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Abstract— Modifying the structure of man-made and natu-
ral networked systems has become increasingly feasible due
to recent technological advances. This flexibility offers great
opportunities to save resources and improve controllability and
energy efficiency. In contrast (and dual) to the well-studied
optimal actuator placement problem, this work focuses on im-
proving network controllability by adding and/or re-weighting
network edges while keeping the actuation structure fixed. First
a novel energy-based edge centrality measure is proposed and
then its relationship with the gradient (with respect to edge
weights) of the trace of the controllability Gramian is rigorously
characterized. Finally, a network modification algorithm based
on the proposed measure is proposed and its efficacy in terms
of computational complexity and controllability enhancement
is numerically demonstrated.

I. INTRODUCTION

Recent years have seen an unprecedented surge of interest
from the scientific community in improving the control-
lability of complex dynamical networks, with applications
that range from infrastructure and robotic to biological and
social networks. Due to historical and practical reasons,
complex network controllability has been largely focused
on optimizing the location of the actuators (control inputs)
while assuming that the network edges (whether fixed or
time-varying) is given. Improving network controllability
through the modification of the network edges, however,
has been less studied. This work seeks to address this gap
by introducing a computationally efficient and analytically
grounded algorithm for network edge modification.

Literature review: While classical (Kalman) controllability
is a binary notion (encoding the mere possibility of steering
the network state arbitrarily in the state space) [1], [2],
recent work has introduced various energy-based metrics
for quantifying (and then optimizing) controllability [3]–[5].
These metrics often stem from the controllability Gramian
due to its relationship with the minimal energy required for
steering the network between any pair of states [6]. The op-
timal actuator scheduling problem then seeks to find the best
location (nodes) for placing a limited number of actuators in
order to maximize a metric of network controllability [3]–
[5], [7]–[11].

An implicit but strong assumption in the optimal actuator
scheduling problem is that the edge structure of the network
is fixed (or given, if time-varying). If the existing edge
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structure of a network is not suitable for control, this may
pose significant constraints on the best achievable degree of
controllability via actuator scheduling. This has motivated
recent works to study the dual problem of maximizing
network controllability via edge modification. Minimal edge
addition for structural controllability was studied in [12].
Edge addition in consensus networks is studied using al-
ternating direction method of multipliers (ADMM) [13] in
[14] and using spectral systemic performance measures and
greedy algorithm in [15]. In [16], optimal perturbations of
existing edges were computed by optimizing energy-based
metrics using semidefinite programming (SDP) [17]. Using
the procedure presented in [16], new edges can also be added
in the network but the location of the edges should be given
a priori. In [18], edge modifications were prescribed using
energy-based metrics for networks with diagonal controlla-
bility Gramian. Finally, edge modifications using topological
edge centrality measures was done in [19], [20].

Statement of contributions: In the aforementioned works,
edge modifications were done for special cases (consen-
sus networks and networks with diagonal controllability
Gramian), only on existing edges (i.e., without the possibility
of adding new edges), or using topological edge centrality
(i.e., without considering network dynamics). The contri-
butions of this work are threefold: (i) We derive a novel
energy-based edge centrality measure using the controllabil-
ity and observability Gramians. This edge centrality measure
is computationally inexpensive to compute which makes it
suitable for use in case of large networks. To the best of our
knowledge, this is the first Gramian-based edge centrality
measure that takes into account network dynamics and the
propagation of energy over the network; (ii) We prove a
relationship between the proposed edge centrality measure
and the gradient of the trace of the controllability Gramian.
On the basis of this relationship, (existing or potentially
new) edges can be ranked in descending order of their
centrality measure as a proxy for their relative impact on
the trace of the controllability Gramian; and (iii) using this
ordered list of edges, we propose a computationally efficient
network modification algorithm by first selecting a small
subset of edges with the largest centrality measures and then
maximizing the trace of controllability Gramian (without
approximations) over the selected subset. The latter step
(which is in general computationally expensive) is feasible
due to the small size of the selected subset of edges and
can be solved using publicly available software. For this
step, we impose budget constraints both on the number of
added/modified edges and the total amount of weight added



to them. Examples are provided to demonstrate the utility and
efficiency of the proposed algorithm. For reasons of space,
all proofs are omitted and will appear elsewhere.

