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Despite extensive research and remarkable advancements in the control of complex dynamical net-

works, most studies and practical control methods limit their focus to time-invariant control schedules

(TICS). This is both due to their simplicity and the fact that the benefits of time-varying control

schedules (TVCS) have remained largely uncharacterized. In this paper we study networks with linear

and discrete-time dynamics and analyze the role of network structure in TVCS. First, we show that

TVCS can significantly enhance network controllability over TICS both in small and large networks.

Through the analysis of a scale-dependent notion of nodal centrality, we then show that optimal

TVCS involves the actuation of the most central nodes at appropriate spatial scales at all times. Con-

sequently, it is the scale-heterogeneity of the central nodes in a network that determine whether, and

to what extent, TVCS outperforms conventional policies based on TICS. Here, scale-heterogeneity

of a network refers to how diverse the central nodes of the network are at different spatial (local vs.

global) scales. Several analytical results and case studies support and illustrate this relationship.

Keywords: complex dynamical networks, control scheduling, time-varying actuation, scale hetero-

geneity.

1 Introduction

Many natural and man-made systems, ranging from the nervous system to power and transportation grids to societies,

exhibit dynamic behaviors that evolve over a sparse and complex network. The ability to control such network

dynamics is not only a theoretically challenging problem but also a barrier to fundamental breakthroughs across

science and engineering. While multiple studies have addressed various aspects of this problem, several fundamental

questions remain unanswered, including to what extent the capability of controlling a different set of nodes over time

can improve the controllability of large-scale, complex networked systems.

Controllability of a dynamical network (i.e., a network that supports the temporal evolution of a well-defined

set of nodal states) is classically defined as the possibility of steering its state arbitrarily around the state space

through the application of external inputs to (i.e., actuation of) certain control nodes [1]. This raises a fundamental

question: how does the choice of control nodes affect network controllability? Hereafter, we refer to this as the control

scheduling problem [2–4]. Notice that in this classical setting, attention is only paid to the possibility of arbitrarily

steering the network state, but not to the difficulty and energy cost of doing so. This has motivated the introduction

of several controllability metrics to quantify the required effort in the control scheduling problem [5–9]. While a

comprehensive solution has remained elusive, these works have collectively revealed the role of several factors in the

control scheduling problem such as the network size and structure [6], nodal dynamics [3] and centralities [2, 7], the

number of control nodes [6], and the choice of controllability metric [8]. This problem has also close connections with

the optimal sensor scheduling problem, see, e.g. [10–13] and the references therein.

The majority of the above literature, however, implicitly relies on the assumption of time-invariant control sched-
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ules (TICS), namely, that the control node(s) is fixed over time. Depending on the specific network structure, this

assumption may come at the expense of a significant limitation on its controllability, especially for large-scale systems

where distant nodes inevitably exist relative to any control node. Intuitively, the possibility of time-varying control

schedules (TVCS), namely, the ability to control different nodes at different times, allows for targeted interventions

at different network locations and can ultimately decrease the control effort to accomplish a desired task. On the

other hand, from a practical standpoint, the implementation of TVCS requires the ability to geographically relocate

actuators or the presence of actuation mechanisms at different, ideally all, network nodes, and more sophisticated

control policies. This leads to a critical trade-off between the benefits of TVCS and its implementation costs which

has not received enough, if any, attention in the literature.

The significant potential of time-varying schedules for control (and also sensing, which has a dual interpretation

to control) has led to the design of (sub)optimal sensor [14, 15] and control [16, 17] scheduling algorithms in recent

years. While constituting a notable leap forward and the benchmark for the methods developed in this paper, these

works are oblivious to the fundamental question of whether, and to what extent, TVCS provides an improvement

in network controllability compared to TICS. Our previous work [18] has studied the former question (i.e., whether

TVCS provides any improvement over TICS) in the case of undirected networks, but did not consider directed

networks or, more importantly, addressed the latter question of how large the relative improvement in network

controllability is. Given the trade-off between benefits and costs of TVCS, a clear answer to this question is vital for

the practical application of TVCS in real-world complex networks.

In this paper, we address these two questions in the context of discrete-time linear dynamics evolving over directed

networks. Since the implementation costs of TVCS are greatly domain-specific and do not follow any common pattern

of dependence on the control schedule, we here provide an in-depth analysis of the benefits of TVCS. This provides

the necessary information for comparison with the costs of implementing TVCS in any specific application in order

to decide between TICS and TVCS.

To this end, we show that 2k-communicability, a new notion of nodal centrality that we define here, plays

a fundamental role in TVCS. This notion measures the centrality of each node in the network at different spatial

scales. Throughout this work, the spatial scale (or simply scale) of any notion of centrality is defined as the maximum

topological distance between pairs of nodes that allows them to affect the centrality of each other, where topological

distance between a pair of nodes refers to the minimum number of edges in the graph of the network that should be

traversed to go from one to the other. In particular, the spatial scale of degree centrality is 1, while the spatial scale

of eigenvector centrality is ∞. Based on the distinction between local and global nodal centralities (i.e., centralities

with small and large spatial scales, respectively), we show that the optimal control node at every time instance is

the node with the largest centrality at the appropriate scale (i.e., the node with the largest 2k-communicability at

an appropriate k). Accordingly, our main conclusion is that the benefit of TVCS is directly related to the scale-

heterogeneity of central nodes in the network: the most benefit is gained in networks where the highest centrality is

attained by various nodes at different spatial scales, while this benefit starts to decay as fewer nodes dominate the

network at all scales (i.e., scale-homogeneity).

Moreover, we provide an extensive discussion of how the dynamical adjacency matrix of a network can (and

should) be extracted from its static connectivity, a vital step that is often ignored in the literature. Indeed, our

simulation results show that this step has a significant effect on the benefit of TVCS, with transmission networks

(networks with states that represent physical quantities transmitted over the network) benefiting significantly more

than induction networks (those with non-physical states that induce state dynamics over the network) from TVCS.

2 Notation and Preliminaries

In this section, we introduce our notation and briefly review some preliminary concepts that will be used throughout

the work. We use R and N denote the set of reals and positive integers, respectively. Given x ∈ Rn, xi and (x)i refer

to its ith component. Similarly, aij and (A)ij refer to the (i, j)th entry of A, and ai refers to its i’th column. Given

a matrix M ∈ Rn×n, its trace, determinant, and eigenvalue with smallest magnitude are denoted by tr(M), det(M),

and λmin(M), respectively.
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2.1 Graph theory

A weighted undirected graph G = (N , E , A) consists of a vertex set N = {1, . . . , n}, an edge set

E = {{i, j} | i is connected to j},

and an adjacency matrix A ∈ Rn×n≥0 where, for any i, j ∈ N , aij ≥ 0 is the weight of the edge from node j to node

i. A path in G from node i to j is a finite sequence `0, `1, . . . , `p of nodes where `0 = i, `p = j, and {`m−1, `m} ∈ E
for ` ∈ {1, . . . , p}. A cycle is a path with `0 = `p. For k ≥ 1, (Ak)ij gives the (weighted) number of paths of length

k between nodes i and j. A regular graph of degree k is a graph where all the vertices have k neighbors. A strongly

regular graph with parameters (n, k, λ, µ) is a regular graph of n nodes with degree k where any two adjacent vertices

have λ common neighbors and any pair of non-adjacent vertices have µ neighbors in common. Given a network G
with n nodes, a cone on G is a network with n+ 1 nodes where the last one is connected to all others.

2.2 Network centrality

We briefly review here three centrality measures with spectral characterizations. Consider a network of size n

represented by the adjacency matrix A.

Eigenvector centrality [19, 20]: Let vi ∈ R≥0 denote the centrality value of node i ∈ N . Eigenvector centrality

is based on the idea that the influential nodes are the ones that are connected to other influential nodes. In other

words, vi ∝
∑n
j=0 aijvj for all i. This requires the existence of a constant λ > 0 such that λvi =

∑n
j=0 aijvj for

all i. In matrix notation, v = [v1 · · · vn]T , this becomes Av = λv, which is an eigenvalue problem. Since A is

non-negative, by the Perron-Frobenius Theorem [21, Fact 4.11.4], there always exists a pair (λ, v) ∈ R>0×Rn≥0 such

that Av = λv. This vector v is thus defined as the vector of (right) eigenvector centralities. The same argument

can be repeated by reversing the direction of influence flow in the network, leading to the vector of left eigenvector

centralities (i.e., a positive vector u such that uTA = λuT ).

Exponential and resolvent communicability [22, 23]: The communicability of a node measures its ability to

communicate with the rest of the network. Different notions of communicability have been proposed for complex

networks. For a given node i, these include exponential communicability (eβA)ii and the resolvent communicability

((I−βA)−1)ii, respectively, where β > 0. From the power series expansion of eβA and (I−βA)−1, it follows that the

exponential and resolvent communicabilities count the total number of cycles that pass through node i, weighting the

“importance” of cycles of length k by βk/k! and βk, respectively. Thus, the role of β is to determine how local/global

these measures are: increasing β increases the weights of longer cycles. One can show [23] that in the extreme cases

of β → ∞ in the exponential case and β → 1
λmax(A) in the resolvent case, both notions result in the same rankings

of nodes as eigenvector centrality.

Degree centrality: The degree centrality of node i is the sum of the i-th row (or column) of A and provides a

measure of the immediate influence of node i on its neighbors.

3 Problem Statement: Comparison of Time-Varying and Time-

Invariant Control Scheduling

We consider a network of n nodes that communicate over a graph G = (N , E , A) that is in general weighted and

directed (see Appendix A for methods of obtaining A from network connectivity structure). Each node i has a state

value xi ∈ R that evolves over time through the interaction of node i with its neighbors in G and an external control

u. Assuming that these interactions are linear and time-invariant, we have

x(k + 1) = Ax(k) + b(k)u(k), k ∈ {0, . . . ,K − 1}, (1)
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where x = (x1, . . . , xn) ∈ Rn is the network state, u(k) ∈ R is the control input, b(k) ∈ Rn is the time-varying input

vector, and K is the time horizon. For simplicity of exposition, we consider only one control input at a time, but

the discussion is generalizable to multi-input networks (cf. Appendix E). Define

ιk ∈ N , (2)

to be the index of the node to which the control signal u(k) is applied at time k. Then, b(k) is equal to the ιk’th

column of the identity matrix. For the sake of simplicity, we here assume that all the network nodes are actuatable,

so ιk ∈ N . If a subset of nodes are latent, (i.e., not actuatable), further challenges arise and thus we postpone the

analysis of this case to Section 4.4.

The dynamical network (1) is controllable if its state can be steered from arbitrary x(0) = x0 to arbitrary

x(K) = xf using the control input {u(k)}K−1k=0 or, equivalently, if the controllability Gramian

WK =

K−1∑
k=0

Akb(K−1−k)b(K−1−k)T (AT )k, (3)

is nonsingular [24]. In general, the eigenvalues of WK determine how large the unit-energy reachability set (the set

of states xf that can be reached from the origin x0 = 0 using controls with unit energy) is (cf. Appendix B for

derivation). Therefore, various measures of controllability based on the eigenvalues ofWK have been proposed, most

notably tr(WK), tr(W−1K )−1, det(WK), λmin(WK). Each metric has its own benefits and limitations, on which we

elaborate more in the following.

Assume, for now, that f(WK) ≥ 0 is any of the aforementioned controllability measures. In optimal control

scheduling, we seek to choose the control nodes {ιk}K−1k=0 (or, equivalently, {b(k)}K−1k=0 ) optimally. The conventional

approach in the literature [2–9] is to assume a constant control node, thus called the time-invariant control scheduling

(TICS) problem:

TICS: max
ι0,...,ιK−1∈N

f(WK) (4a)

s.t. ι0 = · · · = ιK−1 (4b)

The main advantage of TICS is its simplicity, from theoretical, computational, and implementation perspectives.

