
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1. INTRODUCTION

Multi-agent average consensus is a basic distributed con-
trol problem where a group of agents seek to agree on the
average of their individual values by only interchanging
information with their neighbors. This problem has found
numerous applications in sensor networks, synchroniza-
tion, network management, and distributed computation
and optimization. In many of these applications, guaran-
teeing the privacy of the individual agents is an important
aspect that has not been sufficiently studied in the context
of networked systems and cooperative strategies. An in-
creasing number of works look at the notion of differential
privacy, which specifies that the information of an agent
has no significant effect in the aggregate output of the
algorithm, and hence its data cannot be inferred by an
adversary from its execution. This is a strong notion of
privacy with a rigorous formulation and proven security
properties, including resilience to post-processing and aux-
iliary information and independence from the model of the
adversary. This paper is a contribution to this body of re-
search where we focus our attention on gaining insight into
the achievable trade-offs between privacy and performance
in multi-agent average consensus.

Literature Review There is a large literature on the
(average) consensus problem in networked systems and
the interested reader is referred to (Bullo et al., 2009;
Ren and Beard, 2008; Mesbahi and Egerstedt, 2010) and
references therein for a comprehensive review. The notion
of differential privacy, first introduced in (Dwork et al.,
2006; Dwork, 2006), has been the subject of extensive
research in the database literature over the past decade.
A recent comprehensive text can be found in (Dwork and
Roth, 2014). Recently, this notion has found its way into a
number of areas pertaining networked systems including
control (Huang et al., 2012, 2014; Wang et al., 2014),
estimation (Ny and Pappas, 2014), and optimization (Han
et al., 2014; Huang et al., 2015). Of particular relevance

to our paper is the work of Huang et al. (2012), which
considers the multi-agent average consensus problem and
proposes an adjacency-based distributed algorithm with
decaying Laplacian noise in the inter-agent messages. The
algorithm is differentially private and agents asymptot-
ically agree on a value that may not be the average
of their initial states, even in expectation. Our present
work improves upon (Huang et al., 2012) by providing
a performance bound that sheds light on what can be
achieved in terms of differential privacy for general average
consensus dynamics and studying a stronger notion of
convergence. Our results also allow individual agents to
independently choose their level of privacy. Other works
have looked at the average consensus problem employ-
ing different notions of privacy. Manitara and Hadjicostis
(2013) improve upon (Kefayati et al., 2007) to propose a
distributed algorithm where any agent has the option to
add a zero-sum noise sequence with finite random length
to its first set of transmitted messages. Since the sequence
is zero-sum, agents converge to the true average. Privacy
of a participating agent, understood as the property that
different initial conditions produce the same transmitted
messages, is preserved if the malicious nodes cannot listen
to it and all its neighbors. The work of Mo and Murray
(2014) adds infinite-length exponentially-decaying zero-
sum noise sequences to inter-agent messages and formally
defines privacy as the inability of a malicious node to per-
fectly recover the initial state of other nodes via maximum-
likelihood estimation. The proposed algorithm is mean-
square convergent to the true average and preserves the
privacy of nodes whose messages and those of their neigh-
bors are not listened to by the malicious nodes.

Statement of Contributions We consider the multi-agent
average consensus problem with privacy preservation re-
quirements on the initial agent states. Our main contribu-
tions pertain the understanding of the trade-offs between
differential privacy and performance, and can be divided
into three groups as follows. Our first contribution is a



general result stating that any distributed coordination
algorithm cannot simultaneously be differentially private
and guarantee weak convergence of agents to the average
of their initial states. Our second contribution is the de-
sign of a distributed algorithm that guarantees that the
agents converge in expectation to the average of their
initial states. Our design uses the classical discrete-time
Laplacian-based linear stationary dynamics together with
additive Laplacian noise processes. We establish the al-
most sure convergence, unbiasedness, bounded dispersion,
and differential privacy of our design in successive results.
Our final contribution pertains to the optimal tuning of the
design parameters of the algorithm (specifically, the noise-
to-state gain of the system and the amplitude and decay
rate of the noise) to minimize the variance of the network
convergence point for a desired level of privacy. Various
simulations illustrate our results. Most of the proofs are
omitted for space reasons and will appear elsewhere.

