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Abstract— Network models with linear-threshold rate dy-
namics have been widely used to explain the behavior of
biological neural networks and replicate it using artificial neural
networks. A full characterization of the stability properties of
these networks, nevertheless, has remained elusive. This paper
addresses the study of the existence and uniqueness of equilibria
and asymptotic stability, leading to a thorough understanding
of the conditions on the network structure that determine these
properties. Given the stringency of these conditions for large-
scale complex networks, we then study the stabilizability of
linear-threshold network dynamics and show that, using either
feedback or feedforward control, stabilization of the entire
network is solely determined by the subnetwork of nodes that
are not directly controlled. Illustrative examples demonstrate
our results.

I. INTRODUCTION

Theoretical and computational approaches to neuroscience
have received a surge of attention in recent years, with
two main contributing factors: the exponential growth in
the computational power of digital computers, allowing for
large-scale simulations of neural networks and the associated
data analyses; and the remarkable advancements in neu-
rotechnologies of brain recording and stimulation. Unlike
decades ago when the scarcity of data was the main challenge
ahead of neuroscience, new technologies have allowed the
collection of large datasets the full analysis of which relies
on novel theoretical and computational approaches.

A fundamental question in neuroscience is how the brain
dynamically employs its fixed neuronal circuits to perform
different tasks at different times over short timescales. Unlike
the classical modular model of cognitive behavior, the more
recent network model of cognition attributes distinct func-
tions of a brain region to the emergent behavior of the same
recurrent network under different external conditions [1]. In
this view, the dynamic dimensionality of a network, namely,
the number of neurons that are active during every period of
time, is arguably the most important network variable that
determines its flexibility and capacity for generating complex
behaviors [2]–[5]. Here, we propose dynamical stability as a
key constraint for dynamic dimensionality control in a (bi-
ological) neuronal network. Using linear-threshold models,
we seek to find mechanisms for feedforward and/or feedback
interconnections of local networks that can achieve dynamic
dimensionality control by inhibiting different subsets of
nodes during different time intervals.
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Literature review

First proposed as a model for the lateral eye of the
horseshoe crab by Hartline and Ratliff [6], the dynami-
cal behavior of linear-threshold (not necessarily symmet-
ric) network models have been studied at least as early
as [7]. The work [8] provides an initial summary of their
properties, including existence and uniqueness of equilibria
and asymptotic stability, with limited rigorous justification
provided later in [9]. These results were further expanded
using Lyapunov-based analysis in [10] for boundedness of
solutions and [11]–[14] for asymptotic stability. Neverthe-
less, the use of a different Lyapunov function in each
work has impeded a unified Lyapunov-based stability anal-
ysis of linear-threshold networks. The recent work [15]
presents several interesting properties of competitive (i.e.,
fully inhibitory) linear threshold networks. These properties,
however, turn out to be sensitive to the assumption that
all neurons receive equal background excitation. Overall,
the existing literature only considers constant input signals,
corresponding to background modulatory activity. Here, after
extending these results on constant input signals, we study
the role of time-varying input controls used for stabilization
and response-shaping. Finally, our work has connections with
classical tools from nonlinear systems [16] and switched
linear and affine systems [17]–[19].

Statement of contributions

Our contributions are threefold. First, we formulate and
prove several results on the existence and uniqueness of
equilibria and local and global exponential stability for
dynamically-isolated networks. Our results subsume the ones
available in the literature and provide a comprehensive
characterization of the properties of the network structure
that determine the stability of linear-threshold networks. Our
second contribution is the analysis of stabilization of linear-
threshold networks using state feedback. Here, we show that
stabilizability by means of linear state feedback is precisely
determined by the stability of the subset of nodes that are not
directly controlled, a relatively counter-intuitive result that
stems from the (apparently simple, yet intricate) nonlinearity
in the network dynamics. Finally we show, as our third
contribution, that the exact same critical role is played by
the not-directly controlled subnetwork when we consider
stabilization through feedforward inhibition. These results
give intuition on both the number and the centrality of nodes
that need to be inhibited in order for an unstable-in-isolation
network to gain stability. Due to space constraints, proofs
are omitted here and will be available elsewhere.