However, this simplicity comes at a possibly significant cost in terms of network controllability, compared to the case

where the control nodes {ιk}K−1k=0 are independently chosen, namely,

TVCS: max
ι0,...,ιK−1∈N

f(WK). (5)

This approach, namely, time-varying control scheduling (TVCS), is at least as good as TICS, but has the potential

to improve network controllability significantly. Figure 1(a-b) illustrates a small network of n = 5 nodes together

with the optimal values of equations (4) and (5) and the relative advantage of TVCS over TICS, defined as

χ =
fTV
max − fTI

max

fTI
max

. (6)

Three observations are worth highlighting. First, the value of χ is extremely dependent on the choice of controllability

measure f , and different choices lead to orders of magnitude change in χ. Second, the relative advantage of TVCS

over TICS is significant for all choices of the controllability measure, with the minimum improvement of χ = 35%

for the choice of f(·) = tr(·). The fact that f(·) = tr(·) results in the smallest value of χ relative to other measures

is consistently observed in synthetic and real-world networks, and stems from the fact that tr(WK) has the smallest

sensitivity (greatest robustness) to the choice of control schedule. Finally, even with optimal TVCS, λmin(WK) is

orders of magnitude less than 1, indicating the inevitable existence of very hard-to-reach directions in the state space.

This shows that efficient controllability cannot be maintained in all directions in the state space even using TVCS

and even in very small networks with control over 1/5 = 20% of the nodes. Except for tr(WK), all the measures

rely heavily on this least-controllable direction, while tr(WK) trades this off for improved controllability in the most

efficient directions in the state space. See Appendix B for further discussion of this tradeoff.
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Despite the significant increase in size and complexity, the same core principles outlined above apply to control-

lability of real-world networks. The large size of these networks, however, imposes new constraints on the choice of

the controllability measure f that make the use of f(·) = λmin(·), tr((·)−1)−1, and det(·) numerically infeasible and

theoretically over-conservative, as discussed in detail in Appendix B. As a result, we resort to the particular choice

of controllability measure

f(WK) = tr(WK), (7)

for networks beyond n ' 15. Since this measure has the smallest sensitivity to the choice of {ιk}K−1k=0 (Figure 1(b)),

we expect any network that benefits from TVCS using the choice of equation (7) to also benefit from it using

other Gramian-based measures (while the converse is not necessarily true, i.e., there are networks that significantly

benefit from TVCS using other measures but show no benefit in terms of tr(WK)). Figure 1(c) illustrates an air

transportation network among the busiest airports in the United States, comprising of n = 500 nodes. Using (7), we

see χ ' 20% improvement in controllability, verifying our expectation about the benefits of TVCS.

In spite of this potential benefit, TVCS has usually higher computational and implementation costs. These include

the higher computational cost of computing the optimal TVCS, and that of installing an actuator at several (ideally

all) nodes of the network. Further, not all networks benefit from TVCS alike. A simple directed chain network

with the same size as that of Figure 1(a) gains absolutely no benefit from TVCS, independently of the choice of f

(Figure 1(d-e)). Similarly, χ = 0 is also observed in larger, complex networks, indicating that the optimal TVCS and

the optimal TICS are the same (Figure 1(f)).

These observations collectively raise a fundamental question that constitutes the main problem studied in this

paper. Before formally stating the problem, we need a definition for ease of reference.

Definition 3.1. (Class V and I networks). Consider a dynamical network described by (1) and the measure

χ introduced in (6). We say that the network belongs to class V if it has χ > 0 and we say it belongs to class I
otherwise (χ = 0).

In words, class V networks are those that benefit from TVCS and class I networks are those that do not. Our

main problem of interest is then as follows.

Problem 1. Given the set of all dynamical networks described by dynamics of the form (1), characterize the sets

V and I in terms of the network structure A and develop efficient and easy-to-interpret methods for distinguishing

between them.

In the following, we restrict our attention to the choice of controllability measure in equation (7) due to its

applicability to all network sizes and carry a thorough analysis of its properties in order to address Problem 1.

4 Main Results

In this section, we present our main results regarding Problem 1. First, we introduce a new notion of communicability

that is pivotal to the solution of Problem 1. Then, we present our results regarding the characterization of class V
and I networks and, finally, study the case of networks with latent nodes declared earlier.

4.1 2k-Communicability and Scale-Heterogeneity

Consider the TVCS problem in equation (5) with f(·) = tr(·). Using the definition of the controllability Gramian

in (3) and the invariance property of trace under cyclic permutations, we can write

tr(WK) =

K−1∑
k=0

b(K−1−k)T (Ak)TAkb(K−1−k).

Therefore,

max
ι0,...,ιK−1

tr(WK) =

K−1∑
k=0

max
ιK−1−k

b(K−1−k)T (Ak)TAkb(K−1−k),
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(a)

f(·) fTI
max fTV

max χ

tr(·) 2.00 2.70 0.35

tr((·)−1)−1 1.26×10−7 8.22×10−4 6.5×103

det(·) 9.90×10−11 7.42×10−10 6.49

λmin(·) 1.27×10−7 1.10×10−4 8.7×102

(b)
(c)

(d)

f(·) fTI
max fTV

max χ

tr(·) 5 5 0

tr((·)−1)−1 0.2 0.2 0

det(·) 1 1 0

λmin(·) 1 1 0

(e)

(f)

Figure 1: Advantage of TVCS in dynamic networks. (a) A small example network of n = 5 nodes. The thickness of each

edge (i, j) illustrates its weight aij . (b) The optimal values of TICS and TVCS (equations (4) and (5), respectively) and the

relative TVCS advantage (equation (6)) for the network in (a). (c) An air transportation network among the busiest airports

in the United States (see ’air500’ in Table 1 for details). The network is undirected, and the dynamical adjacency matrix A

is computed from static connectivity using the transmission method (cf. Appendix A). This is an example of a network that

significantly benefits from TVCS with χ ' 20%. (d) A small example network of the same size as (a) but with no benefit from

TVCS. (e) The optimal values of TICS and TVCS (equations (4) and (5), respectively) and the relative TVCS advantage

(equation (6)) for the network in (d). We see that the network does not benefit from TVCS independently of the choice of

controllability metric. (f) A social network of students at the University of California, Irvine (see ’UCI Forum’ in Table 1 for

details). Similar to (c), the network is undirected and the adjacency matrix is computed using the transmission method. This

network, however, does not benefit from TVCS (χ = 0). In (c) and (f), the controllability measure of equation (7) is used

due to the large size of the network. In both cases, the color intensity and size of nodes represent their values of Ri(1) and

Ri(K − 1), respectively (K = 10). While there is a close correlation between nodal size and color intensity in (f) (i.e., the

darkest nodes are also the largest), this is not the case in (c), which is the root cause for the difference in their χ-values. The

interested reader can find comprehensive discussions of the network control problem for air transportation in [25–28], social

opinion in [29–33], and social epidemic dynamics in [34–39] and references therein.
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where each term b(K−1−k)T (Ak)TAkb(K−1−k) is the ιK−1−k’th diagonal entry of (Ak)TAk (cf. equation (2)).

Therefore, the optimization in (5) boils down to finding the largest diagonal element of (Ak)TAk and applying

u(K−1−k) to this node. On the other hand, for the TICS problem in (4) we have

tr(WK) = bT

(
K−1∑
k=0

(Ak)TAk

)
b,

so one has to instead find the largest diagonal entry of
∑K−1
k=0 (Ak)TAk and apply all the control inputs u(0), . . . , u(K−

1) to this same node, which is clearly sub-optimal with respect to TVCS. This discussion motivates the following

definition.

Definition 4.1. (2k-communicability). Given the network dynamics (1), the 2k-communicability of a node i ∈ N
is defined as

Ri(k) = ((Ak)TAk)ii, i ∈ N , k ≥ 0. (8)

Figure 2(a-b) illustrates the evolution of Ri(k) as a function of k for all i ∈ N for a sample network of n = 20

nodes.

Perhaps the most salient property of 2k-communicability is the extent to which it relies on the local interactions

among the nodes. Recall, cf. [40], that for any k, the (i, j) entry of Ak equals the total number of paths of length

k from node i to j (if the graph is weighted, each path counts as its weight, equal to the product of the weights

of its edges). From equation (8), we see that Ri(k) equals the sum of the squares of the total (weighted) number

of paths of length k ending in node i. In other words, Ri(k) only depends on connections of node i with its k-hop

out-neighbors, and is independent of the rest of the network. Therefore, Ri(k) is a local notion of centrality for small

k and it incorporates more global information as k grows. In particular, as shown in Appendix C, Ri(k) is closely

related to

• the out-degree centrality of node i for k = 1;

• the left eigenvector centrality of node i for k →∞.

This scaling property of 2k-communicability is illustrated in Figure 2(a-d) for an example network of n = 100 nodes.

Accordingly, we take the left eigenvector centrality squared as the definition of Ri(∞) in the sequel.

The scaling property of 2k-communicability also plays an important role in Problem 1. For ease of reference, let

r(k) ∈ N

denote the index of the node that has the largest Ri(k). Then, according to the discussion above,

ι∗k = r(K − 1− k), (9)

which forms the core connection between 2k-communicability and TVCS. From this, we see that the optimal TVCS

involves the application of u(0) to the node r(K − 1) with the highest global centrality and gradually moving the

control node until we apply u(K−2) to the node r(1) with the highest local centrality (the control node at time K−1

is arbitrary as Ri(0) = 1 for all i). The intuition behind this procedure is simple. At k = 0, the control input has

enough time to propagate through the network, which is why the highest globally-central node should be controlled.

As we reach the control horizon K, the control input has only a few time steps to disseminate through the network,

hence the optimality of locally-central nodes. This further motivates our definition of scale-heterogeneity, as follows.

Definition 4.2. (Scale-heterogeneity of dynamical networks). Consider the network dynamics (1) subject to

the TVCS problem (5) with 2k-communicability as defined in Definition 4.1. The network is called scale-homogeneous

if r(1) = r(2) = · · · = r(∞) and scale-heterogeneous otherwise. Accordingly, the more varied {r(k)}∞k=1 and

{Rr(k)(k)}∞k=1 are, the more scale-heterogeneous the network is.

Based on this definition, we see that the scale-heterogeneity is the main factor in the benefit of TVCS over TICS.

In fact, scale-homogeneous and scale-heterogenous networks are the same as class I and V networks, respectively,

7



(a)

(b)

(c) (d)

(e) (f)

Figure 2: 2k-communicability of dynamical networks. (a) An example network of n = 20 nodes for illustration of the

dependence on k of nodal 2k-communicabilities. The thickness of the edges is proportional to their weights. (b) The evolution

of the functions {Ri(k)}ni=1. Although these functions are originally only defined over integer values of k, we have extended

their domain to real numbers for better illustration of their crossings and oscillatory behavior. Oscillatory behavior only arises

when A has complex-valued eigenvalues (otherwise, Ri(k) is strictly convex). (c) An example network of n = 100 nodes for

illustration of the scaling property of 2k-communicability. The node whose 2k-communicabilities are to be computed (i.e.,

“node i”) is depicted in red. (d-f) The 2-, 4-, and 14-communicability of the node depicted in red, as determined by its 1-,

2-, and 7-hop incoming paths. We see that Ri(1) only depends on the immediate (out-)neighbors of i, but as k grows, Ri(k)

encodes more global information.
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due to (9). Further, note that the degree of scale-heterogeneity provides a geometric and qualitative characterization

of the amount of benefit TVCS has over TICS and distinguishes between networks in V that only marginally benefit

from TVCS and those the benefit significantly (while 2k-communicability is a more quantitative notion used for

computational assignment of networks to class V or I).

It follows immediately from Definition 4.2 that determining the scale-heterogeneity of a network requires compu-

tation of all {r(k)}∞k=1 which is infeasible. Next, we seek simple and computationally efficient conditions to be used

as a proxy for scale-heterogeneity.

4.2 Identifying Class V Networks

In this section we discuss a sufficient condition for scale-heterogeneity that, when satisfied, ensures that a network

belongs to class V. This condition, given next, relies on the fact that r(1) and r(∞) are particularly important

elements of {r(k)}∞k=1 in determining scale-heterogeneity. The proof of this theorem is given in Appendix G.

Theorem 4.3. (Class V networks). Consider the TVCS problem (5) for the network dynamics (1). Assume that

the adjacency matrix A is irreducible, aperiodic, and diagonalizable. If

arg max
i∈N

Ri(1) ∩ arg max
i∈N

Ri(∞) = ∅,

then the network belongs to class V for sufficiently large K. �

The condition of A being irreducible is equivalent to the network being strongly connected, and thus not restrictive.

Likewise, A being aperiodic is not restrictive as it requires that there exists no integer number greater than 1 that

divides the length of every cycle in the network (satisfied, in particular, if any self-loops exist). Finally, A is almost

always diagonalizable in the Lebesgue sense, i.e., the set of non-diagonalizable A has Lebesgue measure zero.

