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Abstract— Understanding how the complex network dynam-
ics of the brain support cognition constitutes one of the
most challenging and impactful problems ahead of systems
and control theory. In this paper, we study the problem
of selective recruitment, namely, the simultaneous selective
inhibition of activity in one subnetwork and top-down re-
cruitment of another by a cognitively-higher level subnetwork,
using the class of linear-threshold rate (LTR) models. We
first use singular perturbation theory to provide a theoretical
framework for selective recruitment in a bilayer hierarchical
LTR network using both feedback and feedforward control. We
then generalize this framework to arbitrary number of layers
and provide conditions on the joint structure of subnetworks
that guarantee simultaneous selective inhibition and top-down
recruitment at all layers. We finally illustrate an application
of this framework in a biologically-inspired scenario where
simultaneous stabilization and control of a lower level excitatory
subnetwork is achieved through proper oscillatory activity in a
higher level inhibitory subnetwork.

I. INTRODUCTION

The human brain is constantly under the influx of sensory
inputs, and is responsible for integrating and interpreting
them while generating appropriate decisions and actions.
This activity involves vast and precise communications
across the brain, broadly occurring along canonical pathways
in two main directions: bottom-up and top-down. Bottom-up
communication is responsible for transmission of sensory in-
formation from primary sensory areas to cognitively-higher
level association areas, which in turn integrate it and make
decisions that are then communicated in the top-down direc-
tion. Top-down communication is itself responsible for two
parallel functions: the recruitment of the subnetworks whose
activity is relevant to the present task and the inhibition of
other task-irrelevant subnetworks. This hierarchical selective
recruitment is critical in enabling the brain to extract useful
information from a myriad of distractions that surround us
and compete for our limited attention. This work seeks to
develop a theoretical understanding of this vital aspect of the
brain function in terms of its network structure and dynamics.

This hierarchical structure of the brain is not only implied
by the direction in which sensory information and decisions
flow, but also by the separation of time-scales between
these areas: internal dynamics of each subnetwork grows
slower as we move up the hierarchy. Although this hierarchy
of time-scales has long been known to neuroscience and
subject of extensive experimental and computational studies,
a theoretical formulation of it is still missing. Here, we
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use the well-studied family of LTR models and tools and
concepts from systems and control theory to fill in this gap
and provide a theoretical framework of selective recruitment
in hierarchical brain networks.

Literature review

The hierarchical organization of the central nervous sys-
tem (CNS) has long been recognized [1], [2] and studied
from various viewpoints. These include a hierarchy of time-
scales [3]–[8] (where nodes are grouped into layers according
to the time-scale of their dynamics), topological hierar-
chies [9]–[12] (where nodes are assigned to layers based on
their position on bottom-up and top-down pathways), hierar-
chical clustering [13]–[16] (where nodes only constitute the
leafs of a clustering tree), and hierarchical oscillations [17]
(where layers correspond to nested oscillatory frequency
bands). Here, we particularly focus on the first two aspects.

The seminal work [9] uses the laminar structure of the
cortex to distinguish between bottom-up and top-down con-
nections and constructed a comprehensive hierarchical model
of (visual) cortex accordingly, inspiring and forming the basis
for many subsequent studies. In [3] and [4], a bilayer model
with time-scale separation between layers is proposed for
motor control and verified through simulations. Experimental
evidence for such separation of time-scales is provided in [5],
where data from six studies are aggregated and used to show
a time-scale gradient as one moves from primary visual
and somatosensory areas to the prefrontal cortex. The same
gradient is shown more comprehensively using LTR models
in [6]. This work further uses the intriguing concept of con-
tinuous hierarchies [10], [12] whereby the layer of each node
can vary continuously according to its intrinsic time-scale,
therefore removing the rigidity and arbitrariness of node
assignment in classical hierarchical structures. While these
works use the exponential decay rate of the autocorrelation
function of each node’s firing rate to infer its time-scale,
[7] uses the length of the largest time window over which
the responses to successive stimuli interfere. Nevertheless,
despite the vastness of the literature on hierarchical organi-
zation of CNS, we are not aware of any theoretical analysis
of the underlying assumptions and network properties that
allow for such hierarchical organization.