2. PRELIMINARIES

This section introduces notation and basic concepts. We
denote the set of reals, positive reals, non-negative re-
als, positive integers, and nonnegative integers by R,
R>0, R≥0, N, and Z≥0, respectively. We let (Rn)N de-
note the space of vector-valued sequences in the Eu-
clidean space Rn. Given n numbers c1, . . . , cn ∈ R,
diag(c1, . . . , cn) ∈ Rn×n denotes a diagonal matrix with
c1, . . . , cn on its diagonal. For any {x(k)}∞k=0 ∈ (Rn)N,
we define the shorthand notations x = {x(k)}∞k=0 and
xk = {x(j)}kj=0. In ∈ Rn×n and 1n ∈ Rn denote the
identity matrix and the vector of ones, respectively. For
x ∈ Rn, Ave(x) = 1

n1Tnx denotes the average of its compo-

nents. We let Πn = 1
n1n1Tn . Note that Πn is diagonalizable,

has one eigenvalue equal to 1 associated with eigenspace

Dn = {x ∈ Rn | xi = Ave(x), i ∈ {1, . . . , n}},
while all other eigenvalues equal 0. For a vector space
V ⊂ Rn, we let V ⊥ denote the vector space orthogonal
to V . We denote the Euclidean norm in Rn by ‖ · ‖. We
say a matrix A ∈ Rn×n is stable if all its eigenvalues have
magnitude strictly less than 1. For q ∈ (0, 1), the Euler
function is given by

ϕ(q) =

∞∏
k=1

(1− qk) > 0.

Note that

lim
k→∞

∞∏
j=k

(1− qj) = lim
k→∞

ϕ(q)∏k−1
j=1 (1− qj)

= 1.

2.1 Graph Theory

We present some useful notions on algebraic graph theory
following (Bullo et al., 2009). Let G = (V,E,A) denote
a weighted undirected graph with vertex set V of cardi-
nality n, edge set E ⊂ V × V and symmetric adjacency
matrix A ∈ Rn×n≥0 . A path from i to j is a sequence of
vertices starting from i and ending in j such that any pair
of consecutive vertices is an edge of the graph. The set
of neighbors of i, denoted Ni, is the set of nodes j such
that (i, j) ∈ E. The graph G is connected if for each node
there exists a path to any other node. The weighted degree
matrix of G is a diagonal matrix D ∈ Rn×n whose ith

diagonal element, i ∈ {1, . . . , n}, is the sum of the ith row
of A. The Laplacian of G is the symmetric matrix

L = D −A,
and has the following properties:

• L is positive semi-definite;
• L1n = 0 and 1TnL = 0, i.e., 0 is an eigenvalue of L

corresponding to the eigenspace Dn;
• G is connected if and only if rank(L) = n− 1, so 0 is

a simple eigenvalue of L;
• All eigenvalues of L belong to [0, 2dmax], where dmax

is the largest element of D.

For convenience, we define Lcpt = In −Πn.

2.2 Probability Theory

Here we briefly review basic notions on probability follow-
ing (Papoulis and Pillai, 2002; Durrett, 2010). Consider
a probability space (Ω,Σ,P). If E,F ∈ Σ are two events
with E ⊆ F , then P{E} ≤ P{F}. For simplicity, we may
sometimes denote events of the type Ep = {ω ∈ Ω | p(ω)}
by {p} where p is a logical statement on the elements of
Ω. Clearly, for two statements p and q,

(p⇒ q)⇒ (P{p} ≤ P{q}) . (1)

A random variable is a function X : Ω → R such that
the inverse image of any open set B ⊆ R belongs to
Σ. For any N ∈ R>0 and any random variable X with
finite expected value µ and finite nonzero variance σ2,
Chebyshev’s inequality states that

P{|X − µ| ≥ Nσ} ≤ 1

N2
.

