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Abstract— This paper studies the problem of differentially
private distributed convex unconstrained optimization for
multi-agent systems. A group of agents seek to minimize the
aggregate sum of their individual objective functions. Each
agent only knows its own objective function and wants to
keep it private from other agents or eavesdroppers listening
to the network communications. Our design strategy consists
of perturbing the objective functions with Laplace noise so that
any query on the functions or their attributes is differentially
private. This, together with the fact that differential privacy is
immune to post-processing, allows us to employ any distributed
algorithm that solves the unconstrained convex optimization
problem on the perturbed objective functions. Our technical
approach carefully describes how these perturbations can be
selected so that the resulting functions retain the requirements
on smoothness and convexity critical to many optimization al-
gorithms. We quantify the magnitude of the expected deviation
of the algorithm output from the true optimizer. The specific
choice of distributed optimization algorithm determines the re-
quirements on the network communication graph. Simulations
illustrate the strengths of the proposed approach.

I. INTRODUCTION

Privacy in cyberphysical systems such as power networks,
industrial control, and smart traffic systems is an increasingly
critical issue that plays a key role in preventing catastrophic
physical accidents as well as easing the social adoption of
new technology. In these scenarios, the problem of optimiz-
ing the operation of a group of networked resources is a very
common and important task, where the individual objective
functions associated to the entities, the estimates of the
optimizer, or even the constraints on the optimization might
reveal sensitive information. Our work here is motivated
by the need for efficient distributed coordination algorithms
that accurately solve networked optimization problems with
privacy guarantees.

Literature review: Our work here has connections with
several areas, most notably distributed convex optimization
and differential privacy. In the context of multi-agent net-
worked systems, there exists an increasing body of research
on distributed convex optimization that designs provably cor-
rect coordination algorithms either in discrete or continuous
time and for deterministic as well as stochastic problems,
see [1]–[5] and references therein. The notion of differential
privacy, first introduced to protect the privacy of databases
subject to public queries [6]–[8], has since then been ap-
plied to numerous problems in computer science, machine
learning, and cyberphysical systems. In machine learning,
the problem of differentially private optimization is studied
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as an intermediate step to achieve other statistical tasks, see
e.g. [9]–[14]. In these works, the sensitive information is
a finite database (collection of records or training samples)
which constitute the parameters of a parameterized objective
function (in contrast to our present work, where the sensitive
information are the infinite-dimensional objective functions
themselves). Although the proposed methods preserve the
privacy of the underlying finite-dimensional parameter set,
they cannot keep functional data private. Other limitations
include the lack of characterization of the effect of noise
on the accuracy of the optimization or formal study of
the problems arising from the potential lack of convexity
or smoothness of the perturbed functions. The problem
considered in [14] is different in the sense that the total
space of parameters for optimization is finite, which makes
it possible to use the exponential mechanism of [15] to
achieve differential privacy. More closely related to our
present work are efforts [16]–[18] on differentially private
distributed optimization for networked systems, where the
sensitive information are the objective functions in [16],
the optimization constraints in [17], and the agents’ states
in [18]. In these methods, agents follow a standard distributed
optimization algorithm and add Gaussian or Laplace noise to
their messages, either to neighbors or a central aggregator.
An advantage of these message-perturbing strategies is that
the optimization algorithm operates on the original objective
functions, which satisfy all the required smoothness and
convexity requirements. A common drawback of strategies
based on message perturbation is that, as the privacy require-
ment on the executions is weakened, exact convergence to
the optimizer is not necessarily recovered. This observation,
that we properly justify in the body of the paper, is a
consequence of the design nature of these strategies and the
fundamental tradeoffs between ensuring differential privacy
and ensuring convergence via an underlying dynamics that
is sufficiently robust to noise. Also of relevance to our
paper is [19], which proposes the use of metrics instead
of binary adjacency relations for differential privacy. The
advantage of this approach is that one neither needs to
calculate conservative sensitivity measures nor needs to limit
the allowable distance between datasets a priori.