Here, we use the well-studied class of LTR models and
therefore rely on existing results on the dynamical properties
of LTR networks when considered autonomously (outside
of hierarchies) [18]–[20]. Our previous work [20] provides
a thorough description of the stability and stabilizability



properties of a single-layer LTR network, forming the basis
for the present study. This work, however, only formulates
the selective inhibition of task-irrelevant subnetworks within
a selective recruitment scenario and does not address the top-
down recruitment aspect of it. Finally, our work here also
relies on established areas of dynamical systems and control
such as switched linear and affine systems, see e.g., [21]–
[23], and singular perturbation theory, see e.g., [24]–[27].

Statement of contributions

The present work extends the state-of-the-art theory of
LTR networks in three ways. First, we provide a compre-
hensive framework for selective recruitment in bilayer LTR
networks. To this end, we integrate selective inhibition and
the theory of singular perturbations for non-smooth dynamics
in order to derive conditions on the network structure that
guarantee the simultaneous inhibition of the task-irrelevant
part of the lower level subnetwork and the stability of the
task-relevant part of it towards the desired trajectory set
forth for it by the higher-level subnetwork. Next, given the
multilayer organization of brain networks, we extend this
theory to a hierarchical LTR network with an arbitrary num-
ber of time-scale-separated layers. Here, we prove that the
subnetwork equilibrium maps at all layers of the hierarchy
are continuous and piecewise affine (and therefore globally
Lipschitz) and derive a novel condition on the joint structure
of the subnetworks in order to guarantee the global expo-
nential stability of the task-relevant part of each subnetwork
towards a unique equilibrium. Finally, we extend the existing
selective inhibition schemes to incorporate both feedforward
and feedback inhibition concurrently. This generalization is
critical as the feedforward and feedback inhibition schemes
(operating at very slow and fast time-scales, respectively)
are complementary and their combination allows for a spec-
trum of time-scales for selective inhibition. Due to space
constraints, proofs are omitted here and available in [28].

Notation

We use R, R≥0, R≤0, and R>0 to denote the set of
reals, nonnegative reals, nonpositive reals, and positive reals,
respectively. 1n, 0n, 0m×n, and In stand for the n-vector of
all ones, the n-vector of all zeros, the m-by-n zero matrix,
and the identity n-by-n matrix. The subscripts are omitted
when clear from the context. When a vector x or matrix A
are block-partitioned, xi and Aij refer to the ith block of x
and (i, j)th block of A, respectively. Given A ∈ Rn×n, its
element-wise absolute value and spectral radius are |A| and
ρ(A), respectively. ‖ · ‖ denotes vector 2-norm. For a vector
σ, diag(σ) denotes the diagonal matrix with the elements
of σ on its diagonal. For any x ∈ R, [x]+ , max{0, x}.
Similarly, [x]+ ∈ Rn≥0 and [A]+ ∈ Rn×n≥0 are defined entry-
wise for a vector x and matrix A.

II. PROBLEM STATEMENT

In this work, we use the family of LTR models to study
the dynamics of hierarchical networks in the brain. The

interested reader is referred to [29, Ch 7], [20, §II] for an
explanation of how they arise as dynamical rate models of
cortical circuits. A single LTR network is described by

τ ẋ(t) = −x(t) + [Wx(t) + d(t)]+, t ≥ 0. (1)

Here, x ∈ Rn≥0 is the collection of the states of all the net-
work nodes, where each node i corresponds to a population
of neurons with similar activity patterns and xi(t) is the
average firing rate of these neurons at time t. Note that Rn≥0

is invariant under (1), and hence these rates always remain
nonnegative. The matrix W ∈ Rn×n encodes the aggregate
synaptic efficacy between any pair of nodes and d(t) ∈ Rn
captures external inputs and potentially nonzero activation
thresholds. Finally, τ is the time constant of the network
and plays a pivotal role in our subsequent analysis.