Organization: The paper is organized as follows. Section II
describes the considered optimal edge modification problem.
In Section III, we describe a new edge centrality measure
and discuss its properties which are relevant for optimal edge
modification. Based on this centrality measure, in Section IV
we describe a computationally efficient edge modification
procedure and demonstrate its utility in Section V. We
conclude the paper in Section VI.

Notation: We use R and R>0 to denote the sets of
reals and positive reals, respectively. (·)> represents the
transpose of a vector or matrix. For a matrix W ∈ Rn×n,
tr (W) denotes its trace and vec (W) ∈ Rn2

its column-
wise vectorized form. For matrices X,Y ∈ Rn×n, their
Frobenius inner product is given by 〈X,Y 〉F = tr

(
X>Y

)
.

This induces the Frobenius norm ‖X‖F =
√
〈X,X〉F ,

which we use to express 〈X,Y 〉F = ‖X‖F ‖Y ‖F cosφ,
where φ = ∠ (vec (X) , vec (Y )) is the angle between the
vectors vec (X) and vec (Y ). For j ∈ {1, . . . , n}, ej ∈ Rn
denotes the jth canonical unit vector.

II. PROBLEM DESCRIPTION

Consider a directed network of n nodes represented by
the triplet GA = (V, EA, wA), where V = {1, 2, . . . , n} is
the node set, EA = { (i, j) | i ∈ V, j ∈ V, i 6= j } is the edge
set, and wA : EA 7→ R≥0 is a weight function. The pair (i, j)
denotes an edge directed from node i to node j. The nodal
dynamics are given by the discrete-time dynamics

x (t+ 1) = Ax (t) +Bu (t) , t = {0, . . . , T − 1}, (1)

where T > 0 is a finite time horizon, x ∈ Rn and
u ∈ Rm are state and input vectors respectively. Here,
A = (aij) ∈ Rn×n is the weighted adjacency matrix defined
by aij = wA [(i, j)] > 0 if the edge (j, i) ∈ EA else aij = 0,
and B =

(
b1 b2 · · · bi · · · bm

)
∈ Rn×m is the

actuator location (input) matrix. Here bi ∈ {0, 1}n are binary
vectors with 0’s everywhere except at one entry, signifying
the presence of an actuator at that node.

The dynamical system (1) is controllable in T−steps if
any arbitrary initial state x (0) = x0 can be steered to any
arbitrary final state x (T ) = xT using a finite control input
sequence {u (0) , u (1) , . . . , u (T − 1)}. Formally, (A,B) is
controllable in T−steps if and only if the controllability
Gramian [2] WA (T ) is nonsingular, where

WA (T ) =

T−1∑
t=0

AtBB>At
>
. (2)

This binary notion of controllability does not distinguish be-
tween systems that are more easily controllable than others.
To do so, various notions of performance metrics based on
the spectral properties of WA have been proposed in the
literature [3], [4], including tr(WA), tr(W−1A )−1, det(WA),
and λmin(WA). Throughout the paper, we employ tr(WA)

as our measure of network controllability. This choice is
motivated by the various advantages and disadvantages of
the measures described above, see [10, Appendix B] for
a detailed discussion. For large networks, tr(WA) is not
only computationally feasible to calculate (while the other
metrics are not due to limited machine precision) but is also
intrinsically less conservative than metrics that rely on the
smallest eigenvalue ofWA and is analytically more tractable.

In this work, while keeping the input structure unchanged,
our focus is on improving controllability by modifying the
network edges. The modification may involve perturbing the
existing edges or adding new ones. Let the modification
be represented by GδA = (V, EδA, wδA) with weighted
adjacency matrix δA = (δAij). We assume that GA as well
as GδA do not have any self-loops i.e., aii = 0 and δAii = 0.

In general, both the number of modified edges and the
total added weight may be constrained. Let Nmax and
wmax ∈ R>0 denote these bounds, respectively. Our problem
of interest can then be formulated as

max
δA

tr (WA+δA (T )) (3)

s.t. card (EδA) ≤ Nmax,
∑

wδA (EδA) ≤ wmax,

where WA+δA (T ) is the controllability Gramian of the
modified network,

WA+δA (T ) =

T−1∑
t=0

(A+ δA)
t
BB>(A+ δA)

t>
. (4)

The problem in (3) is a mixed-integer and non-convex
optimization problem which becomes computationally in-
tractable as the network size increases. In the following,
we propose a computationally efficient approximation using
a novel edge centrality measure and demonstrate its tight
correlation with the exact solution of (3) both theoretically
and in numerical examples.

