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Abstract— Oscillations in the brain are one of the most ubiq-
uitous and robust patterns of activity and correlate with various
cognitive phenomena. In this work, we study the existence and
properties of oscillations in simple mean-field models of brain
activity with bounded linear-threshold rate dynamics. First,
we obtain exact conditions for the existence of limit cycles
in two-dimensional excitatory-inhibitory networks (E-I pairs).
Building on this result, we study networks of multiple E-I pairs,
provide exact conditions for the lack of stable equilibria, and
numerically show that this is a tight proxy for the existence of
oscillatory behavior. Finally, we study cross-frequency coupling
between pairs of oscillators each consisting of an E-I pair. We
find that while both phase-phase coupling (synchronization) and
phase-amplitude coupling (PAC) monotonically increase with
inter-oscillator connection strength, there exists a tradeoff in
increasing frequency mismatch between the oscillators as it de-
synchronizes them while enhancing their PAC.

I. INTRODUCTION

Since Berger’s groundbreaking discovery of oscillatory
activity in the brain [1], oscillations have been found in a
wide range of species and brain regions and multiple studies
have shown the correlation between their properties (ampli-
tude, phase, shape, coupling, etc.) and various neurocognitive
processes. Despite their importance, our understanding of
brain oscillations is far from complete. Here, we take an
analytical approach and study network models with linear-
threshold rate dynamics, revealing the relationship between
network structure and oscillatory behavior, both within a
single region and when coupled between multiple regions.

Literature review: Oscillations have been the subject of
extensive research in the neuroscience literature, see, e.g. [2],
[3]. In addition to the vast number of experimental and
computational works, several efforts have pursued analyt-
ical model-based approaches, particularly using mean-field
models such as the Wilson-Cowan model [4]. However,
the sigmoidal nonlinearity in the Wilson-Cowan model has
not allowed more than partial characterizations [5]–[8] of
structural conditions giving rise to oscillations. Motivated by
this, [9] studies oscillations and synchronization in Wilson-
Cowan models with bounded linear-threshold nonlinearities,
but relies on unrealistic assumptions (excluding interac-
tion terms in the nonlinearities, having mixed excitatory-
inhibitory nodes (i.e., violating Dale’s law), and a chain net-
work topology) to obtain rigorous results. Linear-threshold
networks are indeed capable of modeling a wide range
of (nonlinear) phenomena such as mono-, bi-, and multi-
stability, limit cycles, and chaos [10]. While the existence
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and uniqueness of equilibria and asymptotic stability are
reasonably well understood, see [11] and references therein,
our understanding of their oscillatory behavior has remained
limited.

A growing body of research has also studied brain oscilla-
tions using models of phase oscillators such as the Kuramoto
model, see [12]–[14] and references therein. This is moti-
vated by the fact [15] that the Kuramoto model is a local
approximation to the Wilson-Cowan model (around zero
interconnection strength) and has the advantage of having
smaller state dimensions. Nevertheless, this also comes at
the expense of different global behaviors (when coupling is
large), cf. [16], and the exclusion of amplitude dynamics that
are essential to neuronal phenomena such as PAC.

Statement of contributions: Our contributions are three-
fold. First, we obtain an exact characterization of existence
of limit cycles for two-dimensional excitatory-inhibitory net-
work motifs described by bounded linear-threshold dynamics
(E-I pairs). These two-dimensional motifs serve as models
of small brain regions that can then be connected to model
large-scale brain dynamics. Accordingly, our second con-
tribution is the study of such networks of oscillators with
arbitrary size and connectivity where each oscillator is itself
an E-I pair. We derive exact conditions for the lack of stable
equilibria and show, through extensive simulations, that this
condition is indeed a tight proxy for oscillatory behavior.
Finally, using this condition, we study synchronization and
PAC as the two most prominent forms of oscillatory coupling
in the brain. We show numerically that increasing the inter-
oscillator connectivity strength has the same (enhancing)
effect on both synchronization and PAC, while increasing
frequency mismatch between the oscillators has an opposing
effect on them (decreasing synchronization, increasing PAC).
Together, these analytical and numerical results provide great
insight into the nature of brain oscillations and its relation to
the structure of the underlying networks. For space reasons,
all proofs are omitted and will appear elsewhere.

Notation: We let R, R>0, and R≥0 denote the set of reals,
positive reals, and nonnegative reals, resp. For a, b ∈ R,
U(a, b) denotes the uniform distribution over [a, b]. We use
bold-faced letters for vectors and matrices. 1n and In stand
for the n-vector of all ones and the identity n-by-n matrix,
and we omit subscripts when clear from the context. Given
a vector x, xi and (x)i refer to its ith component and, if
block-partitioned, xi refers to its ith block. Likewise, Aij
refers to the (i, j)th entry of matrix A. Given m ∈ Rn>0,
[0,m] = [0,m1] × · · · × [0,mn]. For x ∈ R, [x]m0 =
min{max{x, 0},m}, which is extended entry-wise to [x]m0 .