Interestingly, key dynamical properties of the model (1)
with constant external inputs (i.e., d(t) ≡ d), such as exis-
tence and uniqueness of equilibria, asymptotic stability, and
boundedness of solutions, can be accurately characterized in
terms of the network structure W [20, §IV]. When these
conditions are not satisfied, one can resort to a time-varying
external input to ensure them. To explain this, assume we
seek to stabilize the network towards a unique equilibrium
and consider the decomposition of d(t) as

d(t) = Bu(t) + d̃. (2)

where u(t) ∈ Rm ensures stabilization while d̃ ∈ Rn
determines the network equilibrium. Let r ≤ n be the
number of nodes that (directly) receive u(t), and consider
the partition of W and B accordingly1,

B =

[
B1

0

]
, W =

[
W11 W12

W21 W22

]
, (3)

where B1 ∈ Rr×m has nonzero rows and W11 ∈ Rr×r.
Interestingly, using either constant feedforward u(t) ≡ ū or
linear feedback u(t) = Kx(t) control, any of the aforemen-
tioned key dynamical properties (including global asymptotic
stability) can be achieved for the overall network W if and
only if the corresponding property is already satisfied by the
not-directly controlled subnetwork W22 [20, §V].

In this paper, we are interested in extending this framework
to explain selective recruitment in a hierarchical structure.
The core idea is to extend (2) to a more general decompo-
sition of the form

d(t) = Bu(t) + d̃(t), (4)

and use u(t) for selective inhibition of the r task-irrelevant
nodes (similar to above) but now use the time-varying d̃(t)
for top-down recruitment of the n − r task-relevant nodes.
This scheme has then to be replicated at all the layers of the
hierarchy, as follows.

Formally, we consider a hierarchical network composed of
N layers, evolving at distinct time-scales, where each layer is
only directly connected to the layers immediately below and
above it (Figure 1). The i’th layer, i ∈ {1, . . . , N}, consists

1This can always be done by (re-)labeling the r directly controlled nodes
as 1, . . . , r, so that the n− r last entries of B are 0.
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Fig. 1: The inter-layer connectivity structure of the N -layer hierarchical
network. Each layer is only directly connected to the layers below and above
it. Longer-range connections between non-successive layers do exist in
biological neuronal networks, but are weaker than those between successive
layers, and are not considered here for simplicity.

of a subnetwork described by the LTR dynamics2

τiẋ
i(t) = −xi(t) + [Wi,ixi(t) + Wi,i−1xi−1(t) (5)

+ Wi,i+1xi+1(t) + Biui(t) + ci]+,

with state vector xi ∈ Rni , stabilizing control ui ∈ Rmi ,
control matrix

Bi =

[
Bi

1

0

]
, Bi

1 ∈ Rri×mi

≤0 , (6)

constant background activity ci ∈ Rni , and time constant
τi > 0. The remaining matrices have appropriate dimensions
and are partitioned in accordance with (6). By convention,
W1,0 = 0, WN,N+1 = 0, and r1 = 0 (so B1 = 0 and the
first subnetwork has no inhibited part). For i = {1, . . . , N −
1}, let εi ,

τi+1

τi
and define ε , (ε1, . . . , εN−1). We are now

ready to formulate the problem of interest as follows.

Problem 1. (Selective recruitment in hierarchical LTR
networks). Consider the hierarchical neuronal network de-
scribed above. Assuming ε � 1, derive conditions on the
joint structure of the subnetworks and inter-layer interac-
tions that guarantee, for each subnetwork, the simultaneous
selective inhibition of one (task-irrelevant) set of nodes and
the top-down recruitment of the remaining (task-relevant)
nodes so that their state tracks a trajectory determined by
the corresponding higher-level subnetwork.