II. PRELIMINARIES

Here, we introduce notational conventions and review
basic concepts on matrix analysis and modeling of biological
neural networks.

Notation: We use R, R≥0, and R≤0 to denote the set of
reals, nonnegative reals, and nonpositive reals, resp. We use
bold-faced letters for vectors and matrices. 1n, 0n, 0m×n,
and In stand for the n-vector of all ones, the n-vector
of all zeros, the m-by-n zero matrix, and the identity n-
by-n matrix (we omit the subscripts when clear from the
context). Given a vector x ∈ Rn, xi and (x)i refer to
its ith component. Given A ∈ Rn×m, aij refers to the
(i, j)th entry. For block-partitioned x and A, xi, Ai, and
Aij refer to the ith block of x, ith block (e.g., row) of A,
and (i, j)th block of A, resp. For A ∈ Rm×n, range(A)
denotes the subspace of Rm spanned by the columns of A.
If x and y are vectors, x ≤ y denotes xi ≤ yi for all i. For
symmetric P ∈ Rn×n, P > 0 (P < 0) denotes that P is
positive (negative) definite. Given A ∈ Rn×n, its element-
wise absolute value, determinant, spectral radius, and 2-norm
are denoted by |A|, det(A), ρ(A), and ‖A‖, resp. Similarly,
for x ∈ Rn, ‖x‖ is its 2-norm. For σ ∈ {0, 1}n, we make the
convention that Σ = diag(σ) ∈ Rn×n denotes the diagonal
matrix with the elements of σ on its diagonal. For a set S, |S|
denotes its cardinality. For x ∈ R, [x]+ = max{0, x}, which
is extended entry-wise to vectors and matrices. δ(·) denotes
Dirac delta function. In block representation of matrices, ?
denotes arbitrary blocks whose value is immaterial.

Matrix Analysis: Here, we provide a brief description of
the matrix classes of interest and their inclusion relationships.

Definition II.1. (Matrix classes). A matrix A ∈ Rn×n is

(i) absolutely Schur stable if ρ(|A|) < 1;
(ii) totally L-stable, denoted A ∈ L, if there exists P =

PT > 0 such that (−I + ATΣ)P + P(−I + ΣA) < 0
for all Σ = diag(σ) and σ ∈ {0, 1}n;

(iii) totally Hurwitz, denoted A ∈ H, if all the principal
submatrices of A are Hurwitz;

(iv) a P-matrix, denoted A ∈ P , if all the principal minors
of A are positive. �

Given A =

[
A11 A12

A21 A22

]
with nonsingular A22, its

principal pivot transform is the matrix

π(A) ,

[
A11 −A12A

−1
22 A21 A12A

−1
22

−A−1
22 A21 A−1

22

]
.

Note that π(π(A)) = A. The next result formalizes several
equivalent characterizations of P-matrices.

Lemma II.2. (Properties of P-matrices [20], [21]). A ∈
Rn×n is a P-matrix if and only if any of the following holds:

(i) A−1 is a P-matrix;
(ii) all real eigenvalues of all the principal submatrices of

A are positive;
(iii) for any x ∈ Rn\{0} there is k such that xk(Ax)k>0;
(iv) the principal pivot transform of A is a P-matrix. �
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Fig. 1: Inclusion relationships (cf. Lemma II.3) between the
matrix classes introduced in Definition II.1.

The next result states inclusion relationships among the
matrix classes in Definition II.1 that will be used in our
ensuing discussion.

Lemma II.3. (Inclusions among matrix classes). For
A,W ∈ Rn×n, we have

(i) ρ(|W|) < 1⇒ −I + W ∈ H;
(ii) ‖W‖ < 1⇒W ∈ L;

(iii) W ∈ L ⇒ −I + W ∈ H;
(iv) A ∈ H ⇒ −A ∈ P . �

If W satisfies the Dale’s law (as biological neural net-
works do), i.e., each column is either nonnegative or nonpos-
itive, then one also has ‖W‖ = ‖|W|‖ ≥ ρ(|W|). Figure 1
depicts a Venn diagram of the various matrix classes of
interest to help visualize their relationships.