Consider again the networks of Figure 1(c and f). Here, the color intensity of each node indicates its value Ri(1)

while its size corresponds to its value Ri(K − 1). Clearly, the first few largest and darkest nodes are distinct in

Figure 1(c), while there is a close correlation between nodal size and darkness in Figure 1(f), illustrating the root

cause of their difference in benefiting from TVCS.

If a network has r(0) = r(K − 1), it is still possible that the network belongs to class V. In fact, about half of

the networks with r(0) = r(K − 1) still belong to V (Figure 3(a)). However, these networks have a value of χ of no

more than 3% on average, and in turn this value quickly decreases with the dominance of the node r(0) over the

rest of the network nodes (Figure 3(b)). This is a strong indication that, for most practical purposes, the test based

on 2k-communicability is a valid indicator of whether a network benefits from TVCS. Furthermore, in the case of

undirected networks, it is possible to analytically prove that a network belongs to class I (χ = 0) if certain conditions

based on the eigen-decomposition of the adjacency matrix A are satisfied, as shown next.

4.3 Identifying Class I Networks

Complementary to Section 4.2, here we discuss some necessary conditions for scale-heterogeneity based on the eigen-

structure of the network that characterize subsets of I. Let A = V ΛV T be the eigen-decomposition of A, where

V = [vij ]n×n and Λ = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues with |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Further,

let W = [wij ]n×n be the doubly stochastic matrix such that wij = v2ij for all i, j ∈ {1, . . . , n}. The next result,

proven in Appendix G, characterizes three undirected sub-classes of I.

Theorem 4.4. (Class I networks). Consider the TVCS problem (5) for the network dynamics (1). Assume that

the network is undirected (i.e., A = AT ) and that, without loss of generality, the node with the largest eigenvector

centrality is labeled as node 1. If any of the following conditions holds:

(i) 1−w11

w11
≤ |λ1|−|λ2|
|λ1|−|λn| ,

(ii) w11 + w12 = 1,

(iii) the network has three or fewer nonzero eigenvalues with different absolute values and 1 ∈ arg maxiRi(1),

9



(a) (b)

Benefit from TVCS

Thm.

4.4

r(0) 6= r(K−1)

(Thm. 4.3)

I V
Dynamical Networks

(c)

Figure 3: The role of 2k-communicability in distinguishing between networks of class V (χ > 0) and I (χ = 0). (a) The

proportion of random networks in V and I. A total of 105 random connectivity matrices were generated with logarithmically-

uniform n in [101, 103], uniform sparsity p in [0, 1], and uniform pairwise connectivity weight in [0, 1], and then transformed

to adjacency matrices A using the transmission method (cf. Appendix A). A time-horizon of K = 10 is used for all networks.

While more than 80% of all networks belong to class V, this number drops to less than 50% among networks with r(1) = r(K−1)

(i.e., networks where the same node has the greatest local and global centralities). (b) The χ-value of the same networks

as in (a) that have r(1) = r(K − 1) as a function of the dominance of the node r(0). For the node r(0), its dominance

(over the rest of the network) is a measure of how distinctly Rr(0)(1) and Rr(0)(K − 1) are larger than Ri(1) and Ri(K − 1),

respectively, for i 6= r(0) (cf. Appendix D). Each gray square represents one randomly generated network, so the darkness

of each area represents the probability of observing random networks with that value of (dominance, χ). A rapid decay of χ

with dominance is clear, such that networks with positive dominance have very low probability of having χ > 0. (c) A Venn

diagram illustrating the decomposition of dynamical networks based on the extent to which they benefit from TVCS. The

color gradient is a depiction of this extent, as measured by χ (equation (6)), where darker areas correspond to higher χ. As

shown in (a) and (b), the class of networks for which r(0) 6= r(K− 1) is only a subset of V but provides a good approximation

for it.

then,

1 ∈ arg max
1≤i≤n

Ri(k), ∀k ∈ {0, . . . ,K − 1}, (10)

i.e., selecting the node with the largest eigenvector centrality at every time step is the solution to (5). �

The conditions in Theorem 4.4 are based on the eigen-decomposition of the network adjacency matrix A and thus

abstract. However, these conditions can be interpreted as follows:

(i) Condition (i) holds for networks where there is a sufficiently distinct central node, in the sense of eigenvector

centrality, and the network dynamics is dominated by the largest eigenvalue. An extreme case of such networks

is a totally disconnected network where W = I and the highest authority is the node with the largest self-loop.

(ii) Condition (ii) holds for networks where the eigenvector centrality of all nodes is determined by the weight of

the link to the most eigenvector-central node. To see this, note that we have w1j = 0 for j ≥ 3, implying

v1j = 0, j ≥ 3. Since the rows of V are orthogonal, we deduce vi2 = αvi1 for all i ≥ 2, where α = −v11/v12 is

constant. Using A = V ΛV T , we have

a1i = λ1v11vi1 + λ2v12vi2 = (v11λ1 + αv12λ2)vi1,

so vi1 ∝ a1i for all i ≥ 2. Examples of such networks are star networks with no (or small-weight) self-loops (cf.

Proposition F.3).

(iii) Regarding condition (iii), the most well-known families of networks with three distinct eigenvalues are the

complete bipartite networks and connected strongly regular networks. Moreover, cones on (n, k, λ, µ)-strongly

regular graphs satisfying λmin(A)(λmin(A)− k) = n are also known to have three distinct eigenvalues [41]. The

other condition 1 ∈ arg maxiRi(1) holds when the node with the largest eigenvector centrality (i.e., r(∞)) has

also the largest 2-communicability. The simplest example of a network with these properties is the star network

(with no or equal self-loops).
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The general abstraction from these cases is that a network belongs to class I if it contains a sufficiently distinct

central node, which reinforces our main conclusion that V is the class of networks with multiple scale-heterogeneous

central nodes. The inclusion relationships between the various classes of networks introduced in this section are

summarized in Figure 3(c).

While Theorem 4.4 is only applicable to undirected networks, it has a straightforward extension to normal

networks (i.e., directed networks with normal A). Using the same proof technique as in Theorem 4.4, it can be

shown that the exact same results hold if one replaces the eigenvalues and eigenvectors with singular values and

singular vectors of A. Interestingly in this case, Ri(∞) coincides with HITS hub/authority centrality of node i

squared [42].

4.4 Networks with Latent Nodes

As mentioned in Section 3, in many real-world applications of TVCS not all the nodes are available/accessible for

control. In this case, we call a node manifest if it can be actuated and latent if it cannot. The natural solution

would then be to choose the control nodes optimally among the manifest nodes. If the adjacency matrix A of the

network is fixed and given, this is the best solution. However, there are cases where A itself can be changed, at

least among the manifest nodes. We call such a change of structure an (edge) manipulation. Edge manipulations

are primarily possible in man-made (power, transportation, etc.) networks, since the edges are originally engineered,

but are also becoming increasingly feasible in biological networks due to advances in bioengineering, see, e.g., [43,44]

for brain and [45, 46] for gene networks. When manipulation is possible in a network with latent nodes, another

solution to TVCS is to manipulate the network among the manifest nodes such that the optimal control nodes (when

computed without any restrictions on control scheduling) lie among the manifest nodes for all time. The following

result provides a guarantee that this is always possible, provided that the manipulation is sufficiently strong and not

acyclic.

Theorem 4.5. (Network manipulation and TVCS in networks with latent nodes). Consider the optimal

node selection problem (5) over a time horizon K. Given a network of n nodes with adjacency matrix A0 ∈ Rn×n,

let E ∈ Rn×n be a nonnegative matrix of the form

E =

[
? 0

0 0

]}
n1}
n−n1

{n1 {n−n1

,

corresponding to the manifest subnetwork involving the first n1 < n nodes (this is without loss of generality, since

nodes can be renumbered) and consider the dynamic network described by (1) with adjacency matrix A = A0 + αE,

where α > 0. Then, if E is not acyclic, there exists α > 0 such that for α > α,

r(k) ∈ {1, . . . , n1}, (11)

for all k ∈ {0, . . . ,K − 1}. Furthermore, if A0 and E are symmetric (the corresponding networks are undirected), ᾱ

can be found in closed form and (11) holds for all k ≥ 1. �

Both requirements of Theorem 4.5 (that αE is sufficiently strong and acyclic) have clear interpretations. First, de-

pending on how large the size of the manifest subnetwork is and how central its nodes already are (pre-manipulation),

larger manipulation may be necessary to turn them into central nodes at various scales (i.e., r(k) for k = {0, . . . ,K−
1}). Second, for the manifest nodes to become central at arbitrarily global scales (i.e., r(k) for k ∼ K → ∞), the

manipulation must contain paths of arbitrarily long lengths, which are absent in acyclic networks.

According to Theorem 4.5, manipulation of the manifest subnetwork is effective even when the manifest nodes

are among the least central nodes of the network (before the manipulation). In this case, as we increase α from 0, the

manifest nodes usually first turn into the most locally-central nodes (α 6≥ ᾱ yet), and then also into globally-central

nodes (α > ᾱ). The following example illustrates this phenomenon in a simple star network where the center node

is latent and the peripheral nodes are manifest.
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Example 4.6. (Undirected star networks with varying self-loop weights). Consider an undirected uniform

star network given by

A0 =

[
lpIn−1 acp1n−1
acp1

T
n−1 lc

]
,

where 1n−1 denotes the (n − 1)-dimensional vector of all ones and the positive constants lc, lp, and acp are the

central self-loop weight, peripheral self-loop weight, and the link weight between the center node and any peripheral

node, respectively. The 2k-communicabilities of this network are computed analytically in Proposition F.3 (nodes are

re-labeled here for conformity with Theorem 4.5). It follows from (25) that for any i ∈ {1, . . . , n− 1},

Rn(1)−Ri(1) = l2c − l2p + (n− 2)a2cp. (12)

Therefore, if lp ≤ lc, then Rn(k) > Ri(k) for all k ≥ 1, i.e., the center node is the optimal control node at all times.

However, when lc < lp, the network can exhibit different behaviors. From (25), we can also see that

lim
k→∞

Rn(k) > lim
k→∞

Ri(k)⇔ λ1 − lp > acp. (13)

Define lp =
√
l2c + (n− 2)a2cp and lp = lc + (n − 2)acp. Using (12)-(13) and after some computations, one can see

that

r(k) = n for all k, if lp ≤ lp,

r(1) = {1, . . . , n− 1} but r(k) = n for large enough k, if lp < lp < lp,

r(k) = {1, . . . , n− 1} for all k, if lp ≥ lp.

In other words, when the manipulation is weak, the (latent) center node is the optimal control node at all times.

As the manipulation gains strength, scale-heterogeneity emerges, making the (manifest) peripheral nodes the optimal

control node at local scales while the center node remains still the optimal control node at global scales. Finally,

when the manipulation is strong enough, scale-heterogeneity vanishes, leaving the (manifest) peripheral nodes as the

optimal control nodes at all scales. Notice that with the terminology of Theorem 4.5,

E =

[
In−1 0

0 0

]
, n1 = n− 1, α = lp, and α = lp. �

A fair concern, however, exists regarding the minimum size of the manipulation needed to make the TVCS all-

manifest. If this is excessively high, the prescribed approach may be infeasible in practice. Nevertheless, among

networks of various size and structure, random manipulations with norm of about 10% of the norm of A are on

average sufficient (Figure 4). Here, we see that the largest manipulations are needed for manifest subnetworks of

about 10% the total size of the network. This is because when the size of the manifest subnetwork is extremely small,

manipulations are focused on this small subset of nodes and thus more efficient, while with extremely large manifest

subnetworks, the majority of the nodes are accessible for control and there is little restriction on the TVCS.

Finally, Figure 4 also shows the comparison, in terms of controllability, of the manipulation-based approach

against the alternative approach of selecting an optimal TVCS with the additional constraint that control nodes

must be manifest (without any manipulation of the dynamics), which results in a sub-optimal all-manifest TVCS.

For the comparison to be fair, we normalize each network by its spectral radius (largest magnitude of its eigenvalues),

and then compare the optimal value of their TVCS (equation (5)). We see that the amount of relative advantage

produced by manifest subnetwork manipulation is comparable to the relative size of the manipulation, except for

medium-sized manifest subnetworks (5 ∼ 20% of nodes), where the manipulation advantage is about two times its

size.