Remark II.1. (The role of bottom-up communication).
In actual neuronal networks, bottom-up communications
are used for a variety of purposes. The framework above
incorporates two of their main functions: the transmission
of lower-level (mainly sensory) information to the higher-
level subnetwork (that will in turn affect the higher-level
dynamics) and the informing of the higher-level subnetwork
about the current activity level of the lower-level one so that
proper feedback inhibition can be applied. �

2Here, Wi,i−1xi−1(t) +Wi,i+1xi+1(t) + ci plays the role of d̃(t)
in (4) at each layer i.

III. SELECTIVE RECRUITMENT IN BILAYER NETWORKS

In this section we consider a simplified version of Prob-
lem 1 with only two layers, where the lower level network is
governed by LTR dynamics of the form (1) and the dynamics
of the higher level network is kept arbitrary. This setup allows
us to study the key ingredients of selective recruitment in the
absence of the extra complications that arise from multilayer
architectures. Section IV builds on the insights obtained here
to generalize this framework to the multilayer case.

For any W ∈ Rn×n, define h : Rn ⇒ Rn≥0 by

h(d) = hW(d) , {x ∈ Rn≥0 | x = [Wx + d]+}, (7)

which is the set of the equilibria of the LTR dynamics (1)
under a constant input d. One can show [20] that h has the
piecewise-affine form

h(d)=(I−ΣW)−1Σd, ∀d s.t. (2Σ− I)(I−WΣ)d≥0,

∀Σ=diag(σ),σ ∈ {0, 1}n. (8)

The existence and uniqueness of equilibria of (1) precisely
corresponds to h being single-valued on Rn, in which case
we let h : Rn → Rn≥0 be an ordinary function. To present
the main result of this section, we first need a definition3.

Definition III.1. (Monotone boundedness). The LTR dy-
namics (1) is monotonically bounded if for any d̄ ∈ Rn
there exists ν(d̄) such that x(t)≤ν(d̄),∀t if d(t)≤ d̄,∀t.�

The main result of this section is as follows.

Theorem III.2. (Selective recruitment in bilayer hierarchi-
cal networks). Consider the multilayer dynamics (5) where
N = 2, n1 = n2 − r2, W2,1 = [0n1×r2 In1 ]T , c2 = 0, and
x1(t) is generated by some arbitrary dynamics

τ1ẋ
1(t) = γ(x1(t),x2(t), t). (9)

Let h2 = hW2,2
22

as in (7). If

(i) γ is measurable in t, locally bounded, and locally
Lipschitz in (x1,x2) uniformly in t;

(ii) (9) has bounded solutions uniformly in x2(t);
(iii) m2 ≥ r2;
(iv) W2,2

22 is such that τ ẋ2
2 = −x2

2+[W2,2
22 x2

2+x1]+ is GES
towards a unique equilibrium for any constant x1;

then there exists K2 ∈ Rm2×n2 such that by using the
feedback control u2(t) = K2x2(t),

lim
ε1→0

sup
t∈[t,t̄]

∥∥x2(t)−
(
0r2 , h2(x1(t))

)∥∥ = 0, (10)

for any 0 < t < t̄ < ∞. Further, if the dynamics of x2

is monotonically bounded, there also exists a feedforward
control u2(t)≡ ū2 such that (10) holds for any 0<t<t̄<∞.

Remark III.3. (Validity of the assumptions of Theo-
rem III.2.). Assumption (i) is merely technical and is not

3Note that the state of real biological neuronal networks is uniformly
bounded due to the refractory period of its neurons, implying monotone
boundedness.



a restriction in practice. In particular, this assumption is
satisfied when using an LTR model for (9). Likewise, as-
sumption (ii) is always satisfied in reality, as the state of
all biological neuronal networks are bounded by the inverse
of the refractory period of their neurons. Even in theory,
this assumption can be relaxed to only the boundedness of
the reduced-order model in the case of feedback inhibition
(cf. Theorem IV.3). Assumption (iii) requires that there exist
sufficiently many inhibitory control channels to suppress the
activity of the first r nodes of the lower-level subnetwork.
The most critical requirement is assumption (iv), which is not
only sufficient but also necessary for inhibitory stabilization
(cf. [20] for conditions on W2,2