Dynamical Rate Models of Cortical Circuits: Here we
briefly review, following [22, §7], the fundamental concepts
and assumptions that underlie the linear-threshold network
model used throughout the paper.

In a lumped model, neural circuits are composed of
neurons communicating through spike trains of the form
ρ(t) =

∑
k δ(t − tk). In many cortical areas, however,

the exact timing {tk} of ρ(t) seems essentially random,
with the information mainly encoded in its firing rate (i.e.,
number of spikes per second). Thus, ρ(t) is modeled as an
inhomogeneous Poisson point process with rate, say, x(t).

Now, consider a pair of pre- and post-synaptic neurons
with rates xpre(t) and xpost(t), resp. As a result of xpre(t), an
electrical current Ipost(t) forms in the post-synaptic neuron’s
body. Assuming fast synaptic dynamics, Ipost(t) ∝ xpre(t).
Let wpost,pre be the proportionality constant, so Ipost(t) =
wpost,prexpre(t). If the post-synaptic neuron receives input
from multiple neurons, Ipost(t) follows a superposition law,

Ipost(t) =
∑

j
wpost,jxj(t), (1)

where wpost,j > 0 (< 0) if neuron j is excitatory (inhibitory).
If Ipost is constant, the post-synaptic rate follows xpost =

F (Ipost), where F is a nonlinear “response function”. Here,
among the two widely used response functions, namely,
sigmoidal and linear-threshold, we use the latter: F (·) = [·]+.



Finally, if Ipost(t) is time-varying, xpost(t) “lags” F (Ipost(t))
with a time constant τ , i.e.,

τ ẋpost(t) = −xpost(t) + [Ipost(t)]
+. (2)

(1)-(2) are the basis for our network model described next.

III. PROBLEM FORMULATION

Consider a network of neurons evolving according to (1)-
(2). Since the number of neurons in a brain region is very
large, it is common to consider groups of neurons with
similar activation patterns as a single node. The “firing
rate” of such a node is then defined as the average of the
individual firing rates. This convention also has the advantage
of getting more consistent rates, as the firing pattern of
individual neurons may be at times sparse.1 Combining the
nodal rates in a vector x ∈ Rn and synaptic weights in
a matrix W ∈ Rn×n, we obtain, according to (1)-(2), the
linear-threshold network dynamics

τ ẋ(t) = −x(t) + [Wx(t) + d(t)]+, t ≥ 0. (3)

The extra term d(t) ∈ Rn is the external input to the
network that accounts for un-modeled background activity,
possibly nonzero thresholds, and (more importantly) top-
down controls (signals coming to the network from other
brain regions). Note that (3) is a switched linear system with
2n modes. In each mode, corresponding to a σ ∈ {0, 1}n,

[Wx(t) + d(t)]+ = Σ(Wx(t) + d(t)),

where Σ = diag(σ). This observation motivates the follow-
ing assumptions on the weight matrix W.

Assumption 1. Assume

(i) det(W) 6= 0;
(ii) det(I−ΣW) 6= 0 for all Σ = diag(σ),σ ∈ {0, 1}n.�

This assumption is not a restriction in practical applica-
tions. In fact, the set of matrices for which Assumption 1 is
not satisfied can be expresses as a finite union of measure-
zero sets, and hence has (Lebesgue) measure zero.

