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Abstract— This paper studies the problem of event-triggered
control design for general continuous-time nonlinear systems
with time-varying input delay. Our methodology is based on the
concept of predictor feedback and is capable of compensating
arbitrarily large known time delays. Under mild conditions,
we prove that as long as the delay-free system is globally
input-to-state stabilizable, it can also be globally asymptotically
stabilized via piecewise-constant event-triggered control. We
prove that the proposed event-triggering design does not suffer
from Zeno behavior as the inter-event times are uniformly lower
bounded. We further show that our design achieves exponential
stability for a controllable linear system and study the trade-off
between convergence speed and communication cost. Various
simulations illustrate our results.

I. INTRODUCTION

The increasing adoption of network communications in
control system architectures and the growing concern to-
wards lowering the communication costs have led in the
recent years to the proliferation of event- and self-triggered
control strategies. In these strategies, instead of continuously
or regularly updating the control signals, the controller
opportunistically decides when to do so in order to drive
the closed-loop system toward the desired equilibrium. This
leads to a more efficient use of the available resources, at
the cost of adding complexity to the design and analysis in
the face of uncertainties, time delays, and disturbances. Our
work here is devoted to enhance the state-of-the-art in event-
triggered control by designing control strategies that stabilize
nonlinear systems with time-varying delays in actuation.

Literature review: This work builds upon the areas of
opportunistic state-triggered control and stabilization of time-
delayed systems. The basic concepts of state-triggered con-
trol originally stemmed from event-based and discrete-event
systems, see, e.g., [1], [2]. These ideas have since then
been extended to consider various control and sensing tasks,
see [3]–[5] and references therein. The basic design method-
ology, which we also employ here, builds on a Lyapunov-
based analysis to schedule the triggering times while main-
taining a minimum decay in the Lyapunov function.

Among the vast literature of control of time-delay systems,
our work is closely related to the design schemes based on
the notion of predictor feedback, also called finite spectrum
assignment and reduction method, see e.g. [6]–[11]. Roughly
speaking, the idea is that the controller first predicts the
future state of the system using its mathematical model and
then generates the control signal based on this prediction
to compensate for the system delay. Our developments here
are particularly inspired by the results presented in [11].
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Simulation techniques for closed-loop systems using pre-
dictor feedback are discussed in [12], [13]. Recent work
has explored the event-triggered control of time-delay sys-
tems. This problem is particularly challenging due to the
interplay between event-triggering and time delays: due to
the opportunistic nature of event-triggering, the controller
“waits” until the system tends to become unstable and
then updates the control accordingly, but if this control
takes some time to reach the system, it may no longer be
able to prevent the system from instability. Therefore, the
controller has to be “sufficiently more conservative” and
update the control “sufficiently ahead in time” to ensure
closed-loop stability, which makes the design challenging.
The work [14] considers linear time-invariant systems subject
to a quadratic cost function and designs an event-triggered
control scheme that satisfies the feasibility constraints. In a
similar setup, [15] considers a general switched linear system
subject to unknown time-varying delays with known bounds.
Based on these bounds, the paper shows that the uncertainty
in the delay has a polytopic nature. Both papers discretize
the continuous-time system using a fixed sample time and
assume that the time delay is less than the sampling time.
This assumption is quite restrictive and leads to a delay-free
discrete system for which the event-triggering schemes are
designed. Our design and analysis approach does not rely
on such assumption and allows us to control a wide class of
nonlinear systems subject to arbitrary time delays.