5 Case Study: TVCS in Synthetic and Real Networks

Here, we discuss the benefits of TVCS and its relation to network structure for several examples of synthetic and real

networks. We start with the classical deterministic examples of undirected line, ring, and star networks (Figure 5).
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Figure 4: Manipulation of manifest subnetworks in order to obtain an all-manifest optimal TVCS. The horizontal axis

represents the percentage of manifest nodes in the network. In red, we show the minimum size of manipulation needed for the

optimal TVCS to only include manifest nodes, relative to the size of the initial adjacency matrix (both measured by induced

matrix 2-norm). In blue, we depict the optimal (i.e., maximal) value of tr(WK) for the case where the minimal manifest

manipulation is applied, relative to the maximal value of tr(WK) subject to the constraint that all the control nodes are

manifest (the former is with manipulation and without constraints on the control nodes, while the latter has no manipulation

but control node constraints). Results are for 103 random networks of logarithmically-uniform sizes in [101, 103] but otherwise

similar to Figure 3. Markers (circles/squares) represent average values and error bars represent standard error of the mean

(s.e.m). In both cases, the overall adjacency matrix is normalized by its spectral radius for fairness of comparison. We see

that medium-sized manifest subnetworks (5 ∼ 20%) are the hardest yet most fruitful to manipulate.

a a a a a a

(a)

a

aa
a

a

a
a a

a

(b)

a
aa

a

a
a

a

(c)

Figure 5: Simple networks with closed-form 2k-communicabilities. (a) A line network, (b) a ring network, and (c) a star

network. All networks are undirected and have homogeneous edge weights a. The 2k-communicabilities of these networks

are analytically computed (cf. Appendix F), concluding that all networks belong to class I, with the optimal control node

depicted in red in each case (the optimal control node is arbitrary in a ring network due to its symmetry).

Due to their simple structure, the 2k-communicabilities of these networks can be analytically computed in closed

form (cf. Appendix F). Using these results, it follows that for the line and star networks, the optimal control node is

always the center node (or any of the two center nodes if a line has even number of nodes), while the optimal control

node is arbitrary in a ring network. Notice that in all cases, it is the homogeneity of these networks that results in

a single node having the greatest centrality at all scales (cf. Example 4.6 for non-homogeneous star networks that

have scale-heterogeneous central nodes and thus belong to class V).

Next, we analyze the role of TVCS in three classes of probabilistic complex networks that are widely used

to capture the behavior of various dynamical networks. These include the Erdös-Rényi (ER) random networks,

Barabási-Albert (BA) scale-free networks, and Watts-Strogatz (WS) small-world networks. Each network has its

own characteristic properties, and these properties lead to different behaviors under TVCS. The average χ-values

of these networks are computed for various values of n and network parameters (Figure 6). For ER networks, χ

is in general small, and decays with n. This is because ER networks, especially when n is large, are extremely

homogeneous. This homogeneity is further increased during the transmission method, leading to a network matrix

A that is extremely insensitive to the choice of control nodes.

The connectivity structure of BA networks, in contrast, is extremely inhomogeneous, with one (sometimes 2)

highly central nodes and a hierarchy down to peripheral leafs. As one would expect, this implies a small χ-value
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Figure 6: The average χ-value for (a) ER, (b) BA, and (c) WS probabilistic networks. The horizontal axis determines

the size of the network n in all cases, while the vertical axis determines the values of the corresponding parameters for each

network: edge probability p for ER, growth (link attachment) rate ma for BA, and rewiring probability β for WS. After

constructing the unweighted connectivity according to each algorithm (ER, BA, or WS), standard uniformly random weights

are assigned to each edge, which is then converted to A using transmission method (cf. Appendix A). For each value of n

and network parameter over a coarse mesh (∼ 100 points), 100 networks are generated and the average of their χ-value is

computed, which is then smoothly interpolated over a fine mesh (MATLAB csaps).

since the center node has the highest centrality at all scales (Figure 8). However, when the connectivity matrix is

transformed to A using the transmission method, the incoming links to all nodes are made uniform (adding up to 1).

This in turns make the centrality levels of all the nodes comparable, leading to high χ-values observed (notice that

the underlying connectivity structures are still highly inhomogeneous, distinguishing them from the homogeneous

ER networks). Notice that as the growth rate ma is increased, smaller networks tend towards complete graphs and

high χ values shift to larger n.

As our last class of probabilistic networks, WS networks have the broadest range of size-parameter values with

significant χ. As one would expect, χ is low near β = 0, 1, corresponding to regular ring lattice and ER networks,

respectively. For β ∼ 0.2, there is a sufficiently high probability of having multiple nodes that are close to many

rewired links (increasing their centrality), yet there is a low probability that these nodes, and the nodes close to them,

are rewired all alike, resulting in heterogeneous central nodes and high χ-values. This heterogeneity is increased with

n as larger networks have more possibilities of rewiring every edge.

Finally, we used the tools and concepts introduced so far to analyze TVCS in several real-world dynamical

networks (Table 1). These networks are chosen from a wide range of application domains, from neuronal networks

to transportation and social networks. According to the type of dynamics evolving over each network, we have used

either the transmission or induction method to obtain its dynamical adjacency matrix from its static connectivity

(the “C → A” column, cf. Appendix A).

We have computed the χ-value for each network using a variable time horizon K ≤ 50, with the results ranging

from 0 to more than 30% for different networks. These large variations even within each category signify both the

potential benefits of TVCS and the possibility of its redundancy, a contrast that has been pivotal to our discussion.

In particular, four facts about these results worth highlighting. (i) As measured by tr(WK), the majority of networks

tested do not benefit from TVCS, but a few do so significantly. (ii) Despite coming from various domains, the

networks that do significantly benefit from TVCS share scale-heterogeneity as their common qualitative property (cf.

Section 4.1). (iii) Networks with inductive C → A transformation benefit significantly less from TVCS than those

with transmission C → A transformation. (iv) Significantly higher values of χ are expected for all networks if using

λmin(WK) or similar measures for controllability, cf. Appendix B.

In the last column, we have also indicated whether the most local and most global central nodes coincide in each

network. Recall that this is a sufficient but not necessary condition for a network to be in class V (Theorem 4.3 and

Figure 3). Though only sufficient, this simple metric can correctly classify class members of V from I among these

networks, except for the WesternUS power network, for which r(0) = r(K−1) only marginally holds (the dominance

of r(0) is 0) (cf. Figure 3(b)).
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Table 1: Characteristics of the real-world networks studied in the paper

Category Name n |E| Directed C → A χ(%)
r(0) =

r(K − 1)

Dominance of

r(0) (×10−3)
ref.

Neuronal BCTNet fMRI 638 37250 N T 1.8 N N/A [47]

Cocomac 58 1078 Y T 5.5 N N/A [48]

BCTNet Cat 95 2126 Y T 1.9 N N/A [47]

C. elegans 306 2345 Y T 0 Y 0 [49]

Transportation air500 500 5960 N T 22.4 N N/A [50]

airUS 1858 28236 Y T 0 Y 0 [51]

airGlobal 7976 30501 Y T 0 Y 0 [51]

Chicago 1467 2596 N T 0 Y 0 [52,53]

Gene Regulatory E. coli 4053 127544 N T 0 Y 0 [54]

PPI Yeast 2361 13828 N T 0 Y 0 [55]

Stelzl 1706 6207 Y T 0 Y 0 [56]

Figeys 2239 6452 Y T 0 Y 0 [57]

Vidal 3133 12875 N T 0 Y 0 [58]

Power WesternUS 4941 13188 N T 33.7 Y 0 [49]

Food Florida 128 2106 Y T 34.6 N N/A [59]

LRL 183 2494 Y T 27.3 N N/A [60]

Social Facebook group 4039 176468 N I 0.4 N N/A [61]

E-mail 1005 25571 Y I 0 Y 40.5 [62,63]

Southern Women 18 278 N I 0 Y 1.6 [64]

UCI P2P 1899 20296 Y I 0 Y 5.5 [65]

UCI Forum 899 142760 N I 0 Y 2.8 [66]

Freeman’s EIES 48 830 Y I 0 Y 1.4 [67]

Dolphins 62 318 N I 0 Y 0.7 [68]

Trust Physicians 241 1098 Y I 8.8 N N/A [69]

Org. Consult Advice 46 879 Y I 0 Y 0.1 [70]

Org. Consult Value 46 858 Y I 0 Y 1.2 [70]

Org. R&D Advice 77 2228 Y I 6× 10−3 N N/A [70]

Org. R&D Aware 77 2326 Y I 0 Y 0.3 [70]

For each network, we have reported the number of nodes n, number of edges |E| (with each bidirectional edge counted twice),

whether the network is directed, the method used for obtaining dynamical adjacency matrix A from static connectivity C

(A→ C), the χ value (equation (6)), and whether the most local and global central nodes coincide (r(0) = r(K − 1)). Since

the value of χ is a function of K, we have chosen the value of K ≤ 50 that has the largest χ for each network. Detailed

descriptions of these datasets are provided in Appendix H.
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6 Conclusions and Discussion

Despite the breadth and depth of existing literature on the controllability of complex networks and control scheduling,

the significant potential of TVCS has been greatly overlooked. This work strives to explore the advantages of TVCS

in linear dynamical networks and obtaining theoretical and computational relationships between these advantages

and network structure. Using Gramian-based measures of controllability, we showed that TVCS can significantly

enhance the controllability of many but not all synthetic and real networks. This motivated the pursuit of identifying

properties based on network structure that explain when, why, and by how much TVCS is beneficial.

Using the newly introduced notion of 2k-communicability, we showed that the scale-heterogeneity of central nodes

in a network is the main cause and correlate of TVCS advantages. If a network has several distinct central nodes

at different scales, the optimal TVCS involves starting the control from the most global central nodes and gradually

moving towards most local ones as the time horizon is approached. If, on the other hand, a single node acquires the

highest centrality at all scales, optimal TVCS prescribes the sole control of this node over the entire horizon, leading

to optimality of TICS.

A striking finding that defied our expectations is the effect of network dynamics, beyond its raw connectivity

structure, on TVCS. Here, we differentiated between the raw connectivity structure of a network (obtained using

specific field knowledge and measure the relative strength of nodal connections) and its dynamical adjacency matrix

which determines the evolution of network state over time. Depending on the nature of network state, we proposed

two methods, transmission and induction, for obtaining the dynamical adjacency matrix from static connectivity.

The effects of these methods, however, is noteworthy on the benefits of TVCS, even though the underlying network

connectivity is the same (Table 1 and Figure 8). While the transmission method significantly enhances the merit of

TVCS, the induction method depresses it (both compared to raw connectivity). We believe the reason for the former

is the additional homogeneity that the transmission method introduces among the nodes, while the latter is due to

the conversion from continuous to discrete-time dynamics, which enables long-distance connections even over small

sampling times (due to the fact that interactions occur over infinitesimal intervals in continuous time) (cf. Section A

and Figure 7). These results suggest that controllability of network dynamics is not only a function of its structural

connectivity, but also greatly relies on the type of dynamics evolving over the network, an aspect that has received

little attention in the existing literature and warrants future research.

Our discussion so far applies to networks with and without self-loops alike. However, it follows from the results

in Section 4 that self-loops play an important role in TVCS. This is because (i) the self-loop of each node directly

adds to its 2k-communicability for all k, and (ii) the self-loop of each node also contributes indirectly to the 2k-

communicability of its neighbors less than k−1 hops away. As a result, the self-loop of any node has the largest effect

on its own 2k-communicability for all k, but also a lesser effect on the 2k communicability of all other nodes in the

network. This latter effect becomes smaller and limited to higher k for more distant nodes. A clear demonstration

of the effects of self-loops can be seen in Example 4.6, where as the self-loops of the peripheral nodes get stronger,

they gradually become the central nodes in the network, first at local scales (small k) and eventually at all scales.

Further, the focus of our discussion has so far been on single input networks where one node is controlled at

a time, in order to enhance the simplicity and clarity of concepts. Nevertheless, our results have straightforward

generalizations to multiple-input networks (cf. Appendix E). If m denotes the number of control inputs, the optimal

TVCS involves applying these control inputs to the m nodes with the highest centralities at the appropriate scale at

every time instance (i.e., the m nodes with the largest Ri(K − 1 − k) have to be controlled at every time instance

k). It is clear that the additional flexibility due to the additional inputs makes V larger, i.e., more networks have

χ > 0. Nevertheless, this additional flexibility also makes TICS significantly more efficient. Therefore, it is not

immediately clear whether this enlargement of V also entails larger χ for networks with the same size and sparsity.