22 that ensure this assumption
as well as its necessity for inhibitory stabilization). �

The main conclusion of Theorem III.2 is the Tikhonov-
type singular perturbation statement given in (10). According
to (10), for any θ > 0,

|x2(t)− (0r2 , h2(x1(t)))| ≤ θ1n2
, ∀t ∈ [t, t̄], (11)

provided that τ2
τ1

is sufficiently small, i.e., the higher-level
dynamics is sufficiently slower than the lower-level one. As
discussed in the introduction, this time-scale separation is
characteristic of biological neuronal networks.

An important observation regarding (11) is that the equi-
librium map h2 does not have a closed-form expression, so
the reference trajectory h2(x1(t)) of the lower-level network
is only implicitly known for any given x1(t). However, if a
desired trajectory ξ2

2(t) ∈ Rn2−r2
≥0 for x2

2 is known a priori,
one can specify the appropriate γ such that h2(x1(t)) =
ξ2

2(t). To see this, let the dynamics of ξ2
2(t) be given by

τ1ξ̇
2

2(t) = γξ(ξ
2
2(t), t).

Then, choosing d1
2(t) = (I−W2,2

22 )ξ2
2(t), yields

[W2,2
22 ξ2

2(t) + x1(t)]+ = [ξ2
2(t)]+ = ξ2

2(t),

which, according to (7), implies ξ2
2(t) = h2(x1(t)).

IV. SELECTIVE RECRUITMENT IN MULTILAYER
NETWORKS

In this section, we address the general scenario stated in
Problem 1 involving an N -layer hierarchical structure of
subnetworks with LTR dynamics. Given the model (5), let

hi2 : ci2 ⇒ {xi2 | xi2 = [Wi,i+1
22 hi+1

2 (Wi+1,i
22 xi2 + ci+1

2 )

+ Wi,i
22xi2 + ci2]+}, i=2, . . . , N−1,

be the recursive definition of the (set-valued) equilibria map
of subnetwork i, with hN2 = hWN,N

22
as in (7). The maps

{hi2}Ni=2 play a central role in the multiple-time scale dynam-
ics of (5). Therefore, we next characterize their piecewise
affinity and global Lipschitzness properties. These results
play a key role in our forthcoming developments.

Lemma IV.1. (Piecewise affinity of equilibrium maps is
preserved along the layers of a hierarchical LTR network).

Let h : Rn → Rn be a piecewise affine function of the form

h(c) = Fλc + fλ, ∀c ∈ Ψλ , {c | Gλc + gλ ≥ 0},
∀λ ∈ Λ,

where Λ is a finite index set and
⋃
λ∈Λ Ψλ = Rn. Given

three matrices W`, ` = 1, 2, 3 and a vector c̄, assume

x = [W1x + W2h(W3x + c̄) + c′]+, (12)

is known to have a unique solution x ∈ Rn′
for all c′ ∈ Rn′

and let h′(c′) be this unique solution. Then, there exists a
finite index set Λ′ and {(F′λ′ , f ′λ′ ,G′λ′ ,g′λ′)}λ′∈Λ′ such that

h′(c′) = F′λ′c′ + f ′λ′ , ∀c′ ∈ Ψ′λ′ , {c′ | G′λ′c′ + g′λ′ ≥ 0},
∀λ′ ∈ Λ′,

and
⋃
λ′∈Λ′ Ψ′λ′ = Rn′

.

Note that an important special case of Lemma IV.1 is when
W2 = 0, in which case h′ becomes the standard equilibrium
map (7) of the LTR dynamics.

Lemma IV.2. (Piecewise affine equilibrium maps are glob-
ally Lipschitz). Let h : Rn → Rn be a piecewise affine
function of the form

h(c) = Fλc + fλ, ∀c ∈ Ψλ , {c | Gλc + gλ ≥ 0},
∀λ ∈ Λ,

where Λ is a finite index set and
⋃
λ∈Λ Ψλ = Rn. Then, h

is globally Lipschitz.