III. ENERGY-BASED EDGE CENTRALITY MEASURE

Given the focus of the paper on optimizing network
structure, here we introduce a novel notion of edge centrality
that seeks to quantify their importance in influencing network
behavior. This notion builds on measures of the energy
exchange between an individual node and the network,
for which we employ the controllability and observability
Gramians. We later explore how the proposed notion of edge
centrality can be invoked to address the network modification
problem (3) by showing its connection with the gradient of
the objective function.

A. Node-Network Interactions

As the input matrix B is kept unchanged, the energy input
to the network from external sources is fixed. Due to the
original structure of the network, the energy supplied may
get accumulated at some nodes. At the same time, some
nodes which are efficient at distributing energy may not
receive adequate energy. When the structure of the network



is modified, a redistribution of the energy exchange takes
place in the system. Intuitively, the modified edges should
connect (or strengthen existing connections from) nodes
which accumulate energy to the nodes which are in a good
position for distributing it. These properties can be quantified
by the influence of the network on a node and the influence of
a node on the network, respectively, as given next following
the exposition in [9].

Node-to-Network Influence: The influence of a particular
node on the network is quantified by considering the partic-
ular node as the only input node and computing the trace of
the resultant controllability Gramian. For the tth time step
with 1 ≤ t ≤ T , the influence of the jth node on the network
is denoted by p(t)j and is computed as follows,

p
(t)
j = tr

(
W(t)
j

)
=

n∑
u=1

t−1∑
k=0

e>uA
keje

>
j A

k>eu,

W(t)
j =

t−1∑
k=0

Akeje
>
j A

k>. (5)

Clearly p
(t)
j ≥ 1. If p(t)j = 1 for all t > 1, then it can be

shown that node j is a sink [9] and thus accumulates energy.
Network-to-Node Influence: In parallel to the above def-

inition, the influence of the network on a particular node
is quantified by considering the particular node as the only
output node and computing the trace of the resultant observ-
ability Gramian [2]. For the tth time step with 1 ≤ t ≤ T ,
the influence of the network on the ith node is denoted by
q
(t)
i and is computed as follows,

q
(t)
i = tr

(
M(t)

i

)
=

n∑
v=1

t−1∑
k=0

e>v A
k>eie

>
i A

kev, (6)

M(t)
i =

t−1∑
k=0

Ak
>
eie
>
i A

k.

Similarly, q(t)i ≥ 1 and if q(t)i = 1 for all t > 1, node i is a
source [9] and thus does not accumulate any energy.

B. Edge Centrality Measure

Here, we combine the energy exchange notions described
above to define a new edge centrality measure which is,
interestingly, closely related to the problem in (3). Cen-
tralities are measures used to quantify the influence and
importance of nodes and edges in a network. Various node
and edge centrality measures based on the topology of the
network have been proposed, see, e.g., [21], [22]. For the
case of node centrality, energy (Gramian)-based measures
have also been given [9], [10]. However, to the best of our
knowledge, energy-based notions of edge centrality have not
been proposed.

Intuitively, the influence of an edge in a network is related
to the nodes it connects and the extent to which it facilities
the energy distribution in the network. If an edge connects
an energy-rich node (one with high qi) to a node which

facilitates energy distribution (one with high pj), then the
edge has more influence on the energy distribution in the
network. Thus, we propose

c
(t)
ij = q

(t)
i p

(t)
j . (7)

as a measure of the centrality of the edge directed from node
i to node j at time t. For the complete time horizon T , the
edge centrality is defined as,

cij =

T−1∑
t=1

c
(t)
ij (8)

Clearly c
(t)
ij ≥ 1, so the minimum attainable centrality

measure is T −1, which has a simple intuitive interpretation.
If c(t)ij = 1 for t ≥ 1, then the corresponding edge is directed
from a source node i to a sink node j and thus constitutes
a minimally-influential interconnection, cf. Figure 1.

Fig. 1: An example of a minimally-influential edge with cij =
T − 1.

Figure 2 shows the histogram of the correlation coeffi-
cients between the elements of the gradient of the objective
function in (3) (with respect to all the edge weights {aji}i,j)
and {cij}i,j for 103 random Erdős-Rényi networks. As the
plot shows, there exists a remarkable average correlation
coefficient of R ' 0.9, with p-value smaller than machine
epsilon in all cases, showing extreme statistical significance.
These results prompt our investigation of the relationship
between cij and Problem (3), which we carry out next.