Statement of contributions: We consider the problem of
a multi-agent network optimizing a sum of convex func-
tions in a differentially private way. Our contributions can
be divided in three main categories. Our first contribution
is an impossibility result for distributed optimization al-
gorithms based on message perturbation that shows that
they cannot be differentially private if they are sufficiently
robust to noise. This result explains why strategies designed



within this approach have zero-input dynamics that are not
asymptotically stable, leading to the drawback that, as the
privacy requirement on the executions is weakened, exact
convergence to the optimizer is not recovered. To overcome
the limitations of message-perturbing strategies, our second
contribution explores the general framework of functional
differential privacy over Hilbert spaces. We propose a novel
formulation of differential privacy for functional data using
normed vector spaces instead of binary adjacency relations.
These vector spaces are carefully designed so that differential
privacy is achievable with bounded perturbations. Building
on this result, our third contribution outlines an alternative
design strategy to solve the distributed convex optimization
problem based on the perturbation of the agents’ objective
functions. The basic idea is to have agents independently per-
turb their objective functions in a differentially private way
and then have them participate in a distributed optimization
algorithm with the perturbed objective functions instead of
their original ones. We carefully examine how to ensure that
the perturbed functions satisfy the smoothness and regularity
requirements required for the convergence of distributed
optimization algorithms. Finally, we formally characterize
the accuracy (i.e., the deviation from the optimizer of the
original problem) of the proposed class of algorithms. Our
technical approach relies on a novel characterization of a
Lipschitz property of the argmin map for the class of smooth
strongly convex functions over compact domains. Our design
methodology leads to differentially private, distributed algo-
rithms that recover perfect accuracy in the absence of noise.
For space reasons, all proofs are omitted and will appear
elsewhere.

II. PRELIMINARIES

In this section we introduce the notation and basic con-
cepts on functional and Hilbert spaces and input-to-state
stability of discrete-time systems.

A. Notation

The space of real-valued infinite sequences is denoted by
RN whose elements are written in bold-faced letters. `2 ⊂
RN denotes the space of square-summable infinite sequences.
The pairs | · | and ‖ · ‖ are used for the 2-norm in finite and
infinite-dimensional normed vector spaces, respectively. The
d-sphere with center c and radius r is written as B(c, r). The
n-vector of all ones is denoted by 1n.

For X ⊆ Rd, Xo denotes its interior and L2(X) and
C2(X) denote the set of square-integrable measurable func-
tions and the set of twice continuously differentiable func-
tions over X , respectively. Following [20], a map M : X →
Y between two normed vector spaces is called L-Lipschitz
of order α > 0 if ‖M(x1) − M(x2)‖Y ≤ L‖x1 − x2‖αX
for all x1 and x2 in the domain of M . The Riemann zeta
function ζ : (1,∞)→ R is defined as

ζ(p) =

∞∑
k=1

1

kp
.

The (zero-mean) Laplace distribution with scale b is a
continuous distribution with probability density function

L(x; b) =
1

2b
e−
|x|
b .

It is clear that L(x;b)L(y;b) ≤ e
|x−y|
b . We use η ∼ Lap(b) to denote

a random variable η with Laplace distribution. It is easy to
see that if η ∼ Lap(b), |η| has an exponential distribution
with rate λ = 1

b . Given any random variable η and any
convex function φ, Jensen’s inequality states that E[φ(η)] ≥
φ(E[η]). Clearly, the opposite holds if φ is concave.

B. Hilbert Spaces and Orthonormal Bases
We review some basic facts of Hilbert spaces in this

section. The interested reader can consult [21] for a compre-
hensive study. Recall that a Hilbert space H is a complete
inner-product space. A set {ek}k∈I ⊂ H is an orthonormal
system if 〈ek, ej〉 = 0 for k 6= j and 〈ek, ek〉 = ‖ek‖2 = 1
for all k ∈ I . If, in addition, span({ek}k∈I) is dense in H,
then {ek}k∈I is an orthonormal basis. Note that here I
might be uncountable. However, if H is separable, i.e., it
has a countable dense subset, then any orthonormal basis is
countable. In this case, we assume I = N for simplicity.
Consequently, for any h ∈ H,

h =

∞∑
k=1

〈h, ek〉ek.