Statement of contributions: Our contributions are three-
fold. The first contribution is the design of an event-
triggering control strategy for a wide class of nonlinear
systems with arbitrarily large time delays. Employing the
method of predictor feedback to compensate for the system
input delay, we co-design the closed-loop control law and
the triggering strategy to ensure the monotonic evolution of
the Lyapunov function identified in the continuous-time case.
Our second contribution presents the convergence analysis
of our triggering design. We establish global asymptotic
stability of the closed-loop system and prove the existence
of a uniform lower bound on the inter-event times, a result
which rules out the possibility of Zeno behavior (i.e., the
possibility of arbitrarily fast triggering leading to triggering
times that accumulate at a finite time instant). We further
analyze the particular case of a controllable linear system
and give explicit expressions for the design variables. In the
linear case, we also show that the design achieves exponential
stability. Our final contribution is the analysis of the trade-
off between communication cost and convergence speed in
event-triggering control for the case of linear systems. We
also present various simulations to illustrate our results. For
space reasons, proofs are omitted and will appear elsewhere.



II. PRELIMINARIES

This section introduces our notational conventions and
briefly reviews basic notions on input-to-state stability. We
denote by R and R≥0 the sets of reals and nonnegative reals,
respectively. Given any vector or matrix, we use |·| to denote
the (induced) Euclidean norm. We use the notation LfS for
the Lie derivative of a function S along the trajectories of a
vector field f .

We follow [16] to review the definition of input-to-state
stability of nonlinear systems and its Lyapunov characteri-
zation. Consider a nonlinear system of the form

ẋ(t) = f(x(t), u(t)), (1)

where f : Rn × Rm → Rn is continuously differentiable
and satisfies f(0, 0) = 0. For simplicity, we assume that this
system has a unique solution which does not exhibit finite
escape time. System (1) is (globally) input-to-state stable
(ISS) if there exist α ∈ K and β ∈ KL such that for any
measurable locally essentially bounded input u : R≥0 → Rm
and any initial condition x(0) ∈ Rn, its solution satisfies

|x(t)| ≤ β(|x(0)|, t) + α
(
supt≥0 |u(t)|

)
,

for all t ≥ 0. For this system, a continuously differentiable
function S : Rn → R≥0 is called an ISS-Lyapunov function
if there exist α1, α2, γ, ρ ∈ K∞ such that

∀x ∈ Rn α1(|x|) ≤ S(x) ≤ α2(|x|),
and ∀(x, u) ∈ Rn+m LfS(x, u) ≤ −γ(|x|) + ρ(|u|). (2)

We have the following result.
Proposition 2.1: ([16, Theorem 1]): The system (1) is ISS

if and only if it admits an ISS-Lyapunov function.

III. PROBLEM STATEMENT

Here we introduce the problem of interest on event-
triggered stabilization of nonlinear systems with input delay.
Consider a single-input nonlinear time-invariant system with
input delay modeled as

ẋ(t) = f(x(t), u(φ(t))), (3)

where the vector field f : Rn × R → Rn is continuously
differentiable and f(0, 0) = 0. The quantity t − φ(t) > 0
is the time delay at time t. The delay might be due to
inherent actuator delays or the time that it takes for the
controller messages to reach the actuator. We assume that
{u(t) |φ(0) ≤ t ≤ 0} is given and bounded and that the
system (3) does not exhibit finite escape time for any initial
condition and any bounded input. For simplicity, we assume
that φ is continuously differentiable and φ̇(t) > 0 for all
t ≥ 0, so that the time argument of the control does not go
back in time. We also assume that the delay and its derivative
are bounded, i.e., there exist M0,M1,m2 > 0 such that,

∀t ≥ 0 t− φ(t) ≤M0 and m2 ≤ φ̇(t) ≤M1. (4)

Note that, in the case of a constant time delay D, we have
φ(t) = t − D. Furthermore, the conditions (4) are trivially
satisfied with M0 = D and M1 = m2 = 1.