In fact, increasing m reduces average χ for all the classes of ER, BA, and WS networks (Figure 9), suggesting that

the additional flexibility is more advantageous for TICS than TVCS.

Regardless of the number of inputs (1 or more), an important implicit assumption of TVCS is that this number is

limited, i.e., no more than m nodes can be controlled at every time instance. This may at first seem over-conservative

since TVCS requires, by its essence, the installation of actuators at all (or many) nodes of the network. Therefore,

one might wonder why limit the control to only m nodes at every time instance when all the nodes are ready

for actuation. The answer lies within the practical limitations of actuators. For ideal actuators, distributing the

control energy over as many nodes as possible is indeed optimal. However, this is not possible in many scenarios,
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including when (i) actuators exhibit nonlinear dead-zone behaviors, so that each one requires a sizable activation

energy. In many applications ranging from distributed industrial processes to opinion dynamics in social networks,

nodes cannot be actuated with arbitrarily small amounts of control energy. If Emin is the minimum activation energy

of any actuator, at least mEmin is required for actuation of m nodes at a time. Thus, when Emin is sizable and

n is large, simultaneous actuation of all nodes (m = n) requires a significant amount of control energy which is

often infeasible (notice that the dead-zone behavior of actuators does not violate the linearity assumption in (1)

as one can replace u with v = φ(u), where φ denotes dead-zone nonlinearity); (ii) actuators are geographically

disperse so that precise coordination becomes difficult or time-consuming. A familiar example of this is the social

opinion dynamics in pre-election times during political campaigns, where rallies and speeches by candidates act as

control inputs to the network. Even though all nodes may be actuatable, at most one node can be actuated at

every time; (iii) simultaneous control of proximal nodes results in actuator interference. This is the case in many

biological networks. In neuronal networks, for instance, common control technologies such as TMS do not allow for

simultaneous actuation of all cortical areas due, in part, to electromagnetic interference between multiple sources

of actuation (note that TVCS is still possible by installation and sequential activation of multiple coils at different

locations); and when (iv) actuators are controlled via communication channels with limited capacity, so that only a

small number of devices can be simultaneously operated. This may be the case in industrial applications where large

numbers of geographically distributed actuators are remotely (and centrally) controlled over shared communication

channels with limited bandwidth. In all these scenarios, TVCS has the potential to significantly enhance network

controllability, conditioned on the scale-heterogeneity of the central nodes in the network.

Although the dynamics of all real networks have some degrees of nonlinearity, the analysis of linear(ized) dynamics

is a standard first step in analysis of dynamical properties of complex networks [2–9, 14–17]. This is mainly due to

the fact that stability and controllability of linearized dynamics of a nonlinear network implies the same properties

locally for the original nonlinear dynamics, making linear dynamics a powerful tool in analyzing many dynamical

properties that are in general intractable for nonlinear dynamics. The local validity of linearization, however, is a

main limitation of this work, particularly in networks where the change of state is significant relative to the size of

the domain over which the linearization is valid. For these networks, whether the nonlinearity enhances or decreases

the benefits TVCS with respect to its linearization is in general dependent on the type of nonlinearity. However,

for saturation nonlinearities, being perhaps the most widespread, we expect TVCS to be more beneficial than linear

counterparts. This is because in TICS all the control input is injected through a fixed node, requiring the state of

that node to potentially undergo large over- and undershoots in order to convey sufficient input to the rest of the

network. Saturation clearly prevents this from happening, further limiting the scope of TICS. The generalization of

this work to nonlinear dynamics with saturation and linear time-varying dynamics (namely, A(k) instead of A in

equation (1)) is a warranted next step for future exploration of the role of TVCS in general nonlinear networks.
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Appendix

A Obtaining Dynamical Adjacency Matrix from Static Connectivity

A standard starting point for the analysis of network dynamics of the form (1) is the assumption that the network

adjacency matrix A is known. While this is a valid assumption (as the construction of A is itself the subject of vast

research in network identification and corresponding field sciences), care should be taken in how one interprets raw

network connectivity matrices. Usually, the network structure is described not by its dynamic adjacency matrix A

(which determines the evolution of network state according to (1)) but rather by its static connectivity matrix C

(our implicit assumption is that each node has a well-defined state that evolves over time through network dynamics,

so our discussion is not applicable to completely static networks). While for any i, j ∈ N , aij describes the impact of

xj on xi over one time step (relative to xj), cij often describes the strength of the link (i, j) in arbitrary units (e.g.,

number of synapses between two neurons, capacity of high-voltage lines between two generators, or number of seats

on a flight). In particular, multiplying C by a positive constant results in an equivalent description of the network

structure, yet multiplying A by a constant significantly alters network dynamics. Here, we outline two methods for

obtaining A from C, and describe example domains where each method seems more relevant. Consider an arbitrary

link (i, j) ∈ E .

• Transmission: This method applies to dynamical networks where at each time step, the value of the state of

node i is itself affected (reduced) as a result of interaction with neighbor node j. Here, the state of each node

corresponds to a physical quantity that is transmitted to its neighbors in order to affect their states. Neuronal,

transportation, food, gene regulatory, protein-protein interaction, and power networks are all examples of this

type of interaction. If the sampling time is chosen long enough such that “current” state of a node is completely

diffused through the network until the next time step, we can obtain A from C using

A = CD−1C,in,

where DC,in is the augmented in-degree matrix of C (a diagonal matrix with the sum of the columns of C on its

diagonal, except where the sum of a column of C is zero, in which case the corresponding diagonal element of

DC,in is 1). This means that over each time step, xi is transmitted to the in-neighbors of node i proportionally

to their connectivity strength, if i has any in-neighbors, and preserved otherwise.

• Induction: This method is appropriate for networks in which nodal states are not physical quantities and

thus do not reduce as a result of network interactions. Opinion or epidemic dynamics evolving over social

and/or trust networks have such properties. Here, in order to compute A from C, we start from the underlying

continuous-time dynamics ẋ = (−αI +C)x where α > 0 is chosen such that −αI +C is stable (Hurwitz), and

then discretize it to obtain (1), where

A = e(−αI+C)Ts ,

and Ts is the sampling time [24, eq. (4.17)]. From the expansion of matrix exponential (eM = I +M + M2

2 +
M3

3! + · · · ), we see that A does not inherit the sparsity pattern of C (and G) since nodes interact in continuous

time. However, if ‖(−αI+C)2T 2
s /2‖ � ‖(−αI+C)Ts‖, then the sparsity pattern of C is almost preserved in A.

Therefore, in this work we use Ts = γind/‖αI + C‖ for the induction method with γind = 0.2 unless otherwise

stated. Further, Figure 7 shows the effect of γind on the value of χ when using the induction method. As

expected, the larger γind, the larger Ts, the closer A gets to limk→∞Ak, the more similar 2k-communicabilities

for different k become, and the smaller χ becomes.

Unless otherwise stated, we use the transmission method in this work. Nevertheless, it is to be noted that the

method used for obtaining A from C can have profound effects on network controllability and should thus be chosen

carefully. Figure 8 illustrates this concept by showing the mean χ-value of ER, BA, and WS networks for a number

of different choices for this transformation.
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Figure 7: The average value of χ for the induction method and varying values of γind (corresponding to varying discretization

step sizes Ts). Each point represents the average value of χ for 50 realizations of ER networks with n = 100 and p = 0.2 and

vertical bars (when visible) show one standard error of the mean (s.e.m.). For each network, the value of K ≤ 103 that gives

the largest value of χ is chosen. The average value of χ drops with γind, showing the effect of discretization on χ and the merit

of TVCS. The red point corresponds to γind = 0.2 used throughout this work.

B Comparison Between Gramian-based Measures of Controllability

In this section, we first derive and elaborate on the relationship between the eigenvalues of the Gramian and control

energy. Then, we discuss the different Gramian-based measures of controllability and their respective properties.

Assume that WK is invertible (the network dynamics (1) is controllable). Then, for any xf ∈ Rn, among the

(usually infinitely many) choices of {u(k)}K−1k=0 that take the network from x(0) = 0 to x(K) = xf , the one that has

the smallest energy is given by [24, Thm 6.1]

u∗(k) = b(k)T (AT )K−1−kW−1K xf , k ∈ {0, . . . ,K − 1}.

Similar expression holds for arbitrary x0, but it is customary to evaluate control energy starting from the network’s

unforced equilibrium x = 0. It is immediate to verify that this gives the minimal energy
∑K−1
k=0 u∗2(k) = xTfW

−1
K xf .

Therefore, the unit-energy reachability set is given by

{xf ∈ Rn | xTfW−1K xf ≤ 1}.

Since W−1K is positive definite, this is a hyper-ellipsoid in Rn, with axes aligned with the eigenvectors of WK . Let

(λi, vi) be an eigen-pair of WK and xf = cvi. Then,

xTfW−1K xf ≤ 1⇔ c2λ−1i ≤ 1⇔ |c| ≤ λ1/2i ,

showing that the axis lengths of this hyper-ellipsoid are given by the square roots of the eigenvalues ofWK . Intuitively,

the “larger” the reachability hyper-ellipsoid, the “more controllable” the network dynamics (equation (1)) are. To

quantify how large the hyper-ellipsoid is, several measures based on the eigenvalues ofWK have been proposed in the

literature [6,8,71]. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues ofWK . The most widely used Gramian-based

measures are

• tr(WK) = λ1 + λ2 + · · ·+ λn,

• tr(W−1K )−1 = (λ−11 + λ−12 + · · ·+ λ−1n )−1,

• det(WK) = λ1λ2 · · ·λn,

• λmin(WK) = λn.

It is clear from these relationships that all these measures, except for tr(WK), approach 0 if λn → 0. This property,

i.e., the behavior of a measure as λn → 0, is the most critical difference between tr(WK) and the other three measures.

For the rest of this discussion, let fc(·) be any of tr((·)−1)−1, det(·), or λmin(·). Since the network is (Kalman-)
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Figure 8: Average value of χ for different methods of obtaining dynamical adjacency matrix A from static connectivity C.

The plots show the effect of these methods on TVCS. The details on how to obtain the plots are similar to Figure 6 in

the main text. All matrices are normalized by their spectral radius for uniformity and comparison. The plots show a sizable

enhancement (respectively depression) of χ by the transmission (respectively induction) method compared to raw connectivity,

except for Erdös-Rényi networks whose χ maintains a robust pattern irrespective of the method of obtaining the dynamic

adjacency matrix A from the raw static connectivity C.
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controllable if and only if λn > 0, having fc(WK) > 0 guarantees network controllability while tr(WK) > 0 does not.

This is a major disadvantage of tr(WK) for small networks, where controllability in all directions in state space is

both achievable and desirable. As the size of the network grows, however, λn typically decays exponentially fast to

zero [6], irrespective of network structure. This exponential decay of worst-case controllability is even evident in the

example network of Figure 1(a) comprising of only n = 5 nodes.

Computationally, this means that λn (and in turn fc(WK)) can quickly drop below machine precision as n grows.

In fact, for K = 10 and double-precision arithmetics, this happens for n ∼ 15, making the TVCS (equation (5)) with

f = fc numerically infeasible (as it involves the comparison of fc(WK) for different {bk}K−1k=0 , which may be zero up

to machine accuracy). Further, notice that the computational complexity of TVCS for f = fc grows as nK due to

the NP-hardness of TVCS, enforcing the use of sub-optimal greedy algorithms even if machine precision was not a

concern (see [16] and the references therein for details).

In addition to the computational aspects of TVCS, the exponential decay of λn also has theoretical implications

for the choice of f . When using f = fc, TVCS seeks to assign the control nodes {ιk}K−1k=0 such that controllability

is maintained in all directions in the state space, with special emphasis on the hardest-to-reach directions. The use

of tr(WK), on the other hand, involves maximizing the average of Gramian eigenvalues, which usually strengthens

the largest eigenvalues and spares the few smallest ones. In large networks, the latter is in general more realistic as

controllability is hardly needed in all n directions of the state space. As discussed in detail in [72], this seems to be

the case in the resting-state structural brain networks: this paper shows that tr(WK) is maximized by controlling

specific brain regions that have long been identified as the structural “core” or “hubs” of the cerebral cortex, while

the Gramian is itself close to singular.