Simulations of the dynamics (3) for a few random cases
of network matrix W and constant d reveal that

(i) locally, the network may have zero, one, or many
equilibrium points, where each equilibrium may be stable
or unstable independent of others,

(ii) globally, the network is capable of exhibiting dif-
ferent nonlinear phenomena such as limit cycles, multi-
stability, and chaos. Furthermore, the state trajectories grow
unbounded (in reality until saturation) if the excitatory sub-
network [W]+ is sufficiently strong.
This richness of behavior only increases if the network is
subject to a time-varying d(t). Motivated by these obser-
vations, our goal is to characterize the stability properties
of the network and the extent to which d(t) can stabilize
an unstable network. We begin the discussion in Section IV

1Our subsequent discussion is nevertheless valid irrespective of whether
network nodes represent individual neurons or groups of them.

with the stability analysis of the simplified case of dynamical
isolation, i.e., constant d. Building on this analysis, we then
tackle in Section V the more realistic case of time-varying
d(t) and see how it can be used to stabilize an unstable
network, utilizing both feedforward and feedback structures.

IV. STABILITY ANALYSIS

In this section, we provide an in-depth study of the
stability properties of the network dynamics (3) for constant
d(t) = d ∈ Rn,

τ ẋ(t) = −x(t) + [Wx(t) + d]+, t ≥ 0. (4)

Specifically, we derive conditions for existence and unique-
ness of equilibria and local/global asymptotic stability.

By Assumption 1(i), Wx + d = 0 defines a non-
degenerate set of n hyperplanes partitioning Rn into 2n solid
convex polytopic translated cones apexed at −W−1d. For
each σ ∈ {0, 1}n, let Ωσ be the associated switching region,

Ωσ = {x ∈ R≥0 | (2Σ− I)(Wx + d) ≥ 0}.

Clearly, the piecewise-affine dynamics (4) can be written in
the equivalent form

τ ẋ = (−I + ΣW)x + Σd, x ∈ Ωσ, σ ∈ {0, 1}n. (5)

In other words, Ωσ is the region where any neuron i for
which σi = 1 is active (it receives a net positive input)
while any neuron i for which σi = 0 is inactive (its firing
rate decays exponentially as τ ẋi = −xi). Interestingly, the
existence of equilibria is not guaranteed for this system. In
fact, for each σ ∈ {0, 1}n, according to (5), the point

x∗σ = x∗σ(d) = (I−ΣW)−1Σd, (6)

is the corresponding equilibrium candidate. We refer to it
as candidate because in general it might not belong to the
switching region Ωσ where the description (5) is valid.

A. Existence and Uniqueness of Equilibria

Here we characterize the existence and uniqueness of
equilibria for the dynamics (4). Given W ∈ Rn×n, define
the equilibria set-valued map h : Rn ⇒ Rn≥0 by

h(d) , {x ∈ Rn≥0 | x = [Wx + d]+}. (7)

Existence and uniqueness of equilibria precisely corresponds
to h being single-valued on Rn. If so, with slight abuse of
notation, we take h : Rn → Rn≥0 to be an ordinary function.

From the definition (6) of equilibrium candidate, note
that x∗σ ∈ h(d) if and only if x∗σ ∈ Ωσ . Then, using
Assumption 1, and after some manipulations, we have

Wx∗σ + d = W(I−ΣW)−1Σd + d (8)

=
[
(I−WΣ)−1WΣ + I

]
d = (I−WΣ)−1d.

Therefore,

x∗σ ∈ h(d)⇔ (2Σ− I)(I−WΣ)−1︸ ︷︷ ︸
,Mσ

d ≥ 0. (9)



Accordingly, for σ ∈ {0, 1}n, let ∆σ , {d ∈ Rn |Mσd ≥
0} be the set of external inputs d such that (4) has an
equilibrium in Ωσ , which is a closed convex polytopic cone.

Note that if Mσd ≥ 0 for exactly one σ ∈ {0, 1}n, then
a unique equilibrium exists according to (9). However, when
Mσ`

d ≥ 0 for multiple σ` ∈ {0, 1}n, ` ∈ {1, . . . , ¯̀}, the
network may have either multiple equilibria or a unique one
x∗σ1

= · · · = x∗σ ¯̀
lying on the boundary between {Ωσ`

}¯̀
`=1.

The next result shows that the quantities Mσd can be used
to distinguish between these two latter cases.