We are now ready to generalize Theorem III.2 to an N -
layer architecture while relaxing several of its simplifying
assumptions in favor of generality.

Theorem IV.3. (Selective recruitment in multilayer hierar-
chical networks). Consider the dynamics (5), (6). If4

(i) The reduced-order model (ROM)

τ1 ˙̄x1
2 = −x̄1

2 + [W1,1
22 x̄1

2 + W1,2
22 h

2
2(W2,1

22 x̄1
2 + c2

2) + c1
2]+,

of the first subnetwork has bounded solutions;
(ii) For all i = 2, . . . , N ,

τiẋ
i
2(t) =− xi2(t) + [Wi,i

22xi2(t)

+ Wi,i+1
2 hi+1

2 (Wi+1,i
22 xi2(t) + ci+1

2 ) + ci2]+,

is GES towards a unique equilibrium for any ci+1
2 and

any ci2;

then there exists Ki ∈ Rmi×ni and ūi : R≥0 → Rmi

≥0, i ∈
{2, . . . , N} such that using the feedback-feedforward control

ui(t) = Kixi(t) + ūi(t), i ∈ {2, . . . , N}, (13)

we have, for any 0 < t < t̄ <∞,

lim
ε→0

sup
t∈[t,t̄]

‖xi1(t)‖ = 0, ∀i ∈ {2, . . . , N}, (14a)

4Recall that x1 ≡ x1
2 since r1 = 0.



and

lim
ε→0

sup
t∈[0,t̄]

‖x1
2(t)− x̄1

2(t)‖ = 0, (14b)

lim
ε→0

sup
t∈[t,t̄]

‖x2
2(t)− h2

2(W2,1
22 x1

2(t) + c2
2)‖ = 0, (14c)

...

lim
ε→0

sup
t∈[t,t̄]

‖xN2 (t)−hN2 (WN,N−1
22 xN−1

2 (t)+cN2 )‖=0. (14d)

Unlike Theorem III.2, (13) uses a combination of feedback
and feedforward inhibition. While using only feedforward
or feedback inhibition has the advantage of simpler im-
plementation, their combination results in more flexibility
and less conservativeness: in pure feedforward inhibition,
countering local excitations requires monotone boundedness
and a sufficiently large ū that provides inhibition under the
worst-case scenario, a goal that is achieved more efficiently
using feedback. On the other hand, pure feedback inhibition
needs to dynamically cancel local excitations at all times
and is also unable to counter the effects of constant back-
ground excitation, limitations that are easily addressed when
combined with feedforward inhibition.

Similar to Remark III.3, assumption (ii) of Theorem IV.3
is its only critical requirement, which is both necessary and
sufficient for selective inhibition. The next result relates this
condition to the joint structure of the subnetworks, serving
as a vital step in the practical utilization of Theorem IV.3.

Theorem IV.4. (Sufficient condition for existence and
uniqueness of equilibria and GES in multilayer LTR
networks). Let h : Rn → Rn be a piecewise affine function
of the form

h(c) = Fλc + fλ, ∀c ∈ Ψλ , {c | Gλc + gλ ≥ 0},
∀λ ∈ Λ, (15)

where Λ is a finite index set and
⋃
λ∈Λ Ψλ = Rn. Further,

let F̄ , maxλ∈Λ |Fλ| be the matrix whose elements are
the maximum of the corresponding elements from {|Fλ|}λ∈Λ

and W`, ` = 1, 2, 3 be arbitrary matrices. If ρ
(
|W1| +

|W2|F̄|W3|
)
< 1, then the LTR dynamics

τ ẋ(t) = −x(t) + [W1x(t) + W2h(W3x(t) + c̄) + c]+,

is GES towards a unique equilibrium for all c̄ and c.