Define the coefficient sequence θ ∈ RN by θk = 〈h, ek〉 for
k ∈ N. Then, θ ∈ `2 and, by Parseval’s identity, ‖h‖ = ‖θ‖.
For ease of notation, we define Φ : `2 → H to be the linear
bijection that maps the coefficient sequence θ to h.

The space Lp(X) for an arbitrary X ⊆ Rd is a Hilbert
space if and only if p = 2 and the inner product in this
case is the integral of the product of functions. Moreover,
L2(X) is separable, so every orthonormal basis is countable.
In the remainder of the paper, we assume {ek}∞k=1 is an
orthonormal basis for L2(X) and Φ : `2 → L2(X) is the
corresponding linear bijection between coefficient sequences
and functions.

C. Input-to-State Stability of Discrete-Time Systems
We briefly review the concept of ISS for discrete-time

systems following [22]. Consider a dynamical system

x(k + 1) = f(k, x(k), u(k)), (1)

with input u : Z≥0 → Rm and state x : Z≥0 → Rn where
f : Z≥0 × Rn × Rm → Rn satisfies f(k, 0, 0) = 0 for all
k ∈ Z≥0. The system (1) is said to be globally input-to-state
stable (ISS) if there exist β ∈ KL and γ ∈ K such that, for
any bounded input u, any initial time k0 ∈ Z≥0, any initial
condition x(k0) ∈ Rn, and all k ≥ k0,

‖x(k)‖ ≤ β(‖x(k0)‖, k − k0) + γ(‖u[k0](·)‖∞),

where ‖u[k0](·)‖∞ = supk≥k0 ‖u(k)‖. If (1) is ISS, then it
has a K-asymptotic gain, i.e., there exists γa ∈ K such that,
for any initial condition x0 ∈ Rn,

lim sup
k→∞

‖x(k)‖ ≤ γa
(

lim sup
k→∞

‖u(k)‖
)
.



III. PROBLEM STATEMENT

Consider a group of n agents whose communication
topology is described by a digraph G. Each agent i ∈
{1, . . . , n} has a local objective function fi : X → R,
where X ⊂ Rd is the domain of optimization known to
all agents. Given 0 < α < β, let S ⊆ L2(X) be the space
of smooth functions whose Hessian is uniformly lower and
upper bounded with αId and βId, respectively, and assume
fi ∈ S for all i ∈ {1, . . . , n}. We also assume that X is
compact and has nonempty interior but is sufficiently large
so that the minimizers of {fi}ni=1 are sufficiently far from
the boundaries of X . This is a reasonable assumption as the
optimization problem is unconstrained and the compactness
of X is only required for L2(X) to include convex functions.
The aggregate objective function is then given by

f(x) ,
n∑
i=1

fi(x),

for each x ∈ X . The objective of the agents is to optimize f
over X in a distributed and differentially private fashion.
By distributed, we mean that agents can only interact with
their neighbors in the graph G. To properly define differential
privacy, we first need to introduce the notion of adjacency.

Definition 3.1 (Adjacency): Given any subset V of a
normed vector space, two sets of functions F (1) = {f (1)i }ni=1

and F (2) = {f (2)i }ni=1 in Sn are V-adjacent if there exists
some i0 ∈ {1, . . . , n} such that f (1)i = f

(2)
i for all i 6= i0

and f (1)i0
− f (2)i0

∈ V . •
The set V is a design choice that will be specified later

in our developments. Next, we provide the formal definition
of differential privacy. We represent the overall optimization
algorithm as a map M that assigns to {fi}ni=1 some output
which is observable by an “adversary” who is trying to
estimate the functions based on its observations.