Lemma IV.1. (Existence of multiple equilibria). Assume
W satisfies Assumption 1, d ∈ Rn is arbitrary, and Mσ

is defined as in (9). If there exist σ1 6= σ2 such that d ∈
∆σ1 ∩∆σ2 , then x∗σ1

= x∗σ2
if and only if Mσ1d = Mσ2d.

�

Our next result provides an optimization-based condition
for existence and uniqueness of equilibria that is both nec-
essary and sufficient.

Proposition IV.2. (Optimization-based condition for exis-
tence and uniqueness of equilibria). Let W satisfy Assump-
tion 1 and Mσ be as defined in (9). For d ∈ Rn, define µ1(d)
and µ2(d) to be the largest and second largest element of{

mini=1,...,n(Mσd)i | σ ∈ {0, 1}n
}

, resp. Then, (4) has a
unique equilibrium for each d ∈ Rn if and only if

max
‖d‖=1

µ1(d)µ2(d) < 0. (10)

�

The optimization involved in (10) is usually highly non-
convex. However, since the search space ‖d‖ = 1 is compact,
global search methods can be used to verify (10) numerically
if n is small. Next, we give our main result regarding
the existence and uniqueness of equilibria that not only is
analytically verifiable for large n but also provides significant
intuition into the class of matrices W that satisfy existence
and uniqueness of equilibria.

Theorem IV.3. (Existence and uniqueness of equilibria).
Consider the network dynamics (4) and assume the weight
matrix W satisfies Assumption 1. Then, (4) has a unique
equilibrium for each d ∈ Rn if I−W ∈ P . �

The fact that the condition in Lemma II.2(iv) is an
equivalent characterization of P-matrices suggests that the
sufficient condition of Theorem IV.3 is tight. Indeed, exten-
sive simulations with random matrices did not reveal any
instance of W that is not a P-matrix but for which (4) has
a unique equilibrium for all d ∈ Rn (where we checked the
latter using the characterization of Proposition IV.2). This
leads us to the following conjecture, which was also made
in [8] as a claim without proof.

Conjecture IV.4. (Necessity of I −W ∈ P). Assume the
weight matrix W satisfies Assumption 1. Then, (4) has a
unique equilibrium for all d ∈ Rn if and only if I−W ∈ P .
�

The next example analyzes the existence and uniqueness
of equilibria for one of the simplest and most widely-used
models in computational neuroscience.

Example IV.5. (Uniform E-I networks). Consider a network
of n nodes in which αn, α ∈ (0, 1) are excitatory (E), (1−
α)n are inhibitory (I), and the synaptic weight between any
pair of nodes only depends on their type (the synaptic weight
of any I-to-E connection is wei < 0, and similarly for wee >
0, wie > 0, wii < 0). Also, assume common external inputs
de, di ∈ R for all E and I nodes, resp. Let xe(t) and xi(t)
be the average firing rates of E and I nodes, resp. Then,2

τ

[
ẋe
ẋi

]
= −

[
xe
xi

]
+

[[
αnwee (1−α)nwei
αnwie (1−α)nwii

][
xe
xi

]
+

[
de
di

]]+

.

Let WEI ∈ R2×2 be the weight matrix. One can check that

I−WEI ∈ P ⇔ αnwee < 1,

ρ(|WEI |) < 1⇔ αnwee < 1, (1− α)n|wii| < 1,

and α(1− α)n2wie|wei| < (1− αnwee)(1− (1− α)n|wii|).

Thus, according to Theorem IV.3, existence and uniqueness
of equilibria only requires the E dynamics to be stable (note
that wee has to be smaller as n grows), while the more con-
servative ρ(|WEI |) < 1 requires two extra conditions: the
stability of I dynamics and a weak interconnection between
E and I subnetworks (a small-gain type of condition). �

B. Asymptotic Stability

The existence and uniqueness of an equilibrium, as dis-
cussed above, is an opportunity to shape the network state,
provided the equilibrium corresponds to a desired state (e.g.,
a memory, location, or eye position) and it attracts network
trajectories [28]–[30]. Here we investigate when the latter
holds, i.e., the network equilibrium is asymptotically stable.
Our main result on asymptotic stability is the following.