Regarding stabilization, our starting point is the assump-
tion that the origin is globally asymptotically stabilizable in
the absence of delay by a feedback law that makes it ISS
with respect to additive input disturbances. Formally, there
exists globally Lipschitz K : Rn → R, K(0) = 0, such that

ẋ(t) = f(x(t),K(x(t)) + w(t)), (5)

is ISS with respect to w. This assumption means that the
system is robustly stabilizable when no delays are present, a
necessary condition to tackle the more involved case with
delay. Here, we are interested in designing opportunistic
state-triggered controllers to stabilize the system (3) that do
not require the actuator to continuously adjust the forcing
input. This is motivated by considerations about the efficient
use of the available communication, sensing, or actuation
resources. For instance, scenarios where communication be-
tween sensor, controller, and actuator is limited (e.g., shared
communication network), where applying a continuously
changing input to the system is unfeasible. To address these
challenges, we seek to design an event-triggered control
that only updates the input to the system when necessary.
Formally, our objective can be formulated as follows.

Problem 1: (Event-Triggered Stabilization under Input-
Delay): Design the sequence of triggering times {tk}∞k=1

with t0 = 0 and limk→∞ tk =∞, and the piecewise constant
control {u(t)}∞t=0, with

u(t) = u(tk), t ∈ [tk, tk+1), (6)

so that the closed-loop system (3) is globally asymptotically
stable. •

The requirement limk→∞ tk =∞ ensures that the result-
ing design is implementable by avoiding a finite accumula-
tion point for the triggering times.

IV. EVENT-TRIGGERED DESIGN AND ANALYSIS

In this section, we propose an event-triggered control pol-
icy to solve Problem 1. Our design is based on the predictor-
based feedback control solution for stabilization [11], which
we review in Section IV-A. We present our event-triggered
control design in Section IV-B and analyze its convergence
properties in Section IV-C.

A. Predictor Feedback Control for Time-Delay Systems
Here we review the continuous-time stabilization of the

dynamics (3) by means of a predictor-based feedback con-
trol [11]. For convenience, we denote the inverse of φ by

σ(t) = φ−1(t),

for all t ≥ 0. The inverse exists since φ is strictly monoton-
ically increasing. From (4), we have, for all t ≥ φ(0),

1

σ(t)− t
≥ m0 and m1 ≤ σ̇(t) ≤M2,

for m0 = 1
M0

, m1 = 1
M1

, and M2 = 1
m2

. To compensate
for the delay, at any time t ≥ φ(0), the controller makes the
following prediction of the future state of the plant,

p(t) = x(σ(t)) = x(t+) +

∫ t

φ(t+)

σ̇(s)f(p(s), u(s))ds, (7)



where t+ = max{t, 0}. This integral is computable by the
controller since it only requires knowledge of the initial or
current state of the plant (gathered from the sensors) and
the history of u(t) and p(t), both of which are available
to the controller. Nevertheless, for general nonlinear vector
fields f , (7) may not have a closed-form solution and it has
to be computed using numerical integration methods. The
controller applies the control law K to the prediction p in
order to compensate for the delay, i.e.,

u(t) = K(p(t)), t ≥ 0. (8)

The next result establishes the convergence of the closed-
loop system.

Proposition 4.1: (Asymptotic Stabilization by Predictor
Feedback [11]): Under the aforementioned assumptions, the
closed-loop system (3) under the controller (8) is globally
asymptotically stable, i.e., there exists β ∈ KL such that for
any x(0) ∈ Rn and bounded {u(t)}0t=φ(0), for all t ≥ 0,

|x(t)|+ sup
φ(t)≤τ≤t

|u(τ)| ≤ β
(
|x(0)|+ sup

φ(0)≤τ≤0
|u(τ)|, t

)
.