Definition 3.2: (Differential Privacy): Let (Ω,Σ,P) be a
probability space and consider a random map

M : Sn × Ω→ X (2)

from the function space Sn to an arbitrary finite or infinite-
dimensional space X . Given ε ∈ Rn>0, the map M is
ε-differentially private if, for any two V-adjacent sets of
functions F (1) = {f (1)i }ni=1 and F (2) = {f (2)i }ni=1 that (at
most) differ in their i0’th element and any set O ⊆ X ,

P{ω ∈Ω | M(F (2), ω) ∈ O} (3)

≤ eεi0‖f
(1)
i0
−f(2)

i0
‖VP{ω ∈ Ω | M(F (1), ω) ∈ O}. •

We refer to ε as the level of privacy of the map M. Note
that here, we require the statistics of the output of M to
change only (relatively) slightly if the objective function of
one agent changes and the change is in V . In case M has
internal initial conditions, (3) has to hold for any fixed value
of them.

Problem 1: (Differentially Private Distributed Optimiza-
tion): Design a distributed, differentially private optimization
algorithm of the form (2) with guaranteed accuracy such that,

in the absence of noise, its output is the exact optimizer of
the aggregate objective function. •

Problem 1 captures our desire to have better algorithm per-
formance as the level of privacy decreases (or equivalently,
as the noise variance vanishes). This ensures that the cause
of the performance loss in obtaining the exact optimizer is
only due to the noise introduced to ensure privacy.

IV. RATIONALE FOR DESIGN STRATEGY

In this section, we justify the rationale for the design of
our objective-perturbing algorithm based on the proposed
concept of functional differential privacy.

A. Limitations of Message-Perturbing Strategies

We use the term message-perturbing strategies to refer
to algorithms designed to solve the distributed optimization
problem stated in Section III in which agents follow a
standard distributed optimization algorithm and add (Gaus-
sian or Laplace) noise to the messages they send to either
neighbors or a central aggregator. The following result shows
that a message-perturbing strategy cannot achieve differential
privacy if the underlying optimization algorithm is ISS.

Proposition 4.1: (Impossibility Result for Message-
Perturbing Algorithms): Consider a general distributed
message-perturbing optimization algorithm of the form

x(k + 1) = aF (k, x(k), ξ(k)),

ξ(k) = x(k) + η(k),
(4)

where η ∈ RN is a perturbation sequence and aF :
Z≥0 × Rn × Rn → Rn depends on the agents’ func-
tion set F = {fi}ni=1 with associated optimizer x∗F . Let
ãF (k, x(k), η(k)) = aF (k, x(k), x(k) + η(k)) denote the
input-to-state dynamics. Assume ηi(k) ∼ Lap(bi(k)) and
bi(k) → 0 for all i ∈ {1, . . . , n} at least as fast as 1

kp for
some p > 0. Then, if x(k + 1) = ãF (k, x(k), η(k)) is ISS
relative to x∗F for at least two function sets F (1) and F (2)

such that x∗
F (1) 6= x∗

F (2) , then the algorithm does not preserve
ε-differentially privacy with respect to the function set F for
any ε. •

Remark 4.2: (Relaxing the Assumptions in Proposi-
tion 4.1): The requirement of input-to-state stability of (4)
in Proposition 4.1 is only sufficient but not necessary. For
instance, we can prove the same impossibility of differential
privacy if (4) is only zero-perturbation globally asymptot-
ically stable (0-GAS) and bi(k) → 0 as fast as 1

kp with
p > 2 using the equivalence of 0-GAS and integral ISS given
in [23] and the bounded energy convergence state property
of [24]. Both the 0-GAS of (4) and the minimum decay rate
of bi(k) can be further relaxed using the local notions of
input-to-state stability. Finally, similar results can be proved
if the noise sequence is normally distributed. •

From Proposition 4.1 and Remark 4.2, it is clear that
a GAS optimization algorithm cannot be made differen-
tially private by perturbing the inter-agent messages with
asymptotically-vanishing noise. In the solution proposed
in [16], this problem is circumvented by choosing a finite-
sum sequence of step-sizes that leads to a dynamical system



which is not 0-GAS. In [17], on the other hand, a constant-
variance noise is used but the algorithm is terminated after
a finite number of steps. In both cases, this forced lack of
asymptotic stability of the zero-input dynamics causes an
error which is present independently of the amount of noise
required for privacy.