C. Relationship Between Edge Centrality and the Gradient
of the Trace of the Controllability Gramian

Consider the addition of an edge directed from node i to
node j. The corresponding adjacency matrix δA will have
only one non-zero element, so δA = eje

>
i . Let,

C
(t)
j =

(
At−1ej At−2ej · · · Aej ej

)
,

O
(t)
i =

(
ei A>ei · · · At−2

>
ei At−1

>
ei

)>
. (9)

Fig. 2: Histogram of the correlation coefficient (R-value) between
the values of {cij}i,j and { ∂tr(WA)

∂aji
}i,j for 103 random networks

with 25 node, 8 inputs and 0.2 as edge existence probability,
suggesting that the former can be used as a proxy for the latter.



The next result relates the gradient of the trace of the
controllability Gramian to the matrices C(t)

j and O(t)
i in (9).

Theorem 3.1: (Gradient of trace of Gramian). For the
network dynamics (1),

∂

∂aji
tr (WA (T )) = 2

T−1∑
t=0

tr
(
BB>At

>
C

(t)
j O

(t)
i

)
, (10)

where the controllability Gramian WA (T ) is defined in (2).
Theorem 3.1 establishes an important relationship between

the gradient of the trace of the controllability gramian
WA(T ) of the original network with input matrix B, the
controllability Gramian of the network with node j as
the only input node, and the observability Gramian of the
network with node i as the only output node. This result
serves as a basis for establishing a relationship between the
centrality measure c(t)ij in (7) and the gradient of the trace of
Gramian, as derived next.

For any edge (i, j) ∈ {1, . . . , n}2 and t ∈ {1, . . . , T −1},
define

g
(t)
ij = 2tr

(
BB>At

>
C

(t)
j O

(t)
i

)
so that ∂

∂aji
tr (WA (T )) =

∑T−1
t=1 g

(t)
ij . Further, let

φ
(t)
ij = ∠

(
vec
(
AtBB>

)
, vec

(
C

(t)
j O

(t)
i

))
,

X
(t)
j = C

(t)
j

>
C

(t)
j , Y

(t)
i = O

(t)
i O

(t)
i

>
,

r
(t)
j = min {t, n}, s(t) =

√√√√√ tr
(
X

(t)
j

2)
r
(t)
t

−

(
p
(t)
j

r
(t)
j

)2

,

Ψ
(t)
ij = ‖AtBB>‖F cosφ

(t)
ij . (11)

Then, for any t = 1, . . . , T −1, the relationship between g(t)ij
and the c(t)ij can be stated as follows.

Theorem 3.2: (Edge centrality-based bounds on the gra-
dient of trace of Gramian). For any t ∈ {1, . . . , T − 1},

g(t)
ij

2
≤ g(t)ij

2
≤ g(t)ij

2
, (12)

where

g(t)
ij

2
= 4Ψ

(t)
ij

2

(
c
(t)
ij

r
(t)
j

− q(t)i s(t)
√
r
(t)
j − 1

)
,

g
(t)
ij

2
= 4Ψ

(t)
ij

2

(
c
(t)
ij

r
(t)
j

+ q
(t)
i s(t)

√
r
(t)
j − 1

)
. �

The significance of Theorem 3.2 is in showing that the
gradient of (the tth summand of) the trace of the control-
lability Gramian is bounded by functions dependent on the
centrality measure c(t)ij . According to (12), g(t)

2

ij belongs to an
interval whose mid-point is proportional to c

(t)
ij , explaining

the high correlation between the gradient of tr(WA) and cij
observed in Figure 2. Nevertheless, we note that the length
of this interval is also a function of the location (i, j) of the
modified edge and therefore the analysis of their relationship

is also required for obtaining a complete characterization of
the relationship between the gradient of tr(WA) and cij .
Hence, a characterization of the tightness of this bound is
still an open problem for future research.

D. Computational Aspects of Proposed Edge Centrality

Here we show how the redundancy in the calculations of
{pj}j and {qi}i can be exploited to enhance the computa-
tional efficiency of calculating {cij}i,j . We then compare this
computational complexity to that of calculating {∂tr(WA)

∂aij
}i,j .