B. Design of Event-triggered Control Law

Following the exposition of Section IV-A, we let the
controller make the prediction p(t) according to (7) for all
t ≥ φ(0). Since the controller can only update u(t) at
discrete event times {tk}∞k=0, it uses the piecewise-constant
control (6) and assigns the control

u(tk) = K(p(tk)), (9)

for all k ≥ 0. In order to design the triggering times
{tk}∞k=1, we use Lyapunov stability tools to determine when
the controller has to update u(t) to prevent instability. We
define the triggering error for all t ≥ φ(0) as,

e(t) =

{
p(tk)− p(t) if t ∈ [tk, tk+1) for some k ≥ 0,

0 if t ∈ [φ(0), 0),

(10)

so that u(t) = K(p(t) + e(t)), for t ≥ 0. Let

w(t) = u(t)−K(p(t) + e(t)),

for all t ≥ φ(0). Clearly, w(t) = 0 for t ≥ 0 but w(t) may
not be zero when t ∈ [φ(0), 0). The closed-loop system can
then be written as

ẋ(t) = f
(
x(t),K

(
x(t) + e(φ(t))

)
+ w(φ(t))

)
,

for all t ≥ 0. Let g(x,w) = f(x,K(x)+w) for all x,w. By
the assumption that ẋ = g(x,w) is ISS with respect to w,
there exists a continuously differentiable function S : Rn →
R and class K∞ functions α1, α2, γ, and ρ such that

α1(|x(t)|) ≤ S(x(t)) ≤ α2(|x(t)|), (11)

and (LgS)(x,w) ≤ γ(|x|) + ρ(|w|). Therefore, we have

(LfS)
(
x(t),K

(
x(t) + e(φ(t))

)
+ w(φ(t))

)
(12)

= (LgS)
(
x(t),K

(
x(t)+e(φ(t))

)
+w(φ(t))−K(x(t))

)
≤−γ(|x(t)|) + ρ

(∣∣K(x(t)+e(φ(t)))+w(φ(t))−K(x(t))
∣∣).

We assume that ρ is such that
∫ 1

0
ρ(r)
r <∞. This assumption

is not restrictive and is satisfied by most well-known class
K functions. Then, define

V (t) = S(x(t)) +
2

b

∫ 2L(t)

0

ρ(r)

r
dr,

where

L(t) = sup
t≤τ≤σ(t)

|eb(τ−t)w(φ(τ))|, (13)

and b > 0 is a design parameter. The next result establishes
an upper bound on the time derivative of V .

Proposition 4.2: (Upper-bounding V̇ (t)): For the sys-
tem (3) under the control defined by (6) and (9) and the
predictor (7), we have

V̇ (t) ≤ −γ(|x(t)|)− ρ(2L(t)) + ρ(2LK |e(φ(t))|),

for all t ≥ 0, where LK is the Lipschitz constant of K. •
Proposition 4.2 is the basis for our event-trigger design.

Formally, we select θ ∈ (0, 1) and require

ρ(2LK |e(φ(t))|) ≤ θγ(|x(t)|), t ≥ 0,

which can be equivalently written as

|e(t)| ≤ ρ−1(θγ(|p(t)|))
2LK

, t ≥ φ(0). (14)

From (10), we see that (14) is trivially satisfied on [φ(0), 0).
As mentioned earlier, the first triggering happens at time t0 =
0. Therefore, e(0) = 0 and (14) is again trivially satisfied.
After time 0, the controller (which has access to both p(t)
and e(t)) keeps evaluating the inequality (14). As long as it is
satisfied, no event is triggered. The moment when (14) holds
with equality, the controller triggers an event (determining
t1), so e(t1) = 0 and (14) is maintained. This process
is repeated and the triggering times are determined online.
Notice that from (14), “larger” function γ and “smaller”
ρ are desirable as they result in less communication cost.
This conforms with the intuition that larger γ and smaller
ρ characterize systems with “stronger” stability, c.f. (2),
so the control action can be updated less frequently. In
the next section, we show that this design achieves global
asymptotic stability and guarantees that the inter-event times
are uniformly lower bounded.

C. Convergence Analysis under Event-triggered Law

We start by establishing the asymptotic stability of the
closed-loop system under the event-triggered law (9).