B. Algorithm Design via Objective Perturbation

To overcome the limitations of message-perturbing strate-
gies, here we outline an alternative design strategy to solve
Problem 1 based on the perturbation of the agents’ objective
functions. The basic idea is to have agents independently per-
turb their objective functions in a differentially private way
and then have them participate in a distributed optimization
algorithm with the perturbed objective functions instead of
their original ones. The following result, which is a special
case of [25, Theorem 1], ensures that the combination with
the distributed optimization algorithm does not deteriorate
the differential privacy at the functional level.

Proposition 4.3: (Resilience to Post-processing): LetM :
Sn × Ω → Sn be an ε-differentially private map and F :
Sn → X be any deterministic map. Then, the map M′ =
F ◦M : Sn × Ω→ X is also ε-differentially private. •

This design strategy based on the perturbation of the
individual objective functions requires solving the following
challenges to be successful:

(i) establish a differentially private procedure to perturb
the individual objective functions;

(ii) ensure that the resulting perturbed functions enjoy
the smoothness and regularity properties required by
distributed optimization algorithms to converge;

(iii) with (i) and (ii) in place, characterize the accuracy of
the resulting differentially private, distributed coordi-
nation algorithm.

Section V addresses challenge (i) and Section VI deals
with challenges (ii) and (iii).

V. FUNCTIONAL DIFFERENTIAL PRIVACY WITH
LAPLACE NOISE

Motivated by the discussion of Section IV, here we explore
the concept of functional differential privacy. The generality
of the notion of functional differential privacy allows it to
be used for any problem where the sensitive information
is a whole function or some of its attributes (e.g., sample
points, optimizers, derivatives and integrals). For simplicity
of exposition and without loss of generality, we only consider
in this section the privacy of a single function.

A. Functional Perturbation via Laplace Noise

Let f ∈ L2(X) be a function whose differential privacy
has to be preserved. With the notations of Section II, we
decompose f into its coefficients Φ−1(f) and perturb this
sequence by adding noise to all of its elements. Specifically,

M(f,η) = Φ
(
Φ−1(f) + η

)
= f + Φ(η), (5)

where

ηk ∼ Lap(bk), (6)

for all k ∈ N. Clearly, for η to belong to `2 and for Φ(η) (as
a series) to converge, the scales {bk}∞k=1 cannot be arbitrary.

Lemma 5.1: (Sufficient condition for boundedness of per-
turbed functions): If there exists K ∈ N such that, for some
p > 1

2 and s > 1,

bk ≤
1

kp log ks
, ∀k ≥ K, (7)

then η defined by (6) belongs to `2 with probability one. In
particular, if for some p > 1

2 and γ > 0,

bk ≤
γ

kp
, ∀k ∈ N, (8)

then η defined by (6) belongs to `2 with probability one. •

B. Differential Privacy of Functional Perturbation

Here we establish the differential privacy of the map (5)
using Lemma 5.1. Given any ρ > 1, consider the weight
sequence {wk = kρ}∞k=1 and let the adjacency vector space
be the image of the w-weighted `2 space under Φ,

Vρ = Φ
({
δ ∈ RN |

∞∑
k=1

w2
kδ

2
k <∞

})
.

It is not difficult to see that Vρ is a vector space. Moreover,

‖f‖Vρ ,
( ∞∑
k=1

w2
kδ

2
k

) 1
2

, with δ = Φ−1(f),

is a norm on Vρ. The next result establishes the differential
privacy of the map (5) for an appropriately chosen noise
scale sequence b.