Further, due to the same strong dependence of fc(WK) but not tr(WK) on λn, we often observe that tr(WK)

is significantly less sensitive to the choice of the control nodes {ιk}K−1k=0 , leading to orders of magnitude smaller χ

than that of fc(WK) (Figure 1(b)). This means that V is only a small subclass of networks that benefit from TVCS

measured by fc. This also has a clear interpretation, since maintaining controllability in all directions in the state

space requires a broader distribution of the control nodes that facilitates the reach of the control action {u(k)}K−1k=0

to all the nodes in the network.

Finally, we highlight the need for development and analysis of measures that are neither strongly reliant on the

least controllable directions (such as fc(WK)) nor mainly ignore them (such as tr(WK)). Two such candidates are:

• tr(CTWKC) where C is a matrix (or vector) with columns that point towards some particular directions of

interest in the state space. This measure is a modular set function similar to tr(WK) [8], but the extensions

of the notion of 2k-communicability and the relationship between class I/V networks and scale-heterogeneity

are unclear;

• appropriate approximations of log(fc(WK)). While computing the exact value of log(fc(WK)) is subject to the

same issues as fc(WK) itself, approximations can be used that provide a mitigation of the effects of the smallest

eigenvalues of WK . In the case of fc(·) = det(·), e.g., various algorithms have been proposed to approximate

log det of large matrices, see, e.g. [73–79]. These algorithms, however, are predominantly designed with the

aim of reducing the computational complexity of determinant calculation and not mitigation of the effects of

its high condition number, and often rely on assumptions (such as sparsity or knowledge of lower and upper

bounds on matrix eigenvalues) that do not apply to WK . Thus, development of appropriate approximations of

log(fc(WK)) constitutes a warranted direction for future research.

C Relationships Between 2k-Communicability, Degree, and Eigenvec-

tor Centrality

The notion of 2k-communicability introduced in this article has close connections with the degree and eigenvector

centrality in the limit cases of k = 1 and k → ∞, respectively. Recall that the out-degree centrality and 2-
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communicability of a node i ∈ N are defined as, respectively,

douti =

n∑
j=1

aji,

Ri(1) =

n∑
j=1

a2ji.

Therefore, if the network is unweighted (i.e., all the edges have the same weight), then Ri(1) ∝ douti , so 2-

communicability and out-degree centrality result in the same ranking of the nodes (in particular, r(1) is the node

with the largest out-degree). As edge weights become more heterogenous, these two rankings become less correlated,

with 2-communicability putting more emphasis on stronger weights.

A similar relation exists between∞-communicability and left eigenvector centrality, as we show next. Let v1, u1 ∈
Rn be the right and left Perron-Frobenius eigenvectors of A, respectively, normalized such that vT1 v1 = uT1 v1 = 1

(notice that u1 has unit inner product with v1 but does not in general have unit length). Since the network is by

assumption strongly connected and aperiodic, we have

lim
k→∞

( 1

ρ(A)
A
)k

= v1u
T
1 . (14)

Thus for any i ∈ N ,

lim
k→∞

( 1

ρ(A)

)2k
Ri(k) = lim

k→∞

( 1

ρ(A)

)2k(
(Ak)TAk

)
ii

= (u1v
T
1 v1u

T
1 )ii = u21,i.

Given that dividing Ri(k) by ρ(A)2k for all i does not change the ranking of nodes, we define Ri(∞) = u21,i for all

i. Since squaring non-negative numbers preserves their order, nodal rankings based on ∞-communicability and left

eigenvector centrality are identical.

D Nodal Dominance

Among the networks where the nodes with the greatest Ri(1) and Ri(∞) coincide (i.e., r(0) = r(∞)), there is a

higher chance (than in general) that any network belongs to class I. However, about half of these networks still

belong to class V, meaning that there exists 1 < k < ∞ such that r(k) 6= r(0). To assess the importance of this

time-variation of optimal control nodes, we define the dominance of the node r(0) (over the rest of the network) as

follows. Let r′(0) be the index of the node with the second largest Ri(1) (largest after removing r(0)). Similarly, let

r′(∞) be the index of the second largest Ri(∞). We define

Dominance of r(0) = min
{Rr(0)(0)−Rr′(0)(0)

Rr(0)(0)
,
Rr(0)(∞)−Rr′(∞)(∞)

Rr(0)(∞)

}
.

A small dominance indicates that another node has very similar value Ri(0) or Ri(∞) to r(0), while a large dominance

is an indication of a large gap between Rr(0)(k) and the next largest Ri(k) for both k = 0 and k →∞.

E Networks with Multiple Inputs

Consider a multiple-input network, namely, a network in which m ≥ 1 nodes are controlled at every time step.

Let ι1k, . . . , ι
m
k ∈ N denote the indices of the control nodes at every time k, and ιk = {ι1k, . . . , ιmk }. Then, the

corresponding TICS and TVCS are defined as

max
ι0,...,ιK−1∈N

f(WK) (15a)

s.t. ι0 = · · · = ιK−1 (15b)
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and

max
ι0,...,ιK−1∈N

f(WK), (16)

respectively. Accordingly, a multiple-input network is said to belong to class I if the solution of (16) satisfies (15b),

and to class V otherwise.

Clearly, for a multiple-input network to belong to class V, any of the first m largest of {Ri(k)}ni=1 should change

over time, which is often implied by (but does not imply) a change in r(k). Therefore, the condition of Theorem 4.3

can still be used as a tight proxy for networks in V, but is too conservative and can be relaxed as follows: assume

that A is irreducible, aperiodic, and diagonalizable. Let {rdj ∈ Rn | j ∈ J d} be the set of nodes with the m highest

2-communicabilities, where the index set J d accounts for different choices of rankings if there are nodes with equal

2-communicabilities. Similarly, let {rcj ∈ Rn | j ∈ J c} be the set of nodes with the m highest centralities. Then, if

rdj1 6= rcj2 for all (j1, j2) ∈ J d × J c, the network belongs to class V when K is sufficiently large. The proof of this

statement is a straightforward generalization of the proof of Theorem 4.3 and thus omitted.

Similarly, the three conditions in Theorem 4.4 can be generalized to undirected multiple-input networks as follows

(with similar proofs as the proof of Theorem 4.4):

(i) For all i ∈ {1, . . . ,m},

1− wi1∑
`≤m+1, 6̀=i+1 w`1

≤ |λ1| − |λ2|
|λ1| − |λn|

.

This condition can be simplified, at the expense of being more conservative, to 1−wi1

iwi1
≤ |λ1|−|λ2|
|λ1|−|λn| , for all

i ∈ {1, . . . ,m},

(ii) for all i ∈ {1, . . . ,m}, wi2 = 1− wi1,

(iii) the network has three or fewer nonzero eigenvalues with different absolute values and

R1(1) ≥ R2(1) ≥ · · · ≥ Rm(1) ≥ Ri(1),

for all i ∈ {m+ 1, . . . , n}.

Finally, Figure 9 illustrates the effect of m on χ-values of ER, BA, and WS networks discussed in the main text.

F 2k-Communicabilities of Simple Networks

As mentioned in the main text, cf. Figure 5, the simple structure of homogeneous undirected line, ring, and star

networks allows us to compute their 2k-communicabilities analytically in closed form, as derived in the following.

Throughout, Z denotes the set of integers and for a, b ∈ Z, a |b denotes that a divides b.

Proposition F.1. (2k-communicabilities of line networks). Consider a line network of n nodes with uniform

link weights a (and no self-loops). Then, for i ∈ N and k ∈ N,

Ri(k)=a2k
∑
p∈I

[(
2k

k+p(n+1)

)
−
(

2k

k+p(n+1)−i

)]
, (17)

where I = {−d k
n+1e, . . . , d

k
n+1e} and

(
n
k

)
, 0 if k /∈ {0, . . . , n}. In particular, if i ≤ dn2 e and k ≤ dn2 e − 1,

Ri(k) = a2k
[(

2k

k

)
−
(

2k

k − i

)]
. (18)

Proof. From [80, Lemma 1.77], we have

λj = 2a cos
jπ

n+ 1
and wij ∝ sin2 ijπ

n+ 1
,

23
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Figure 9: Average value of χ for networks with increasing number of inputs. The plots show the effect of multiple inputs on

TVCS. The details on how to obtain the plots are similar to Figure 6 in the main text. The dynamic adjacency matrix A is

obtained from the raw static connectivity C using the transmission method in all cases. These plots show a slight depression

in the benefit of TVCS as the number of control nodes grows, despite the fact that networks with more control nodes have a

higher probability of belonging to V (namely, having χ > 0).
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for i, j ∈ {1, . . . , n} where ∝ accounts for normalization. In order to normalize the eigenvectors, we use the identities

sin2 α = 1
2 (1− cos 2α) and

n∑
j=1

cos
2sjπ

n+ 1
= −1 for all s6 | n+ 1, (19)

to get wij = 2
n+1 sin2 ijπ

n+1 for all i, j ∈ {1, . . . , n} (one can show (19) by multiplying and dividing the LHS by

sin sπ
n+1 and using the identity 2 sinα cosβ = sin(α+ β) + sin(α− β) for each term). Thus, by substitution, we have

Ri(k) = 2a2k

n+1

∑n
j=1 τ

2
ijk where

τijk = 2k sin
ijπ

n+ 1
cosk

jπ

n+ 1
.

By using the identity 2 sinα cosβ = sin(α+ β) + sin(α− β), k times and collecting terms, we get

τijk =

k∑
`=0

(
k

`

)
sin

(i+ k − 2`)jπ

n+ 1
.

Hence, by squaring τijk and substituting it in Ri(k), and using the identity 2 sinα sinβ = cos(α − β) − cos(α + β),

we get

Ri(k) =
a2k

n+ 1

k∑
`,r=0

(
k

`

)(
k

r

)[ n∑
j=1

cos
2(`− r)jπ
n+ 1

−
n∑
j=1

cos
2(i+ k − `− r)jπ

n+ 1

]
. (20)

However, by (19), the two sums in (20) cancel each other unless `− r |n+ 1 or i+ k − `− r |n+ 1 (the cases where

both of these happen need not be excluded since they automatically cancel). Thus,

Ri(k) = a2k

[∑
I1

(
k

`

)(
k

r

)
−
∑
I2

(
k

`

)(
k

r

)]
, (21)

where

I1 = {(`, r) ∈ {0, . . . , k}2 | `− r |n+ 1},
I2 = {(`, r) ∈ {0, . . . , k}2 | i+ k − `− r |n+ 1}.

Defining p = n+1
`−r in the first and p = i+k−`−r

n+1 in the second sum in (21), we get

Ri(k) = a2k
∑
p∈I

[
k∑
`=0

(
k

`

)(
k

`−p(n+1)

)
−

k∑
`=0

(
k

`

)(
k

`+p(n+1)−i

)]
, (22)

where we have used the identity
(
k
s

)
=
(
k
k−s
)
. Equation (17) then follows by applying the formula

∑k
`=0

(
k
`

)(
k
`±s
)

=(
2k
k±s
)

[81, Eq. 6.69-70] to each of the two sums in (22). To get (18), note that if i ≤ dn2 e and k ≤ dn2 e − 1, then the

only nonzero term in (17) is the one corresponding to p = 0.

According to this result, in the case of no self-loops, the value of Ri(k) increases with i until i = dn2 e (i.e., the

middle node) for k ≤ dn2 e−1 (this can be observed from the expression (18)). For general k, it can be shown that the

value of the sum in (17) for Ri(k) is strongly dominated by the summand corresponding to the index p = 0, which

increases with i until i = dn2 e and decreases afterwards. Thus, the optimal control node corresponds always

to (one of) the center node(s), i.e., b∗(k) = edn2 e for all k. If nodes have uniform self-loops (i.e., self-loops all

with the same weight), Ri(k) can no longer be computed analytically but simulations show the exact same behavior;

Proposition F.2. (2k-communicabilities of ring networks). Consider a ring network of n nodes and uniform

link weights a (with no self-loops). Then, for i ∈ N and k ∈ N,

Ri(k) =
(2a)2k

n

[
1 + 2

dn2 e−1∑
j=1

cos2k
(2jπ

n

)
+ δEn

]
, (23)

where δEn equals one if n is even and zero otherwise.
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Proof. From [80, Lemma 1.77], we have λj = 2a cos 2jπ
n and (after normalization of eigenvectors),

wij =


2
n cos2 2(i−1)jπ

n if 1 ≤ j < n
2 ,

2
n sin2 2(i−1)(n−j)π

n if n
2 < j < n,

1
n if j = n, or n ∈ Z even and j = n

2 ,

for i, j ∈ {1, . . . , n}. Note that to normalize the eigenvectors, we follow a similar procedure to the one described in

the proof of Lemma F.1 (setting s = 2i and substituting n by n− 1 in (19)). The result then follows by substituting

these expressions in Ri(k).