Let p̂(t)j be a vector of diagonal elements of W(t)
j in (5)

and

H(t) =
(
p̂
(t)
1 . . . p̂

(t)
j . . . p̂

(t)
n

)
∈ Rn×n. (13)

The next result shows the relationship among p
(t)
j , q(t)i ,

and H(t).
Proposition 3.3: (Relation between p

(t)
j and q

(t)
i ). Let

H(t) be defined as in (13). Then,

p
(t)
j =

n∑
i=1

H(t) (i, j) , q
(t)
i =

n∑
j=1

H(t) (i, j) . �

The computation of {cij}i,j can be simplified based on
Proposition 3.3, as follows. Let

p(t) =
(
p
(t)
1 p

(t)
2 . . . p

(t)
j . . . p

(t)
n−1 p

(t)
n

)>
,

q(t) =
(
q
(t)
1 q

(t)
2 . . . q

(t)
i . . . q

(t)
n−1 q

(t)
n

)>
,

and define

Θ(t) = p(t)q(t)
>
∈ Rn×n, Θ =

T−1∑
t=1

Θ(t). (14)

Then, it is straightforward to check that cij = Θji.
One can see that the computation of gij for any (i, j)

and the calculation of either of pj or qi incur the same
order of computational complexity. However, if (3) is to
be solved by directly calculating the gradient ∂

∂aji
tr(WA)

of the objective function with respect to all the edges, the
computation is to be done for

(
n2 − n

)
edges (recall that we

do not include self-loops) whereas for the proposed measure
cij , the computation is to be done only for n nodes.

IV. EDGE MODIFICATION PROCEDURE

Building on the results of Section III, we next propose an
edge modification procedure as a computationally efficient
near-optimal approximation to (3). Without considering self-
loops, the problem is to modify Nmax � n2 − n edges and
compute their respective weights, giving a total of 2

(
n2 − n

)
(
(
n2 − n

)
binary (edge selection) variables and

(
n2 − n

)
continuous (edge weight)) variables. This quadratic growth
with network size prohibits the direct solution of (3) for large
networks, cf. Section III-D.

Our proposed relaxation is to restrict the possible edge
choices to some selected search space NS such that Nmax <



Algorithm 1 The Proposed Edge Modification Procedure
Input: A,B, n, T,Nmax, wmax, NS , wub
Output: η, w

1: For each node j and for each t with 1 ≤ t ≤ T − 1,
compute W(t)

j as in (5)
2: Form H(t) as in (13)
3: Compute p(t), q(t),Θ(t) and Θ as in (14)
4: Rank all the edges according to decreasing cij (Θji)
5: Select the first NS edges and form the set ES
6: For each element in ES , construct the matrices in ∆k

7: Solve the (small-scale) optimization problem (15)

NS < n2 − n, thus reducing the number of optimization
variables to 2NS . This search space can be obtained by
choosing the NS edges with the largest values of cij (cf.
Section III-B). Let ES be the set of NS selected edges. For
each 1 ≤ k ≤ NS , if (i, j) is the corresponding element in
ES , define ∆k ∈ Rn×n such that (∆k)ij = 1 while other
entries of ∆k are zero. Then, problem (3) over this smaller
search space is given by

max
η,w

tr (WA+δA (T )) , (15)

s.t. δA =

NS∑
k=1

ηkwk∆k,

η =
(
η1 η2 . . . ηk . . . ηNS

)> ∈ {0, 1}NS ,

w =
(
w1 w2 . . . wk . . . wNS

)>
,

0 ≤ wk ≤ wub,
NS∑
k=1

ηk ≤ Nmax,

NS∑
k=1

ηkwk ≤ wmax,

where WA+δA (T ) is given in (4), η is the binary edge
selection vector, and w is the edge weight vector. The
pseudo-code for the resulting edge modification procedure is
stated in Algorithm 1. The MINLP (15) is computationally
tractable and can be solved using publicly available software
such as the OPTI TOOLBOX [23] for MATLAB which uses
BONMIN solver [24] for integer variables. The identification
of criteria for optimally selecting NS is an interesting open
problem.

V. NUMERICAL EXAMPLES

In this section, two examples are studied to show the
efficacy of the proposed edge modification procedure.

Example 1: Consider a network with n = 10 nodes,
adjacency matrix A whose entries are all zero except for

a12 = 0.69, a18 = 0.36, a1,10 = 1.24, a23 = 0.20,

a25 = 0.02, a26 = 0.87, a27 = 0.64, a37 = 0.37,

a46 = 0.76, a51 = 0.66, a76 = 0.99, a84 = 0.50,

a91 = o.52, a10,9 = 0.74,

The constraints on the optimal edge modification prob-
lem (15) are T = n,Nmax = 3, wmax = 1, and wub = 0.4.