Theorem 5.2 (Differential Privacy): Given ρ > 1, γ > 0
and p ∈

(
1
2 , ρ−

1
2

)
, let

bk =
γ

kp
, k ∈ N. (9)

Then, the map (5) is ε-differentially private with

ε =
1

γ

√
ζ(2ρ− 2p), (10)

where ζ is the Riemann zeta function. •

VI. DIFFERENTIALLY PRIVATE DISTRIBUTED
OPTIMIZATION

In this section, we show how one can use the framework
of functional differential privacy to efficiently and accurately
address the problem of private distributed optimization for-
mulated in Section III for a group of n ∈ N agents.

A. Smoothness and Regularity of the Perturbed Functions

To exploit the framework of functional differential privacy
for optimization, the first issue is that of ensuring that the
perturbed functions provided to the distributed coordination
algorithm have the required smoothness and regularity prop-
erties. In general, the output (5) might neither be smooth
nor convex. We detail next how to address these problems
by defining appropriate maps that, when composed withM,
yield functions with the desired properties. Proposition 4.3
ensures that differential privacy is retained throughout this
procedure.



1) Ensuring Smoothness: To ensure smoothness, we rely
on the fact that S0 = C2(X) is dense in L2(X), and
therefore, given any function g in L2(X), there exists a
smooth function arbitrarily close to it, i.e.,

∀ε > 0, ∃ĝs ∈ S0 such that ‖g − ĝs‖ < ε.

Here, ε is a design parameter and can be chosen sufficiently
small (later, we show how to do this so that the accuracy of
the coordination algorithm is not affected).

2) Ensuring Strong Convexity and Bounded Hessian: As
given in Section III,

S = {h ∈ S0 | αId ≤ ∇2h(x) ≤ βId, ∀x ∈ Xo}, (11)

is the space of original objective functions. The next result
ensures that the orthogonal projection from S0 onto S is well
defined, and can therefore be used to ensure strong convexity
and bounded Hessian of the perturbed functions.

Proposition 6.1: (Convexity of S and closedness relative
to S0): The set S is convex and closed as a subset of S0
under the 2-norm. •

Given the result in Proposition 6.1, the best approximation
in S of a function h ∈ S0 is its unique projection onto S,

h̃ = projS(h).

By definition, the projected function has bounded gradient
and Hessian.

B. Lipschitz Property of the argmin Map

Here we establish, under appropriate conditions, the Lip-
schitzness of the argmin map. This is a strong result of
independent interest given that argmin is not even continu-
ous for arbitrary C2 functions. We rely on this result later
to characterize the accuracy of our proposed coordination
algorithm to solve the distributed optimization problem.

Lemma 6.2: (Lipschitzness of argmin): For any two func-
tions f, g ∈ S,∣∣∣∣argmin

x∈X
f − argmin

x∈X
g

∣∣∣∣ ≤ L‖f − g‖ 2
d+4 , (12)

where

L =
d(d+ 2)(d+ 4)(β − α)d+2Γ(d/2)

4(αβ)d/2+2πd/2
. •

C. Algorithm Design and Analysis

Here, we put together the discussion above to propose
a class of differentially private, distributed optimization al-
gorithms that solve Problem 1. Since the modifications in
Section VI-A do not depend directly on the original function,
Proposition 4.3 ensures that they do not deteriorate the level
of differential privacy. Therefore, we require each agent
i ∈ {1, . . . , n} to first compute

f̂i =M(fi,ηi) = fi + Φ(ηi),

where ηi is a sequence of Laplace noise generated according
to (6) with the choice (9), then select f̂si ∈ S0 such that

‖f̂i − f̂si ‖ < εi,

and finally compute

f̃i = projS(f̂si ). (13)

After this process, agents participate in any distributed op-
timization algorithm with the modified objective functions
{f̃i}ni=1. Let

x̃ = argmin
x∈X

n∑
i=1

f̃i and x∗ = argmin
x∈X

n∑
i=1

fi,

denote, respectively, the output of the distributed algorithm
and the optimizer for the original optimization problem with
objective functions {fi}ni=1. We measure the algorithm’s
accuracy by the expected value of the absolute deviation in
the aggregate minimizer, i.e.,

∆ = E|x̃− x∗|.

The following result establishes the connection between ∆
and the design parameters.