We can infer from the preceding result that without self-loops, the value of Ri(k) is independent of i (as shown

by (23)) for a uniform ring network, so the optimal control node is arbitrary for all k. Similar result can be

proved analytically if the nodes have uniform self-loops.

Proposition F.3. (2k-communicabilities of star networks). Consider a star network given by

A =

[
lc aT

a lpIn−1

]
, (24)

where a ∈ Rn−1 contains the link weights between the center node and peripheral nodes. Then

R1(k) =
(λ1 − lp)2

(λ1 − lp)2 + ‖a‖2
λ2k1 +

(lp − λ2)2

(lp − λ2)2 + ‖a‖2
λ2k2 ,

Ri(k) =
a2i−1

(λ1 − lp)2 + ‖a‖2
λ2k1 +

a2i−1
(lp − λ2)2 + ‖a‖2

λ2k2 +
‖a‖2 − a2i−1
‖a‖2

l2kp , (25)

for all k ∈ N ∪ {0} and i ∈ {2, . . . , n}, where

λ1,2 =
lc + lp ±

√
(lc − lp)2 + 4‖a‖2

2
. (26)

Proof. Using the formula ∣∣∣∣ P Q

R S

∣∣∣∣ = (P − 1)|S|+ |S −RQ|,

for scalar P , row vector Q, column vector R, and square matrix S, and some algebra, we get |sIn −A| =
(
s2 − (lc +

lp)s+ lclp − ‖a‖2
)
(s− lp)n−2, so the eigenvalues of A are given by

λ3,...,n = lp, (27)

and λ1,2 in (26). Note that we may or may not have |λ1| ≥ · · · ≥ |λn| as the order depends on the values of the

parameter. By solving (A− λjIn)vj = 0 for j = 1, 2, and then using the orthogonality of eigenvectors, we get

v1,2 ∝
[
λ1,2 − lp

a

]
, (vj)1 = 0 ∀j ∈ {3, . . . , n}, (28)

where ∝ accounts for normalization. The result then follows by substituting (26)-(28) into Ri(1) =
∑
j v

2
ijλ

2
j

separately for i = 1 and i ≥ 2, and simplifying.

Using this result, if all self-loop weights are the same (lc = lp in (24)), then R1(1) > Ri(1) for all i ≥ 2 from (12).

Therefore Theorem 4.4(iii) implies that the center node is the optimal control node at all times.
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G Additional Lemmas and Proofs

In this section, we formulate and prove a number of lemmas that underlie the main results of this paper and also

provide the proofs of the main results presented in the main text. Throughout, C denotes the set of complex numbers

and for M ∈ Cn×n, M and M∗ denote its complex conjugate and complex conjugate transpose, respectively, and

M−∗ = (M∗)−1. Further, for λ ∈ Rn and ` ∈ N ∪ {0}, λ` , [λ`1 · · · λ`n]T and |λ| , [|λ1| · · · |λn|]T .

Proof of Theorem 4.3. Define

U = V −?.

Notice that the columns of U are the left eigenvectors of A, with the same order as in Λ and V . Since for any k,

(Ak)TAk = (Ak)∗Ak = (V ΛkU∗)∗V ΛkU∗,

it follows that for any i and k,

Ri(k) =
(
(Ak)TAk

)
ii

= (V ΛkU∗i,:)
∗V ΛkU∗i,: = ‖V ΛkU∗i,:‖22,

where Ui,: denotes the ith row of U . For simplicity, define c(i,k) = V ΛkU∗i,: ∈ Cn. It is straightforward to check that

c
(i,k)
` =

n∑
j=1

v`juijλ
k
j , ` ∈ {1, . . . , n}

so

Ri(k) =

n∑
`=1

∣∣c(i,k)`

∣∣2 =

n∑
`=1

c
(i,k)
` c

(i,k)
` =

n∑
`=1

n∑
j=1

n∑
m=1

v`jv`muijuimλ
k
jλ

k

m

=

n∑
j,m=1

(
n∑
`=1

v`jv`muijuim

)
︸ ︷︷ ︸

β
(j,m)
i

λkjλ
k

m.

Dividing both sides by λ2k1 and taking the limits as k → ∞, we see that for all i, β
(1,1)
i = u2i1 = Ri(∞) (notice

that ui1 ∈ R for all i since λ1 ∈ R>0 according to the Perron-Frobenius Theorem [21, Fact 4.11.4]). Choose

r(1) ∈ arg maxiRi(1) and r(∞) ∈ arg maxiRi(∞). The network belongs to class V if for some k > 1,

Rr(∞)(k) > Rr(1)(k)⇔ Rr(∞)(∞)λ2k1 +
∑

(j,m) 6=(1,1)

β
(j,m)
r(∞) λ

k
jλ

k

m > Rr(1)(∞)λ2k1 +
∑

(j,m)6=(1,1)

β
(j,m)
r(1) λ

k
jλ

k

m

⇔
[
Rr(∞)(∞)−Rr(1)(∞)

]
λ2k1 >

∑
(j,m)6=(1,1)

[
β
(j,m)
r(1) − β

(j,m)
r(∞)

]
λkjλ

k

m

(a)⇐
[
Rr(∞)(∞)−Rr(1)(∞)

]
λ2k1 > λk1 |λ2|k

∣∣∣∣∣∣
∑

(j,m) 6=(1,1)

β
(j,m)
r(1) − β

(j,m)
r(∞)

∣∣∣∣∣∣
⇔
[
Rr(∞)(∞)−Rr(1)(∞)

]
λ2k1 > λk1 |λ2|k

∑
(j,m)6=(1,1)

∣∣∣β(j,m)
r(1)

∣∣∣+
∣∣∣β(j,m)
r(∞)

∣∣∣
⇐
[
Rr(∞)(∞)−Rr(1)(∞)

]
λk1 > |λ2|k · 2 max

i∈{1,...,n}

n∑
j,m=1

∣∣∣β(j,m)
i

∣∣∣ ,
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where in (a) we have used the fact that |λjλm| ≤ λ1|λ2| for any (j,m) 6= (1, 1). Now, using the definition of β
(j,m)
i ,

n∑
j,m=1

∣∣∣β(j,m)
i

∣∣∣ ≤ n∑
j,m=1

n∑
`=1

|v`j ||v`m||uij ||uim|

=

n∑
j,m=1

|uij ||uim|

(
n∑
`=1

|v`j ||v`m|

)
(b)

≤
n∑

j,m=1

|uij ||uim| ‖V:,j‖2︸ ︷︷ ︸
1

‖V:,m‖2︸ ︷︷ ︸
1

= ‖Ui,:‖21
≤ ‖U‖2∞,

where (b) follows from the Cauchy-Schwarz inequality. Thus,

Rr(∞)(k) > Rr(1)(k)⇐
[
Rr(∞)(∞)−Rr(1)(∞)

]
λk1 > |λ2|k · 2‖U‖2∞

⇔ k >
log 2‖U‖2∞ − log

[
Rr(∞)(∞)−Rr(1)(∞)

]
log λ1 − log |λ2|

.

Therefore, the result follows by choosing K > K̄, where K̄ = d log 2‖U‖2∞−log[Rr(∞)(∞)−Rr(1)(∞)]
log λ1−log |λ2| e.

The following lemma will be useful in the proof of Theorem 4.4.

Lemma G.1. Let W ∈ Rn×n be a doubly-stochastic matrix and γ ∈ Rn≥0 be such that γ1 ≥ · · · ≥ γn. If 1−w11

w11
≤

γ1−γ2

γ1−γn , then 1 ∈ arg max1≤i≤n (Wγ)i.

Proof. Note that we have

1− w11

w11
≤ γ1 − γ2
γ1 − γn

⇔ (γ1 − γ2)w11 ≥ (γ1 − γn)(1− w11)

⇔ γn + w11(γ1 − γn) ≥ γ2 + (1− w11)(γ1 − γ2)

⇒ ∀i ≥ 2 γn + w11(γ1 − γn) ≥ γ2 + wi1(γ1 − γ2),

where the last implication is because wi1 ≤ 1 − w11 for all i ∈ {1, . . . , n}. The last inequality can be equivalently

expressed, for any i ∈ {2, . . . , n}, as

w11γ1 + (1− w11)γn ≥ wi1γ1 + (1− wi1)γ2,

which, given that γn ≤ γj ≤ γ2 for all j ∈ {2, . . . , n}, implies

w11γ1 +

n∑
j=2

w1jγj ≥ wi1γ1 +

n∑
j=2

wijγj ,

for any i ∈ {2, . . . , n}. This can be equivalently written as

n∑
j=1

w1jγj ≥
n∑
j=1

wijγj ⇔ (Wγ)1 ≥ (Wγ)i,

completing the proof.

Proof of Theorem 4.4. For convenience, let λ = [λ1 · · · λn]T . After some algebraic manipulations, one can show

that

Ri(k) = (A2k)ii =

n∑
j=1

v2ijλ
2k
j = (Wλ2k)i. (29)
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The assumption that node 1 has the largest eigenvector centrality is equivalent to the largest element of the first

column of W being w11, i.e.,

w11 = max
1≤i≤n

wi1, (30)

or, also equivalently, r(∞) = 1. This can always be realized by a permutation of the rows of W achieved by relabeling

the node with the largest centrality as node 1 (note that relabeling the nodes only permutes the rows of W and not

its columns. The order of its columns is arbitrary and corresponds to the order of the diagonal elements of Λ).

The claim of the theorem is trivial in all cases for k = 0. Under condition (i), for k = 1, we have

λ21 − λ22
λ21 − λ2n

=
|λ1| − |λ2|
|λ1| − |λn|

|λ1|+ |λ2|
|λ1|+ |λn|

≥ |λ1| − |λ2|
|λ1| − |λn|

≥ 1− w11

w11
.

For k ≥ 2, using the above inequality, we have

λ2k1 − λ2k2
λ2k1 − λ2kn

=
λ21 − λ22
λ21 − λ2n

λ2k−21 + · · ·+ λ2k−22

λ2k−21 + · · ·+ λ2k−2n

≥ 1− w11

w11
.

Thus, the result follows from Lemma G.1.

Under condition (ii), for any k ≥ 1,

1 ∈ arg max
1≤i≤n

Ri(k)⇔
n∑
j=1

w1jλ
2k
j ≥

n∑
j=1

wijλ
2k
j

⇔ w11λ
2k
1 + (1− w11)λ2k2 ≥

n∑
j=1

wijλ
2k
j

⇐ w11λ
2k
1 + (1− w11)λ2k2 ≥ wi1λ2k1 + (1− wi1)λ2k2

⇔ (w11 − wi1)(λ2k1 − λ2k2 ) ≥ 0,

where the last inequality is always true (cf. equation (30)).

Finally, under condition (iii), first consider the case when |λ1| > |λ2|. By contradiction, assume Ri(k) > R1(k)

for some i ∈ {2, . . . , n} and k ≥ 2. Since |λ1| > |λi| for all i ∈ {2, . . . , n}, there exists a sufficiently large k

where R1(k) > Ri(k) (recall our node labeling convention in (30)). Note that it is not necessary for k to be less

than K. Thus, R1 and Ri swap orders at least 2 times. However, since A has (at most) three distinct nonzero

eigenvalues, [82, Theorem 1] implies that R1 and Ri can swap orders at most once, which is a contradiction. On the

other hand, if |λ1| = |λ2|, then each Ri is essentially the sum of at most two distinct exponential functions and thus,

using [82, Theorem 1] again, the order of all Ri’s remains unchanged for all k, yielding the result.

Proof of Theorem 4.5. We first prove the first part of the theorem for general (not necessarily symmetric) A0

and E. Recall that for k ∈ {0, . . . ,K − 1}

r(k) = arg max
i∈N

Ri(k) = arg max
i∈N

(
((A+ αE)k)T (A+ αE)k

)
ii

(a)
= arg max

i∈N

(
((α−1A+ E)k)T (α−1A+ E)k

)
ii
,

where (a) holds because the maximizer of a set is invariant to the scaling of all the elements of the set by a constant.