Let for a random variable X, E[X] and FX denote its
expectation and cumulative distribution function, respec-
tively. Then, a sequence of random variables {Xk}k∈Z≥0

converges to a random variable X

• almost surely (a.s.) or with probability one if

P{ lim
k→∞

Xk = X} = 1;

• in mean square (m.s.) if E[X2
k ],E[X2] < ∞ for all

k ∈ Z≥0 and

lim
k→∞

E[(Xk −X)2] = 0;

• in probability, if for any ε > 0,

lim
k→∞

P{|Xk −X| < ε} = 1;

• in distribution, or weakly, if for any x ∈ R at which
FX is continuous,

lim
k→∞

FXk
(x) = FX(x).

Almost sure convergence and convergence in mean square
imply convergence in probability, which itself implies con-
vergence in distribution. Moreover, if P{|Xk| ≤ X̄} = 1
for all k ∈ Z≥0 and some fixed random variable X̄ with
E[X̄2] <∞, then convergence in probability implies mean
square convergence, and if X is a constant, then conver-
gence in distribution implies convergence in probability.

A zero-mean random variable X has Laplace distribution
with scale b ∈ R>0, denoted X ∼ Lap(b), if the pdf of X is

fX(x) = L(x; b) ,
1

2b
e−
|x|
b ,

for any x ∈ R. It is easy to see that |X| has an exponential
distribution with rate λ = 1

b .



2.3 Input-to-State Stability of Discrete-Time Systems

The material of this section are borrowed from (Jiang and
Wang, 2001), which the interested reader may consult for
details. Consider a discrete-time system of the form

x(k + 1) = f(x(k), u(k)), (2)

where u : Z≥0 → Rm is a disturbance input, x : Z≥0 → Rn
is the state, and f : Rn × Rm → Rn is a vector field
satisfying f(0, 0) = 0. The system (2) is globally input-to-
state stable (ISS) if there exists a class KL function β and
a class K function γ such that, for any bounded input u,
any initial condition x0 ∈ Rn, and all k ∈ Z≥0,

‖x(k)‖ ≤ β(‖x0‖, k) + γ(‖u(.)‖L∞),

where ‖u(.)‖L∞ = sup{‖u(k)‖ | k ∈ Z≥0}. Moreover, the
system (2) has a K-asymptotic gain if there exists a class
K function γa such that, for any initial condition x0 ∈ Rn,

lim sup
k→∞

‖x(k)‖ ≤ γa
(

lim sup
k→∞

‖u(k)‖
)
.

If a system is ISS, then it has a K-asymptotic gain.
Furthermore, any LTI system x(k + 1) = Ax(k) + Bu(k)
is ISS if A is stable.

3. PROBLEM STATEMENT

Consider a group of n agents whose interaction topology
is described by an undirected connected graph G. The
group objective is to compute the average of the agents’
initial states while preserving the privacy of these values
against potential adversaries eavesdropping the network
communications.

We follow the exposition in (Huang et al., 2012) to formally
present the problem statement. The state of each agent
i ∈ {1, . . . , n} is represented by θi ∈ R. The message that
agent i shares with its neighbors about its current state
is denoted by xi ∈ R. For convenience, the aggregated
network state and the vector of transmitted messages are
denoted by θ = (θ1, . . . , θn) ∈ Rn and x = (x1, . . . , xn) ∈
Rn, respectively. Agents update their states in discrete
time according to

θ(k + 1) = f(θ(k), x(k)), k ∈ Z≥0, (3)

where the state-transition function f : Rn × Rn → Rn
is such that its ith element depends only on θi and
{xj}j∈Ni∪{i}. The messages are calculated from

x(k) = h(θ(k), η(k)), k ∈ Z≥0, (4)

where h : Rn × Rn → Rn is such that its ith element
depends only on θi and ηi. η(k) ∈ Rn is a vector random
variable with ηi(k) being the noise generated by agent i at
time k from an arbitrary distribution. Then, the sequences
θ and x are, in general, random variables on the total
sample space

Ω = (Rn)N,

whose elements are noise sequences η. Although one can
choose h to be a function only of the argument θ, corrupt-
ing the messages by noise is necessary to preserve privacy.