Corollary 4.3: (Closed-loop Asymptotic Stability): Under
the assumptions of Proposition 4.2, if (14) is satisfied, then
there exists β ∈ KL such that for any x(0) ∈ Rn and
bounded {u(t)}0t=φ(0), we have,

|x(t)|+ sup
φ(t)≤τ≤t

|u(τ)| ≤ β
(
|x(0)|+ sup

φ(0)≤τ≤0
|u(τ)|, t

)
, (15)

for all t ≥ 0. •
Corollary 4.3 guarantees that the closed-loop system is

globally asymptotically stable under the event-triggered de-
sign as long as (14) holds. To address Problem 1 completely,



we need to ensure that the event-triggered law gives rise to
executions that are feasible, meaning that triggering times
do not have a finite accumulation point. The next result
establishes a stronger fact, that is, that the inter-event times
are uniformly lower bounded.

Proposition 4.4: (Uniform Lower Bound for the Inter-
Event Times): For the system (3) under the control (6)-(9)
and the triggering condition (14), tk+1−tk ≥ δ for all k ≥ 1
where δ is the time that it takes for the solution of

ṙ =M2(1 + r)(Lf (1 + LK) + LfLKr), (16)

to go from 0 to 1
2Lγ−1ρ/θLK

. •
Proposition 4.4 is of both theoretical and practical impor-

tance. From a theoretical perspective, the result guarantees
that the solution of the hybrid system (3), (7), (9) exists for
all time t ≥ 0. From a practical point of view, since (16)
fully determines the lower bound on the inter-event times
and can be computed a priori, a designer can determine the
requirements on the hardware that are necessary to make the
design implementable.

V. THE LINEAR CASE

In this section, we show how the general treatment of
Section IV is specialized and simplified if the dynamics (3)
is linear, i.e, when we have

ẋ(t) = Ax(t) +Bu(φ(t)), t ≥ 0, (17)

subject to initial conditions x(0) ∈ Rn and bounded
{u(t)}0t=φ(0). Assuming that the pair (A,B) is controllable,
we can use pole placement to find a linear feedback law
K : Rn → R that makes (5) ISS. Moreover, p(t) can be
explicitly solved from (7) to obtain

p(t) = eA(σ(t)−t+)x(t+) +

∫ t

φ(t+)

σ̇(s)eA(σ(t)−σ(s))Bu(s)ds,

(18)

for all t ≥ φ(0) and the closed-loop system takes the form

ẋ(t) = (A+BK)x(t) +Bw(φ(t)) +BKe(φ(t)).

Furthermore, given an arbitrary Q = QT > 0, the continu-
ously differentiable function S : Rn → R is given by

S(x) = xTPx,

where P = PT > 0 is the unique solution to the Lyapunov
equation

(A+BK)TP + P (A+BK) = −Q.

It is clear that (11) holds with α1(r) = λmin(P )r
2 and

α2(r) = λmax(P )r
2. To show (12), notice that using Young’s

inequality [17],

LfS(x(t)) =− x(t)TQx(t)
+ 2x(t)TPB(w(φ(t)) +Ke(φ(t))),

so (12) holds with γ(r) = 1
2λmin(Q)r2 and ρ(r) = 2|PB|2

λmin(Q)r
2.

In this case, the trigger (14) takes the simpler form

|e(t)| ≤ λmin(Q)
√
θ

4|PB||K|
|p(t)|. (19)

In addition to the simplifications, we show in the next section
that the closed-loop system is globally exponentially stable
in the linear case.

A. Exponential Stabilization under Event-triggered Control

In the next result we show that in the linear case we obtain
the stronger feature of global exponential stability of the
closed-loop system, though this requires a slightly different
Lyapunov-Krasovskii functional.