Theorem 6.3 (Accuracy): For a group of n agents who
perturb their objective functions according to (13) and then
participate in any distributed coordination algorithm that
asymptotically converges to x̃, the differential privacy of the
agents’ objective functions is preserved and

∆ ≤ L

n2

n∑
i=1

(
γ

2
d+4

i ζ(2pi)
1
d+4 + ε

2
d+4

i

)
. (14)

•
By looking at (14) and (10), one can see that there is

a meaningful relationship between accuracy and privacy, as
stated next. The proof is by direct substitution.

Corollary 6.4: (Privacy-Accuracy Relationship): Let pi =
ρi
2 in (9) for all i ∈ {1, . . . , n}. Then,

∆ ≤ L

n2

n∑
i=1

[(
ζ(ρi)

εi

) 2
d+4

+ ε
2
d+4

i

]
. •

From this equation, it is clear that in order for the accuracy
of the coordination algorithm not to be affected by the
smoothening step, each agent has to take the value of εi suffi-
ciently small so that it is negligible relative to ζ(ρi)/εi. Then,
one can see that ∆→ 0 and perfect accuracy is recovered if
agents relax their privacy requirements, i.e., {εi}ni=1 → ∞,
satisfying our intuitive expectation in Problem 1.

VII. SIMULATIONS

In this section, we report simulation results of the al-
gorithm proposed in Section VI-C over a group of n =
10 agents. The individual objective functions are two-
dimensional quadratic functions, defined on [−50, 50]2, with
minimizers chosen uniformly randomly on the unit circle.
The orthonormal basis is constructed from the Gram-Schmidt
orthogonalization of the Taylor functions and the series is
truncated to the fourth order, resulting in a 15-dimensional
coefficient space. This truncation also acts as the smoothen-
ing step described in Section VI-A.1. The projection operator
in (13) is performed by numerically solving the convex
optimization problem minf̃i ‖f̃i− f̂

s
i ‖, where f̂si is the result



of the truncation, subject to the inequality constraint f̃i ∈ S.
We find the perturbed and original optimizers x̃ and x∗ by
applying an iterative interior-point algorithm to f̃ and f ,
respectively.

ǫ

10
-3

10
-2

10
-1

10
0

10
1

10
2

|x̃
−
x
∗
|

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Empirical data

Linear fit of log |x̃− x
∗| against log ǫ

Theoretical upper bound on ∆

Fig. 1. Privacy-accuracy relationship. The circles, dotted line, and solid line
illustrate the simulation results, the best linear fit of the simulation results
in logarithmic scale, and the upper bound of Corollary 6.4, respectively

The privacy levels are taken the same for all agents, i.e.,
ε = ε1n, and ε is swept logarithmically over [10−3, 102].
For each value of ε, the simulations are repeated 50 times to
capture the stochasticity of the solutions. Figure 1 illustrates
the error |x̃ − x∗| as a function of ε, together with the best
linear fit of log |x̃ − x∗| against log ε, and the upper bound
obtained in Corollary 6.4. The conservative nature of this
upper bound can be explained by noting the approximations
leading to the computation of L in Lemma 6.2, suggesting
there is room for refining this result.

VIII. CONCLUSIONS AND FUTURE WORK

We have studied the problem of a multi-agent network
optimizing a sum of strongly convex objective functions over
a compact domain in a differentially private fashion. We first
noted the limitations of distributed strategies based on mes-
sage perturbation due to the incompatibility, in the context of
distributed convex optimization, between the strong stability
properties required to guarantee convergence in the absence
of noise and differential privacy. This led us to develop the
framework of functional differential privacy for functions
belonging to arbitrary L2 spaces, paying particular attention
to ensuring that the perturbed functions obtained after adding
Laplace noise have the smoothness and regularity properties
required by the distributed coordination algorithm to guar-
antee convergence. Future work will include the study of
the effect of different orthonormal bases on the accuracy
of the overall optimization, the tuning of the injected noise
to optimize the trade-off between privacy and accuracy, and
applications to machine learning, online optimization, and
signal processing.
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