In order to formulate the privacy requirements, we first
introduce some definitions. For δ ∈ R>0, a pair of initial

network states θ
(1)
0 and θ

(2)
0 are called δ-adjacent, with δ

called the “adjacency bound”, if, for some i0 ∈ {1, . . . , n},

∀i ∈ {1, . . . , n} |θ(2)0,i − θ
(1)
0,i | ≤

{
δ if i = i0,

0 if i 6= i0.
(5)

Moreover, from (3) and (4), it is clear that for any fixed
initial state θ0, x is uniquely determined by η. Therefore,
the function Xθ0 : (Rn)N → (Rn)N such that

Xθ0(η) = x

is well defined. Privacy is defined as follows.

Definition 3.1. (Differential Privacy). Given δ, ε ∈ R≥0,
the dynamics (3), (4) is ε-differentially private if, for any

pair θ
(1)
0 and θ

(2)
0 of δ-adjacent initial states and any set

O ⊂ (Rn)N, one has

P{η ∈ Ω |X
θ
(1)
0

(η) ∈ O} ≤ eεP{η ∈ Ω | X
θ
(2)
0

(η) ∈ O}. •

Because of the presence of noise, the agents’ states might
converge under (3) to a neighborhood of Ave(θ0) instead
of to Ave(θ0) itself, as captured by the notion of accuracy.

Definition 3.2. (Accuracy). For any p ∈ [0, 1] and r ∈
R≥0, the dynamics (3), (4) is (p, r)-accurate if, starting
from θ0, the network state θ(k) converges to θ∞ ∈ Rn as
k →∞,

E[θ∞] = Ave(θ0)1n,

and

P{‖θ∞ −Ave(θ0)1n‖ ≤ r} ≥ 1− p. •

Note that, in Definition 3.2, the type of convergence of
θ(k) to θ∞ can be any of the four classes introduced in
Section 2.2. Furthermore, for each notion of convergence,
(0, 0)-accuracy is equivalent to the convergence of θ(k) to
Ave(θ0)1n.

We are now ready to formally state our problem as follows.

Problem 1. (Differentially Private Average Consensus):
Design the dynamics (3), the inter-agent messages (4), and
the distribution of noise sequences η such that asymptotic
average consensus is guaranteed and ε-differential privacy
and (p, r)-accuracy are achieved for (finite) ε, r, and p ∈
R≥0 as small as possible. •

4. PERFORMANCE BOUND ON DIFFERENTIALLY
PRIVATE AVERAGE CONSENSUS

In this section we establish the impossibility of solving
Problem 1 with (0, 0)-accuracy, even if considering the
weakest notion of convergence.

Theorem 4.1. (Impossibility Result). Consider a group of
agents executing the distributed algorithm (3) with mes-
sages generated according to (4). Then, for any δ, ε >
0, agents cannot simultaneously converge to the aver-
age of their initial states in distribution and preserve ε-
differential privacy of their initial states.

Proof. We reason by contradiction. Assume one such
algorithm exists, achieving convergence in distribution to
Ave(θ0), where θ0 is the vector of agents’ initial states,
and preserving ε-differential privacy. Since the algorithm
must preserve the privacy of any pair of δ-adjacent initial
conditions, consider a specific pair satisfying

θ
(2)
0,i0

= θ
(1)
0,i0

+ δ,

for some i0 ∈ {1, . . . , n} and θ
(2)
0,i = θ

(1)
0,i for all i 6= i0.

Since Ave(θ0) is fixed, any θi(k), i ∈ {1, . . . , n} converges
to Ave(θ0) in probability. Thus, for any i ∈ {1, . . . , n} and
any ε > 0,

lim
k→∞

P{|θ(`)i (k)−Ave(θ
(`)
0 )| < ε} = 1, ` = 1, 2.



Therefore, for any ε′ > 0, there exists k ∈ Z≥0 such that
for all i ∈ {1, . . . , n},

P{|θ(`)i (k)−Ave(θ
(`)
0 )| < ε} > 1− ε′, ` = 1, 2. (6)

Now, consider (3), (4). It is clear that for any fixed initial
state θ0 and any k ∈ Z≥0, xk is uniquely determined by
ηk and θk is uniquely determined by xk. Therefore, the
functions Xk,θ0 ,Θk,θ0 : Rn(k+1) → Rn(k+1) such that

Xk,θ0(ηk) = xk, Θk,θ0(xk) = θk (7)

are well defined. Next, define

R
(1)
k = {ηk ∈ Ωk | ∀i ∈ {1, . . . , n} |θ(1)i (k)−Ave(θ

(1)
0 )| < ε,

θ
(1)
k = Θ

k,θ
(1)
0

(X
k,θ

(1)
0

(ηk))}, (8)

where Ωk = Rn(k+1) is the sample space up to time k.