Theorem 5.1: (Exponential Stability of the Linear Case):
The system (17) subject to the piecewise-constant closed-
loop control

u(t) = Kp(tk), t ∈ [tk, tk+1),

with p(t) given in (18) and {tk}∞k=1 determined according
to (19) satisfies

|x(t)|2 +
∫ t

φ(t)

u(τ)2dτ ≤ Ce−µt
(
|x(0)|2 +

∫ 0

φ(0)

u(τ)2dτ

)
,

for some C > 0, µ = (2−θ)λmin(Q)
4λmax(P ) , and all t ≥ 0. •

As given by Theorem 5.1, the exponential rate of conver-
gence µ depends on θ and the matrices Q and P . The ratio
λmin(Q)
λmax(P ) depends on the closed-loop matrix A+BK and can
be increased by placing the eigenvalues of A+BK at larger
negative values, though care should be taken as this also
amplifies the noise in practical implementations. We can also
increase µ by decreasing θ which comes at the cost of faster
event triggering and more communications. We analyze this
trade-off in detail in the next section.

B. Optimizing the Communication-Convergence Trade-off

In this section we discuss the role of the free parameters
of our design in optimizing the performance of the closed-
loop system. As it can be seen from the Lyapunov analysis
of Section IV, in an even-triggering scenario, the controller
keeps the control unchanged until an appropriate Lyapunov
function tends to increase, when the controller updates the
control signal to maintain a desired decay of the Lyapunov
function. Clearly, this will potentially come at the cost of
slowing down the convergence speed of the closed-loop
system. This trade-off is more clear in the linear case,
where increasing the parameter θ ∈ (0, 1) allows for less
communications through (19) but decreases the convergence
rate µ given by Theorem 5.1.

To quantify this trade-off, we define two objective func-
tions and formulate the trade-off as a multi-objective opti-
mization. Let δ be the time that it takes for the solution
of (16) to go from 0 to 1

2Lγ−1ρ/θLK
. As shown in Section IV-

C, the inter-event times are lower bounded by δ, so it can



be used to roughly measure the communication cost of the
control scheme. For ease of notation, let

a =M2LfLK , c =M2Lf (1 + LK), R =
1

2Lγ−1ρ/θLK
,

where Lf =
√
2(|A| + |B|), LK = |K|, and Lγ−1ρ/θ =

2|PB|
λmin(Q)

√
θ

. Then, the solution of (16) with initial condition

r(0) = 0 is given by r(t) = ceat−cect
aect−ceat . Solving r(δ) = R

for δ gives

δ =
ln c+Ra

c+Rc

a− c
.

The objective is to maximize δ and µ by tuning the opti-
mization variables θ and Q. For the sake of simplicity, let
θ = ν2 and Q = qIn where ν, q > 0. Then, our objective
functions take the explicit form

δ(ν) =
1

a− c
ln
c+ ν

|P1B||K|a

c+ ν
|P1B||K|c

, µ(ν) =
2− ν2

4λmax(P1)
,

where P1 = q−1P is the solution of the Lyapunov equation
(A + BK)TP1 + P1(A + BK) = −In. Figure 1 depicts δ
and µ as functions of ν and illustrates the communication-
convergence trade-off.

ν
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δ
(ν
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×10
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2

µ
(ν
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0

0.1

0.2

δ(ν)
µ(ν)

Fig. 1: The values of the lower bound of the inter-event times
(δ) and exponential rate of convergence (µ) for different
values of the optimization parameter ν for a third-order
unstable linear system with M2 = 1. This graph clearly
illustrates the communication-convergence trade-off.

To balance these two objectives, we define the aggregate
objective function as a convex combination of δ and µ, i.e.,

J(ν) = λδ(ν) + (1− λ)µ(ν),

where λ ∈ [0, 1] determines the (subjective) relative impor-
tance of convergence rate and communication cost. Notice
that due to the difference between the (physical) units of δ
and µ, one might multiply either one by a unifying constant,
but we are not doing this as it leads to an equivalent optimiza-
tion problem with a different λ. It is straightforward to verify
that J is strongly convex and its unique maximizer is given
by the positive real solution of c3ν3 + c2ν

2 + c1ν + c0 = 0
where c3 = a(1 − λ), c2 = (a + c)|P1B||K|(1 − λ),
c1 = c|P1B|2|K|2(1−λ), and c0 = −2λmax(P1)|P1B||K|λ.
Figure 2 illustrates the optimizer of the aggregate objective
function J(ν) for different values of the weighting factor λ.