Theorem IV.4 applies to each layer of (5) separately. When
put together, assumption (ii) of Theorem IV.3 is satisfied if

ρ
(
|W2,2

22 |+ |W
2,3
22 |F̄ 3

2 |W
3,3
22 |
)
< 1,

...

ρ
(
|WN−1,N−1

22 |+ |WN−1,N
22 |F̄N2 |W

N,N−1
22 |

)
< 1,

ρ
(
|WN,N

22 |
)
< 1,

where F̄ i2, i = 3, . . . , N is the matrix described in Theo-
rem IV.4 corresponding to hi2, and the affine form (15) of
hi2 is computed recursively using Lemma IV.1.

τ1

0.1τ1

x1(t)

x2(t)

t

Fig. 2: The network structure (left) and trajectories (right) of the two-time
scale network in (16). The red pyramids and blue circles depict excitatory
and inhibitory nodes, respectively, and the trajectory colors on the right
correspond to node colors on the left.

V. SIMULATIONS

In this section, we provide an illustrative example of
the selective recruitment framework developed above in a
biologically-inspired bilayer hierarchical structure. Consider
the dynamics (5) with N = 2, a 3-dimensional excitatory
subnetwork at the lower level, and a 3-dimensional inhibitory
subnetwork at the higher level. Let

W1,1 =

 0 −0.8 −1.7
−1 0 −0.5
−0.7 −1.8 0

 , c1 =

11
10
10

 ,
W2,2 =

 0 0.9 1.2
0.7 0 1
0.8 0.2 0

 , B2 =

1
0
0

 , c2 =

 2
3.5
2.5

 ,
W1,2 = 0, W2,1 = −I, u2 = −5. (16)

It is straightforward to verify that this example satisfies all
the assumptions of Theorem III.2. Therefore, we expect the
actual x2-trajectory to be close to the desired x2-trajectory
(0, h2

2(x1(t)) provided that ε1 � 1. Figure 2 shows the
trajectories of this system for ε1 = 0.1 together with a
schematic of the interconnections. With this separation of
time scales, x2(t) and (0, h2

2(x1(t)) are almost identical and
not (visually) distinguishable.

It is easy to see that the complete x2-subsystem is unstable
by itself. However, when x2

1 is inhibited, the remaining x2
2-

x2
3 subnetwork becomes GES. Therefore, the higher-lever

inhibitory network (which is oscillatory itself) has selectively
inhibited x2

1 while simultaneously recruiting (by inducing an
oscillation in) the x2

2-x2
3 part.5 Note that although x2

1 is not
effectively used here, it can be replaced by x2

2 or x2
3 at other

times. In other words, while the full x2-dynamics is unstable,
any two-node part of it is GES. Therefore, different “tasks”
can be accomplished at different times through the selective
inhibition of one of {x2

1, x
2
2, x

2
3} and top-down recruitment

of the other two. Generalizing this to larger networks results
in more flexible selective recruitment of different subsets of
nodes at different times, as observed in nature.

5Coherent oscillatory activity has been widely shown to be involved in
transfer of information between cortical circuits, see, e.g., [30]–[32].



VI. CONCLUSIONS AND FUTURE WORK

We have proposed a model-based framework for un-
derstanding selective recruitment in multilayer hierarchical
networks inspired by the dynamical behavior of the brain.
Accordingly, we have modeled the dynamics of the layers by
LTR networks. Our results provide conditions on the network
structure and the inter-layer communications that guarantee
selective recruitment, in the sense that each subnetwork
inhibits activity in one (task-irrelevant) part and controls the
trajectory of the other (task-relevant) part of the subnetwork
at the level below it. Our framework requires that each re-
cruited subnetwork be asymptotically stable towards a fixed-
point attractor, which then moves along a desired trajectory
set by the subnetwork above. Future work will extend this
framework to cases where the recruited subnetworks can be
asymptotically stable towards more complex attractors, such
as limit cycles and chaotic attractors. We are also interested
in pursuing the data-driven validation of our results and
modeling framework as well as their generalization to more
general dynamical models, including bounded LTR models.
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