Theorem IV.6. (Asymptotic Stability). Consider the network
dynamics (4) and assume W satisfies Assumption 1.

(i) [Sufficient condition] If W ∈ L, then for all d ∈
Rn, the network is globally exponentially stable (GES)
relative to a unique equilibrium x∗;

(ii) [Necessary condition] If for all d ∈ Rn the network
is locally asymptotically stable relative to a unique
equilibrium x∗, then −I + W ∈ H. �

With regards to [31, Thm 1], our approach in Theo-
rem IV.6 provides a simpler proof for the sufficiency of
W ∈ L and a novel proof for the necessity of −I+W ∈ H.
From Lemma II.3(iii), the conditions of Theorem IV.6 are
not conclusive when W satisfies −I + W ∈ H but does not
satisfy W ∈ L. However,

(i) If ρ(|W|) < 1, then the network is GES relative to
a unique equilibrium for all d ∈ Rn. This can be shown
similar to [9, Prop. 3].

2This simplification of n-dimensional networks to planar dynamics is
commonly known as the Wilson-Cowan model [25], see, e.g. [26], [27].



(a) (b)

Fig. 2: Network trajectories for the E-I network of Exam-
ple IV.8. a) When WEI = [0.9,−2; 5,−1.5], dEI = [1; 1],
network has a unique GES equilibrium. b) However, for WEI =
[1.1,−2; 5,−1.5], dEI = [−0.01;−1], the network exhibits bi-
stable behavior. The color of the trajectories corresponds to the
attractor to which they converge. Note that although αnwee >
1, the network is GES for most values of dEI , so we used
Proposition IV.2 for finding a dEI that leads to multi-stability.

(ii) If a unique equilibrium x∗ lies in the interior of an Ωσ

(a condition that can be shown to hold for Lebesgue-almost
all d), then x∗ is at least locally exponentially stable.

(iii) In our extensive simulations with random (W,d),
any system satisfying −I + W ∈ H was GES for all d.

These observations lead us to the following conjecture,
whose analytic characterization remains an open problem.

Conjecture IV.7. (Sufficiency of total-Hurwitzness for
GES). Consider the network dynamics (4) and assume W
satisfies Assumption 1. The network has a unique GES
equilibrium for all d ∈ Rn If and only if −I + W ∈ H.
�

We next study the GES of the uniform E-I networks of
Example IV.5.

Example IV.8. (Uniform E-I networks, cont’d). Consider
again the E-I network of Example IV.5. One can verify that

−I + WEI ∈ H ⇔ αnwee < 1. (11)

Thus, the (sufficient) condition for existence and uniqueness
of equilibria and (necessary) condition for GES coincide in
this case, and they interestingly only restrict wee. Figure 2
shows sample phase portraits for αnwee<1 and αnwee>1.
�

V. STABILIZATION BY EXOGENOUS CONTROLS

Here we consider the case when the network matrix W
does not satisfy the conditions identified in Section IV ensur-
ing the existence and uniqueness of equilibria or exponential
stability. Specifically, we are interested in determining to
what extent, in the general dynamics (3), it is possible to use
the external input d(t) to enforce existence and uniqueness
of equilibria/stability. To this end, we decompose d(t) as

d(t) = Bu(t) + d̃. (12)

Here, The role of d̃ ∈ Rn is to shape the network state x(t)
by determining the network equilibrium(the same role that

d was originally playing in Section IV when W had the
desired stability properties), while the role of u(t) ∈ Rm is
to make such equilibrium asymptotically stable. Let r ≤ n
be the number of nodes that (directly) receive the input u(t),
and partition W and B accordingly, i.e.,

W =

[
W11 W12

W21 W22

]
, B =

[
B1

0

]
, (13)

where W11 ∈ Rr×r,B1 ∈ Rr×m (this can always be
achieved by (re-)labeling the r directly controlled nodes as
1, . . . , r, so that the n− r last entries of B are 0).