λ
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ν
∗
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0.8

1

Fig. 2: The unique maximizer ν∗ of the aggregate objective
function J(ν) for different values of the weighting factor λ.
It can be seen that as λ goes from 0 to 1, more weight is
given to the maximization of δ which increases ν∗.

VI. SIMULATIONS

Here we illustrate the performance of our event-triggered
predictor-based design. Example 6.1 is a two-dimensional
nonlinear system that satisfies all the hypotheses required
to ensure global asymptotic convergence of the closed-loop
system. Example 6.2 is a different two-dimensional nonlinear
system which instead does not, but for which we observe
convergence in simulation.

Example 6.1: (Compliant Nonlinear System): Consider
the 2-dimensional system given by

f(x, u) =

[
x1 + x2

tanh(x1) + x2 + u

]
, t− φ(t) = 1 + t

1 + 2t
.

This system satisfies all the assumptions of our design with
the feedback law K(x) = −6x1 − 5x2 − tanh(x1). In
particular, we have

Lf = 2
√
3, LK = 7

√
2, M0 = 1, m2 = 1, M1 = 2,

S(x) = xTPx, γ(r) =
λmin(Q)

2
r2, ρ(r) =

2|PB|2

λmin(Q)
r2,

where P = PT > 0 is the solution of (A+Bk)TP +P (A+
Bk) = −Q for A = [1 1; 0 1], B = [0; 1], k = [−6 − 5],
and arbitrary Q = QT > 0. The simulation results of this
example are depicted in Figure 3 for θ = 0.5 and b = 10.
In practice, b should be chosen sufficiently large to make V
monotonically decreasing but the choice of θ is subjective.
It is to be noted that for this example, (14) simplifies to
|e(t)| ≤ ρ|p(t)| with ρ = 0.015, but the closed-loop system
remains stable when increasing ρ until 0.9. •

Example 6.2: (Non-compliant Nonlinear System): Here,
we consider an example that violates several of the hy-
potheses required by Proposition 4.2 and Corollary 4.3 to
guarantee asymptotic stability and study the performance of
the proposed algorithm. Let

f(x, u) =

[
x1 + x2

x2 + x31 + u

]
, t− φ(t) = D + a sin(t),

where the nominal delay D = 0.5 is known but the
perturbation magnitude a = 0.05 is not. The control law
K(x) = −6x1 − 5x2 − x31 makes the closed-loop system
ISS, but is not globally Lipschitz. Furthermore, the zero-
input system exhibits finite escape time. The controller is
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Fig. 3: Simulation of (a) state and predictor trajectories and
(b) Lyapunov-Krasovskii functional V for Example 6.1. Note
the logarithmic scaling of the vertical axis in (b). The initial
large value of V is due to the contribution of L, which
increases exponentially with b.

designed by assuming that φ(t) = t − D. The simulation
results of this example are illustrated in Figure 4. It can be
seen that although V is not monotonically decreasing, the
event-triggered control law is able to stabilize the system,
showing that the control law is applicable to a wider class
of systems than those satisfying the assumptions. •

VII. CONCLUSIONS AND FUTURE WORK

We have considered the problem of event-triggered control
design for nonlinear systems with time-varying input delay.
Based on the notion of predictor feedback, we have designed
an event-triggered control law that can globally asymptot-
ically stabilize the closed-loop system for arbitrary time
delays. We further proved that the inter-event times for our
triggering condition are uniformly lower bounded. We have
studied the particular case of a controllable linear system and
showed that the closed-loop system is exponentially stable.
We also analyzed the trade-off between communication cost
and convergence speed for the case of linear systems. Future
work will include the extension of this approach to systems
with disturbances and systems with unknown time delays, as
well as networked control scenarios with multiple agents.
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