Using limα→∞ α−1A+ E = E and the continuity of polynomials, we get

lim
α→∞

Ri(k) = R̃i(k),

where R̃i denotes the 2k-communicabilities of a node i in the additive network E. Since E is not acyclic, powers of

E never vanish, and thus

∀k ∈ {0, . . . ,K − 1} ∃i ∈ {1, . . . , n1} R̃i(k) > 0,
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while R̃i(k) = 0 for i ∈ {n1 + 1, . . . , n} and all k. Therefore, for any k ∈ {0, . . . ,K − 1}, there exists ᾱk > 0 such

that

r(k) ∈ {1, . . . , n1},

for α > ᾱk. The claim follows by taking ᾱ = maxk∈{0,...,K−1} ᾱk.

Now, assume A0 and E are symmetric. As before, let λ = [λ1 · · · λn]T ∈ Rn and V ∈ Rn×n be the vector of

eigenvalues (with |λ1| ≥ · · · ≥ |λn|) and the matrix of eigenvectors of A, respectively, and W be the element-wise

square of V . Recall that this gives

Ri(k) = (A2k)ii =

n∑
j=1

v2ijλ
2k
j = (Wλ2k)i.

Let i∗ ∈ {1, . . . , n1} be the node with the greatest eigenvector centrality in E and γ ∈ Rn be any vector such that

γ1 ≥ · · · ≥ γn ≥ 0. Fix i ∈ {n1 + 1, . . . , n} arbitrarily and let r ≤ n1 be the rank of E. Using the inequalities

n∑
j=1

wi∗jγj ≥ wi∗1γ1,

r∑
j=1

wijγj ≤ γ1
r∑
j=1

wij ,

n∑
j=r+1

wijγj ≤ γr+1,

it follows that (Wγ)i∗ > (Wγ)i if

wi∗1γ1 > γ1

r∑
j=1

wij + γr+1. (31)

Note that if (31) holds for γ = |λ|, then it holds for γ = λ2k for any k ≥ 1. This is because

wi∗1λ
2k
1 = |λ1|2k−1 · wi∗1|λ1| > |λ1|2k−1

(
|λ1|

r∑
j=1

wij + |λ|r+1

)
> λ2k1

r∑
j=1

wij + λ2kr+1.

Therefore, our proof strategy is to find α such that (31) holds for γ = |λ| if α > α. To this end, let λ̃ = [λ̃1 · · · λ̃n]T ∈
Rn and Ṽ ∈ Rn×n be the vector of eigenvalues (with |λ̃1| ≥ · · · ≥ |λ̃n|) and the matrix of eigenvectors of E,

respectively, and W̃ be the element-wise square of Ṽ . Note that W̃ has the structure

W̃ =

[
? 0

0 ?

]
(32)

}
n1}
n−n1

{n1 {n−n1

.

In the following, we bound λ and V using perturbation theory of eigenvalues and eigenvectors. For simplicity of

exposition, we only deal with the case where the r nonzero eigenvalues of E are all distinct (the proof for the general

case proceeds along the same lines but is more involved).

To bound the eigenvalues in λ, let πA : {1, . . . , n} → {1, . . . , n} be a permutation that re-orders the eigenvalues

of A based on their signed value, i.e., λπA(1) ≥ λπA(2) ≥ · · · ≥ λπA(n). Define πE similarly for E (i.e., such that

λ̃πE(1) ≥ λ̃πE(2) ≥ · · · ≥ λ̃πE(n)). By Weyl’s Theorem [83, Thm 4.3.1],

|λπA(j) − αλ̃πE(j)| ≤ ρ(A0), (33)

for all j ∈ {1, . . . , n}. We know from the Perron-Frobenius theorem [21, Fact 4.11.4] for nonnegative matrices that

πA(1) = πE(1) = 1. Therefore, (33) implies that

αρ(E)− ρ(A0) ≤ λ1 ≤ αρ(E) + ρ(A0). (34a)
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Moreover, since E has n− r zero eigenvalues, (33) implies that A has at least n− r eigenvalues with absolute value

less than or equal to ρ(A0), i.e.,

|λr+1| ≤ ρ(A0). (34b)

Next, we bound the eigenvectors in V . Define

δE = min{λ̃πE(j) − λ̃πE(j+1) | λ̃πE(j)−λ̃πE(j+1) > 0, j ∈ {1, . . . , n− 1}}.

Using [84, Cor. 1], we have

‖vπA(j) − ṽπE(j)‖ ≤
23/2‖A0‖
αδE

, (35)

for j ∈ π−1E ({1, . . . , r}). To see this, set Σ = αE and Σ̂ = A0 in [84, Cor. 1]. This is the only place where we need the

nonzero eigenvalues of E to be distinct. If E has a repeated nonzero eigenvalue, then the corresponding eigenvectors

are no longer unique, i.e., one has to study the perturbation of eigenspaces rather than eigenvectors. Therefore, one

can no longer use the simplified variant [84, Cor. 1] of the Davis-Kahan Theorem but the original result itself, which

provides essentially the same result but is more technically involved.

Using πA(1) = πE(1) = 1 and (35), we get

|wi∗1 − w̃i∗1| = |v2i∗1 − ṽ2i∗1| ≤ 2||vi∗1| − |ṽi∗1|| (36)

≤ 2|vi∗1 − ṽi∗1| ≤ 2‖v1 − ṽ1‖ ≤
25/2‖A0‖
αδE

,

which together with w̃i∗1 ≥ 1
n1

gives

wi∗1 ≥
1

n1
− 25/2‖A0‖

αδE
. (37a)

To derive similar bounds on wij , j ∈ {1, . . . , r} (recall that we fixed i ∈ {n1 + 1, . . . , n} arbitrarily at the beginning

of the proof), we need to choose α > 2ρ(A0)

|λ̃r|
. This choice of α guarantees that πA(j) ∈ {1, . . . , r} for all j ∈

π−1E ({1, . . . , r}). Therefore, using (35) and (32) and following the same steps as in (36), we get

wij ≤
25/2‖A0‖
αδE

, j ∈ {1, . . . , r}. (37b)

Now, using (34) and (37), (31) holds with γ = |λ| if(
1

n1
− 25/2‖A0‖

αδE

)(
αλ̃1 − ρ(A0)

)
>
(
αλ̃1 + ρ(A0)

) r25/2‖A0‖
αδE

+ ρ(A0),

which itself holds if α > α, where

α , max
{
1,

2ρ(A0)

λ̃r
,

8‖A0‖
δE

(
1+

ρ(A0)

ρ(E)

)
n21 + 2

ρ(A0)

ρ(E)
n1

}
,

completing the proof.

H Description of the Analyzed Real Networks

The real networks studied in this work have been acquired from a multitude of sources, which we list here for easier

reproduction of our results. All the databases are freely and publicly available.

• BCTNet fMRI [47]: This is a human whole-brain functional network. Nodes represent brain areas and edges

represent fMRI co-activations. The dataset is available online at https://sites.google.com/site/bctnet/

datasets.
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• Cocomac [48]: This is a macaque whole-brain structural network based on the Felleman and Van Essen

atlas. Nodes represent brain areas and edges represent axonal projections (nerve tracts) between them. The

dataset is retrieved from http://cocomac.g-node.org/services/axonal_projections.php by entering the

specifications detailed in http://cocomac.g-node.org/main/faq.php#connectivitymatrix.

• BCTNet Cat [47]: This represents the cat structural thalamocortical network. Nodes represent thalam-

ocortical areas and edges represent nerve tracts between them. The dataset is available online at https:

//sites.google.com/site/bctnet/datasets.

• C. elegans [49]: This dataset contains the neural network of Caenorhabditis elegans worm (C. elegans). Nodes

represent individual neurons and edges represent the total number of synapses and gap junctions between any

pair of neurons. The dataset of available online at https://toreopsahl.com/datasets/#celegans.

• air500 [50]: This is the network of the 500 busiest commercial airports in the United States in 2002. Nodes

represent airports and edges represent flights between them. The dataset is available online at https://

toreopsahl.com/datasets/#usairports.

• airUS [51]: This is the complete US airport network in 2010. Nodes and edges represent airports and

flights between them, respectively. The dataset is available online at https://toreopsahl.com/datasets/

#usairports.

• airGlobal [51]: This dataset contains the global airport network according to OpenFlights.org. Nodes and

edges represent airports and flights between them, respectively. The dataset is available online at https:

//toreopsahl.com/datasets/#usairports.

• Chicago [52,53]: This dataset represents the road transportation network of the Chicago region, USA. Nodes

are transport nodes while edges represent connections between them. The dataset is available online as [85].

• E. coli [54]: This is the probabilistic functional gene network of E. coli. Nodes represent genes and edges

represent interactions between them. The dataset is available online at http://www.inetbio.org/ecolinet/

downloadnetwork.php (The integrated network).

• Yeast [55]: This network represents the protein-protein interaction (PPI) network in the budding yeast. Nodes

and edges represent proteins and the interactions among them, respectively. The dataset is available online at

http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm.

• Stelzl [56]: This is a protein-protein interaction network in humans. Nodes and edges represent proteins and

the interactions among them, respectively. The dataset is available online as [86].

• Figeys [57]: Similar to above, this is a protein-protein interaction network in humans where nodes and edges

represent proteins and the interactions among them, respectively. The dataset is available online as [87].

• Vidal [58]: Similar to above, this is a protein-protein interaction network in humans where nodes and edges

represent proteins and the interactions among them, respectively. The dataset is available online as [88].

• westernUS [49]: This dataset describes the high voltage power grid in the Western States of the US. Nodes

represent transformers, substations, and generators, and the edges represent high-voltage transmission lines.

The dataset is available online at https://toreopsahl.com/datasets/#uspowergrid.

• Florida [59]: This network describes the food web in the cypress wetlands of South Florida during the wet

season. Nodes represent taxa and an an edge denotes that a taxon uses another taxon as food. The dataset is

available online as [89].

• LRL [60]: The networks describes the food web of Little Rock Lake, Wisconsin, USA. Nodes represent

autotrophs, herbivores, carnivores and decomposers while links represent food sources. The dataset is available

online as [90].
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• Facebook group [61]: This dataset describes the social interactions among a group of Facebook users. Nodes

and edges represent profiles and the connections between them, respectively. The dataset is available online at

http://snap.stanford.edu/data/egonets-Facebook.html.

• E-main [62, 63]: This datasets contains E-main communications in a research institution. Nodes represent

institution members and edges exist between any ordered pair of members if one has sent at least one E-main

to the other. The dataset is available online at http://snap.stanford.edu/data/email-Eu-core.html.

• Southern Women [64]: This is a social network of 18 Southern women. Nodes are individuals and edges

represent mutual attendance at one of the 14 events recorded. The dataset is available online at https:

//toreopsahl.com/datasets/#southernwomen.

• UCI P2P [65]: This dataset describes an online community among the students of the University of California,

Irvine. Nodes represent individuals and edges represent at least one message sent between any pair of them.

The dataset is available online at https://toreopsahl.com/datasets/#online_social_network.

• UCI Forum [66]: This network is based on the same online community as in UCR P2P, but an edge exists

between two individuals if they posted on the same topic in a forum. This dataset is also available online at

https://toreopsahl.com/datasets/#online_social_network.

• Freeman’s EIES [67]: This is a network of researchers working on social network analysis. Nodes represent

researchers and edges represent personal relationships between them. The dataset is available online at https:

//toreopsahl.com/datasets/#FreemansEIES (the second dataset in the list).

• Dolphins [68]: This is a social network of bottlenose dolphins observed between 1994 and 2001. The nodes

are the bottlenose dolphins and edges indicate a frequent association between them. The dataset is available

online as [91].

• Physicians [69]: This network captures innovation spread among 246 physicians in four towns in Illinois,

USA. A node represents a physician and an edge represents that one physician recognizes the other as theor

friend or that they turn to them if they need advice or are interested in a discussion. The dataset is available

online as [92].

• Org. Consult Advice & Value [70]: These are intra-organizational networks between employees of a

consulting company. The nodes are individuals, and the edges represent frequency of information or advice

requests (Org. Consult Advice) and the value placed on the information or advice received (Org. Consult

Value). The datasets are available online at https://toreopsahl.com/datasets/#Cross_Parker.

• Org. R&D Advice & Aware [70]: Similar to the networks above, these describe intra-organizational

interactions among the members of a research team in a manufacturing company. Nodes represent individuals,

and edges represent the extent to which individuals received advice from their peers to accomplish their work

(Org. R&D Advice) and employees’ awareness of each others’ knowledge and skills (Org. R&D Aware). The

datasets are available online at https://toreopsahl.com/datasets/#Cross_Parker.
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