Three approaches are then compared in seeking a (approxi-
mate) solution to (15), as follows.

1) Approach 1: Using Algorithm 1 with NS = 10.
2) Approach 2: The value of cij is computed for all the

edges (cf. Section III-D) and ranked in descending
order. The three edges with the largest values of cij
are then selected and their weights are augmented by
w1 = 0.4, w2 = 0.4, and w3 = 0.2, respectively.

3) Approach 3: The edges are selected by exhaustively
searching the edge space and fixing the location and
weight of one edge at a time. In other words, the
maximum value of wub is added to all n2 − n non-
self-loop edges in the network (one at a time), the one
with the largest tr(WA+δA)−tr(WA) is selected, and its
weight is increased by wub. The process is then repeated
(with the updated A) until all the wmax is distributed.

The results are tabulated in Table I.

Property Approach 1 Approach 2 Approach 3

Edges
Edge 1 1→ 6 1→ 6 2→ 6
Edge 2 1→ 10 1→ 10 7→ 6
Edge 3 1→ 9 1→ 9 2→ 7

Weights
w1 0.2 0.4 0.4
w2 0.4 0.4 0.4
w3 0.4 0.2 0.2

Initial objective value 9.23 9.23 9.23
Final objective value 26.92 26.54 39.74
Percentage increase 199.7% 187.6% 330.7%
Initial λmin(WA) 0.0003 0.0003 0.0003
Final λmin(WA) 0.0004 0.0003 0.0001

TABLE I: Comparison of performance.

It is notable that Approach 1 resulted in assigning the
smallest weight to the edge with the largest edge centrality,
signifying the importance of steps 5-7 in Algorithm 1. Table I
also shows slight improvement in λmin(WA) as a result of
applying the proposed algorithm. Therefore, even though Al-
gorithm 1 seeks to maximize tr(WA), it also maintains (and
even improves) worst-case controllability. Finally, although
the exhaustive search procedure (Approach 3) results in the
maximum increase in controllability, the procedure is not
scalable as n grows (in our simulations, it becomes infeasible
for n = 25). The original and modified graphs (following
Approach 1) are shown in Figure 3.

Example 2: In this example, the proposed edge modifica-
tion procedure was implemented on 103 random Erdős-Rényi
networks [25]. The considered networks have n = 25 nodes,
8 inputs and the probability of the existence of each edge is
0.2, independently of the other edges. The maximum number
of edges to be modified is Nmax = 3, budget constraint on
added weight is wmax = 1, the maximum weight to be added
to each edge is wub = 0.4, and Algorithm 1 is applied on
each network with NS = 15, T = n. For each network,
we compute the percentage of increase in controllability
and show the histogram of the resulting values in Figure 4.
The mean percentage increase in the performance is about
3000%, showing the utility of the proposed edge centrality
measure and edge modification algorithm.



Fig. 3: The result of the proposed edge modification algorithm on
the network of Example 1. Red sized nodes (4, 5, 6, 8) represent the
actuator locations, while solid and dashed edges represent original
and modified edges, respectively. The two (dashed-)edges directed
from node 1 to node 9 indicate the strengthening of an existing
edge.

Fig. 4: The histogram of log10(%increase in tr(WA)) for 103

Erdős-Rényi random networks following the proposed edge modi-
fication algorithm.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we studied the optimal edge modification
problem where the location and weights of the edges in
a network can be modified in order to improve network
controllability. First, we introduced a novel energy-based
edge centrality measure and established its relation with the
gradient of the trace of the controllability Gramian (used as
the measure of network controllability). Thus, we proposed
to use the former as a (tight) proxy for the latter and showed
its advantages in terms of computational complexity. This
proxy was then used to design a sub-optimal but computa-
tionally efficient edge modification algorithm, the utility and
efficiency of which were illustrated using numerical simula-
tions. Future work will include the extension of the proposed
edge centrality measure and its analytical properties to time-
varying networks and networks with negative edge weights,
the analytical characterization of the suboptimality gap of the
proposed edge modification algorithm, its extension to ensure
the resulting network structure retains stability properties,
and its application to real-world networks.
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