Note that R
(1)
k 6= ∅ because by (6),

P(R
(1)
k ) > 1− ε′. (9)

Therefore,

Ok = X
k,θ

(1)
0

(R
(1)
k ) (10)

= {xk ∈ Rn(k+1) | ∃ηk ∈ R
(1)
k xk = X

k,θ
(1)
0

(ηk)}
is nonempty. Define

R
(2)
k = X−1

k,θ
(2)
0

(Ok) = {ηk ∈ Ωk | Xk,θ
(2)
0

(ηk) ∈ Ok}.
(11)

To reach a contradiction, we next show that P(R
(2)
k ) can

be made arbitrarily small. To do this, pick any η̄k ∈ R
(2)
k

and let x̄k = X
k,θ

(2)
0

(η̄k) ∈ Ok and θ̄
(`)
k = Θ

k,θ
(`)
0

(x̄k) for

` = 1, 2. By (10),

∃η̄′k ∈ R
(1)
k x̄k = X

k,θ
(1)
0

(η̄′k).

Therefore, by (8),

∀i ∈ {1, . . . , n} |θ̄(1)i (k)−Ave(θ
(1)
0 )| < ε. (12)

Recall that in (3), we restricted f to be such that the
next state of each agent only depends on its current state
and the messages it receives. Hence, since for all i 6= i0,

θ
(2)
0,i = θ

(1)
0,i and both θ̄

(2)
k and θ̄

(1)
k are constructed from x̄k,

∀i 6= i0 θ̄
(2)
i (k) = θ̄

(1)
i (k)

(12)
==⇒ |θ̄(2)i (k)−Ave(θ

(1)
0 )| < ε.

This, together with the fact that Ave(θ
(2)
0 ) = Ave(θ

(1)
0 ) +

δ
n , shows that by taking ε < δ

2n , the two events R
(2)
k and

R
′(2)
k are disjoint, where

R
′(2)
k = {ηk ∈ Ωk | ∀i ∈ {1, . . . , n} |θ(2)i (k)−Ave(θ

(2)
0 )| < ε,

θ
(2)
k = Θ

k,θ
(2)
0

(X
k,θ

(2)
0

(ηk))},

However, by (6), P(R
′(2)
k ) > 1− ε′ so

P(R
(2)
k ) < ε′. (13)

Now, for Ok defined in (10), define a particular O ∈ (Rn)N

as the set of all x whose first subsequence of length k + 1
belongs to Ok. Therefore, for any initial condition θ0,

P{η ∈ Ω | Xθ0(η) ∈O}
= P{ηk ∈ Ωk | Xk,θ0(ηk) ∈ Ok}.

Therefore, since the algorithm is ε-differentially private,

P{ηk ∈ Ωk | Xk,θ
(1)
0

(ηk) ∈ Ok}
≤ eεP{ηk ∈ Ωk | Xk,θ

(2)
0

(ηk) ∈ Ok},

but from (8) and (11), this is equivalent to

P(R
(1)
k ) ≤ eεP(R

(2)
k ).

Thus, using (9) and (13), we have for all ε′ > 0,

1− ε′ < eεε′ ⇒ 1

1 + eε
< ε′,

that is clearly a contradiction because ε is finite. This
completes the proof. 2

Since convergence in distribution is the weakest notion of
convergence, Theorem 4.1 implies that a differentially pri-
vate algorithm cannot guarantee any type of convergence
to the true average. Therefore, next, we relax the exact
convergence requirement and allow for convergence to a
random variable centered at the true average.