Since feedback (also termed re-entry) plays a fundamental
role in network stability in the nervous system, we first
consider the case where the input u(t) is in the state feedback
form. The next result gives several necessary and sufficient
conditions for network stabilization using state feedback.

Theorem V.1. (Role of the uncontrolled subnetwork
in feedback stabilization). Consider the network dynam-
ics (3), (12), where u has the state feedback form

u(t) = Kx(t), (14)

and K ∈ Rm×n is a constant control gain. Assume that

range([W11 W12]) ⊆ range(B1). (15)

Then, there exists K ∈ Rm×n such that
(i) I− (W + BK) ∈ P if and only if I−W22 ∈ P;

(ii) −I + (W + BK) ∈ H if and only if −I + W22 ∈ H;
(iii) W + BK ∈ L if and only if W22 ∈ L;
(iv) ρ(|W + BK|) < 1 if and only if ρ(|W22|) < 1;
(v) ‖W + BK‖ < 1 if and only if ‖[W21 W22]‖ < 1. �

The main conclusion of Theorem V.1 is that the possibility
of stabilization by state feedback is determined by the sub-
network W22 of nodes that are not directly controlled. The
condition (15) requires, essentially, that there are sufficiently
many “independent” external controls.

Besides feedback/re-entry, feedforward inhibition is also
known to play a key role in network stability in the ner-
vous system by modulating the baseline activity of neural
populations and decreasing their excitability. The next result
arrives at the same conclusion as Theorem V.1 (namely,
that W22 is the sole determiner of network stabilizability)
from the completely independent perspective of feedforward
inhibition. First, we need a definition.

Definition V.2. (Monotone boundedness). The dynamics (3)
is monotonically bounded if for any d̄ ∈ Rn there exists ν(d̄)
such that x(t) ≤ ν(d̄), t ≥ 0 for any d(t) ≤ d̄, t ≥ 0. �

Note that in reality, the state of any biological neural
network is uniformly bounded due to the refractory period
of its neurons, implying monotone boundedness.

Theorem V.3. (Role of the uncontrolled subnetwork in
feedforward stabilization). Consider the network dynam-
ics (3), (12) with the decomposition (13), where

u(t) ≡ u ≥ 0,



and B1 ∈ Rr×m≤0 is purely inhibitory. Assume that,
(i) m ≥ r;

(ii) the network is monotonically bounded.
Then, for all d̃ ∈ Rn there exists u ≥ 0 such that the network
is GES relative to a unique equilibrium if and only if for all
d̃2 ∈ Rn−r the uncontrolled subnetwork

τ ẋ2 = −x2 + [W22x2 + d̃2]+, (16)

is GES relative to a unique equilibrium. �

Theorems V.1 and V.3 have illustrative similarities and
differences. In Theorem V.1, the stabilizing control u(t) is
determined based on x(t) according to a feedback law, while
in Theorem V.3, u is constant and independent of x(t) (thus
feedforward). However, in both cases, u(t) can enforce any
stability property if and only if the not-directly controlled
x2-dynamics already enjoys that property. Also, note that the
role of u(t) in Theorem V.3 is purely inhibitory as Bu ≤ 0.

VI. CONCLUSIONS

We have studied the stability and stabilizability for net-
works with linear-threshold dynamics. Regarding stability,
we have shown that the classes of P-matrices and totally-
Hurwitz matrices characterize network structures that yield
existence and uniqueness of equilibria and global exponential
stability, resp. Regarding stabilization, we have shown that
any stability property is achievable through external controls
(either in feedback or feedforward form) if and only if it
holds for the subnetwork of nodes that are not directly
controlled. These results give rise to several opportunities for
future work. Combined with the (log-normal) distribution of
synaptic weights and scaling laws of network eigenvalues
with its size, these results may play an important role in
explaining the inter-regional connectivity structures observed
in biological neural networks. Furthermore, the joint analysis
of stabilization and time-varying external controls which
themselves are outputs of dynamical networks can help ex-
plain the inter-regional information flow in cortical networks.
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