5. DYNAMICS DESIGN AND ANALYSIS

In this section, we develop a solution to Problem 1.
Consider the following linear distributed dynamics,

θ(k + 1) = θ(k)− hLx(k) + Sη(k), k ∈ Z≥0 (14)

with the messages generated according to

x(k) = θ(k) + η(k), k ∈ Z≥0, (15)

where h < (dmax)−1 is the step size. Here, dmax is the
largest entry of D and S = diag(s1, . . . , sn) ∈ Rn is
a matrix of design parameters independently chosen by
each agent. Note that (14) is a special case of (3) (since
η(k) = x(k)−θ(k)) and (15) a special case of (4). Also note
that without the term Sη(k), the average of the agents’
initial states would be preserved throughout the evolution.

The next result establishes the convergence of our design.

Theorem 5.1. (Asymptotic Convergence). Consider a net-
work of n agents executing the distributed dynamics (14),
(15). For each i ∈ {1, . . . , n}, let si ∈ (0, 2) and assume
its messages are corrupted by Laplacian noise ηi(k) ∼
Lap(bi(k)) at time k ∈ Z≥0 with

bi(k) = ciq
k
i , ci ∈ R>0, qi ∈ (|si − 1|, 1). (16)

Then, the states of all agents converge almost surely to a
the random variable θ∞ defined as

θ∞ = Ave(θ0) +

n∑
i=1

si
n

∞∑
j=0

ηi(j) (17)

if this series converges and θ∞ = Ave(θ0), otherwise.

Remark 5.2. (Laplacian Noise Distribution). Even though
Laplacian noise is not the only choice for achieving differ-
ential privacy, it is the predominant choice in the litera-
ture (Dwork et al., 2006; Dwork, 2006). The work (Wang
et al., 2014) shows that Laplacian noise is optimal in the
sense that it minimizes the entropy of the transmitted
messages while preserving differential privacy.

The next result elaborates on the statistical properties of
the agreement value of the algorithm.

Corollary 5.3. (Accuracy). The convergence point θ∞ of
the agents’ states given in (17) is an unbiased estimate of
Ave(θ0) with bounded dispersion given by

var {θ∞} =
2

n2

n∑
i=1

s2i c
2
i

1− q2i
. (18)

As a result, the algorithm (14)-(16) is
(
p, 1

n

√
2
p

∑n
i=1

s2i c
2
i

1−q2
i

)
-

accurate for any p ∈ (0, 1).



Theorem 5.1 and Corollary 5.3 establish almost sure con-
vergence, with the expected value of convergence being the
average of the agents’ initial states. In contrast, the results
in (Huang et al., 2012) establish convergence in mean
square, and the expected value of convergence depends on
the network topology. In both cases, the accuracy radius
r decreases with the number of agents as O(1/

√
n).

The expression for the (p, r)-accuracy, cf. Corollary 5.3,
shows that one cannot get the ideal case of (0, 0)-accuracy,
as expected, and that r is a decreasing function of p with
r → ∞ as p → 0. This is a consequence of the lack of
preservation of the average by (14) due to the term Sη(k).
In turn, the presence of this expression helps establish
the differential privacy of the algorithm with bounded,
asymptotically vanishing noise, as we show next.

Theorem 5.4. (Differential Privacy). Consider a network
of n agents executing the distributed dynamics (14),
(15) with si ∈ (0, 2) for i ∈ {1, . . . , n} and messages
corrupted by Laplacian noise according to (16). For each
i ∈ {1, . . . , n}, let

εi = δ
qi

ci(qi + si − 1)
, (19)

where δ is the adjacency bound as in (5). Then, the
algorithm preserves the εi-differential privacy of agent i’s
initial state. Consequently, the algorithm is ε-differential
private with ε = maxi εi.

Note that Theorem 5.4 implies that each agent can choose
its own level of privacy, and even opt not to add any
noise to its messages, without affecting the privacy of
other agents. In contrast, in (Huang et al., 2012), agents
need to agree on the level of privacy before executing the
algorithm. In both cases, privacy is achieved against an
adversary that can hear everything and independently of
how it processes the information. In contrast, the algo-
rithm in (Mo and Murray, 2014) assumes the adversary
uses maximum likelihood estimation and only preserves
the differential privacy of those agents who are sufficiently
“far” from it in the graph (i.e., the adversary cannot listen
to an agent and all its neighbors).

6. OPTIMAL NOISE SELECTION

In this section, we discuss the effect of the free parameters
present in our design on its performance. Assuming the
privacy levels {εi}ni=1 are fixed according to the agents’
privacy requirements, the free parameters that each agent
i ∈ {1, . . . , n} gets to select are si, ci, and qi, which
together determine the amount of noise introduced into the
dynamics. Given the overall network objective, we consider
the cost function as the variance of the agents’ convergence
point around Ave(θ0), i.e.,

J ({si, ci, qi}ni=1) =
2

n2

n∑
i=1

s2i c
2
i

1− q2i
. (20)

where (si, ci, qi) ∈ P = {(s, c, q) | s ∈ (0, 2), c > 0, q ∈
(|s − 1|, 1)}, for each i ∈ {1, . . . , n}. The next result
characterizes the global minimization of J .

Proposition 6.1. (Optimal Parameters). For a given adja-
cency bound δ > 0 and set of privacy levels {εi}ni=1, one
has

inf
{si,ci,qi}ni=1

∈Pn
J =

δ2

2n2

n∑
i=1

1

ε2i
.

Furthermore, the infimum is not attained over Pn but
approached if

ci = δ
qi

εi(qi + si − 1)
, (21)

and (si, qi) → (1, 0) along γ = {(1 + t, t + t2) | t > 0} for
all i ∈ {1, . . . , n}.

Based on Proposition 6.1, we have each agent i ∈
{1, . . . , n} independently choose its noise parameters ac-
cording to (si, qi) = (1 + ε, ε+ ε2), with ε� 1.

7. SIMULATIONS

In this section, we report simulation results of the dis-
tributed dynamics (14) on a network of n = 50 agents.
The network topology and agents’ initial conditions are
chosen randomly, the latter from N (50, 100) for all agents.
As can be seen from (18) and (19), neither privacy nor
accuracy depend on the communication topology or the
initial values although the convergence speed might. We

set δ = 1, εi = 0.1, si = s, and αi ,
qi−|si−1|
1−|si−| = 10−6 for

all i ∈ {1, . . . , n}.
Figure 1 depicts the result of performing simulations
sweeping s over [0.97, 1.9] with logarithmic step size. For
each value of s, we repeated the simulation 104 times.
For each run, the graph topology and initial conditions
are the same and only noise realizations change between
different runs in order to capture the statistical properties
of the convergence point. Figure 1(a) shows the empirical
(sample) standard deviation of the convergence point as
a function of s. In particular, notice the sensitivity of the
accuracy to s for s < 1. Figure 1(b) shows the number
of rounds until convergence (measured by a tolerance of
10−2) as a function of s. The optimal value for s in this case
is different from 1 and in general depends on the network
connectivity. The results obtained from different random
choices of initial conditions and network topologies show
very consistent trends as those in Figure 1.

Figure 2 shows the histogram of convergence points for
105 runs of the algorithm with s = 1 + 10−6 (near optimal
accuracy). The distribution of the convergence point is a
bell-shaped curve with mean exactly at the true average,
in accordance with Corollary 5.3.

8. CONCLUSIONS

We have considered the multi-agent average consensus
problem with privacy preservation requirements on the
initial agent states. We have formally proved that, un-
der some mild conditions, no coordination algorithm can
guarantee convergence to the true average of the agents’
initial states while preserving differential privacy against
an adversary that has full access to the network commu-
nications. As a consequence, the most one can expect of
a differentially private algorithm is to guarantee conver-
gence to the true average in expectation and minimize the
dispersion around it. We have achieved this objective by
designing a noise-optimal linear dynamics with almost sure
guaranteed convergence. Future work will include further
investigation of the benefits and costs of differential pri-
vacy for multi-agent systems, the extension of the results
to distributed optimization, filtering, and estimation, and
the design of algorithms for privacy preservation of the
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Fig. 1. (a) Empirical standard deviation of the convergence
point of the algorithm (14) and (b) its settling time
(Ks) in rounds for α = 10−6 and random topology
and initial conditions. The trend in (a) validates the
results of Section 6 while (b) shows the trade-off
between accuracy and convergence speed.
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Fig. 2. Statistical distribution of the convergence point.
The sample mean (starred) matches the true average
(yellow vertical line).

network structure and other parameters relevant for the
execution of cooperative strategies.
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