II. PROBLEM FORMULATION

Consider a neuronal network composed of a large number
of neurons that communicate with each other via asyn-
chronous sequences of spikes. Grouping together neurons
with similar firing rates, under standard assumptions1, the
mean-field dynamics of the network can be described by the
linear-threshold model

τ ẋ(t) = −x(t) + [Wx(t) + u]m0 , x(0) ∈ [0,m], (1)

where x ∈ RN≥0 is the state vector with components xi de-
noting the average firing rate of the i’th neuronal population,
i ∈ {1, . . . , N}, W ∈ RN×N is the matrix of average
synaptic connectivities, u ∈ RN is the vector of average
external (background) inputs to the populations, m ∈ RN>0 is
the vector of average maximum firing rates, and τ > 0 is the
network time constant. Note that [0,m] is invariant under (1),
ensuring, in particular, that all solutions are bounded.

Our previous work [11] has characterized the existence
and uniqueness of equilibria and asymptotic stability for a
variant of (1) with an unbounded activation function (m =
∞· 1N ), and these results are readily extensible to arbitrary
finite m. However, the existence of oscillations in linear-
threshold dynamics is not as well understood. Further, brain
networks often contain interconnections of multiple coupled
oscillators, but our understanding is even slimmer about the
oscillatory behavior of interconnections of linear-threshold
networks of the form (1).

Our goal is to characterize the relationship between net-
work structure and the oscillatory behavior observed in
linear-threshold dynamics modeling brain networks. We for-
malize the problem of interest as follows.

Problem 1. For the bounded linear-threshold network dy-
namics (1), characterize the relationship between network
structure (W,m,u) and

(i) existence of oscillations in a single network (1);
(ii) existence/preservation of oscillations in a network of

oscillatory networks, each modeled by (1);
(iii) phase-phase coupling (synchronization) and phase-

amplitude coupling (PAC) between pairs of oscillators.

Questions (i) and (ii) arise naturally as the first steps
towards understanding oscillatory behavior of (1). On the
other hand, synchronization (i.e., the phase-locking of two
oscillators with the same frequency) and PAC (i.e., the
dependence of the amplitude of a high-frequency oscillator
on the phase of a low-frequency one), are of specific interest
as they are the most widely observed and studied oscillatory
coupling phenomena in brain networks. Examples of these
phenomena are shown in Figure 1. We address (i) and (ii) in
Section III and (iii) in Section IV.

Following common practice in computational neuro-
science, we here adopt a broad notion of oscillations that
includes both periodic oscillations (limit cycles) and chaotic

1See, e.g., [17, Ch 7] for a comprehensive exposition or [11] for a brief
discussion.

(a)

Oscillator 1

(b)

Fig. 1: Examples of (a) synchronization and (b) PAC in models of
neuronal activity. Note that while both phenomena occur as a result
of the interaction of two oscillators, synchronization is defined (and
measured) between the trajectories of both oscillators but PAC is
defined (and measured) between two frequency components of each
trajectory.

ones. In the latter case, a chaotic behavior is oscillatory if
its state trajectories are near-periodic or, equivalently, have
power spectra with distinct and pronounced resonance peaks.

III. EXISTENCE OF OSCILLATIONS

In this section we analyze the dynamics (1) and derive
conditions on the network structure (W,m,u) giving rise
to oscillatory behavior. The analytical tools in the study of
oscillations are generally limited to 2-dimensional systems
(cf. the Poincaré-Bendixson theory [18, Ch 3]) or higher-
dimensional systems that are essentially confined to 2-
dimensional manifolds (see, e.g., [19], [20]). Thus, we start
our analysis by 2-dimensional networks and then extend the
results to arbitrarily large interconnections of 2-dimensional
oscillators.

A. Two-Dimensional Excitatory-Inhibitory Oscillators

An important property of biological neuronal networks,
known as Dale’s law [4], [17], is that each node has either
an excitatory (E) or inhibitory (I) effect on other nodes,
but not both. This means that each column of W is either
nonnegative or nonpositive. Thus, a 2-dimensional network
can be either E-E, I-I, or E-I. The latter, hereafter called
an E-I pair, is also known as the Wilson-Cowan model
and has been widely used in computational neuroscience for
decades [4]–[8]. Unlike the standard Wilson-Cowan model
that uses sigmoidal activation functions, we show in the
following that a complete characterization of limit cycles
can be obtained for E-I pairs with bounded linear-threshold
nonlinearities.

According to the Poincaré-Bendixson theory [18, Ch 3],
in a two-dimensional system (N = 2), the lack of stable



equilibria is, under mild conditions, necessary and sufficient
for the existence of almost globally (excluding trajectories
starting at an unstable equilibrium) asymptotically stable
limit cycles. To study the equilibria of (1), we use its rep-
resentation as a switched affine system. It is straightforward
to show [11] that RN can be decomposed into 3N switching
regions {Ωσ}σ∈{0,`,s}N defined by

Ωσ = {x | (Wx + u)i ∈ (−∞, 0], ∀i s.t. σi = 0, and
(Wx + u)i ∈ [0,mi], ∀i s.t. σi = `, and
(Wx + u)i ∈ [mi,∞), ∀i s.t. σi = s},

where 0, `, and s denote inactive, active (linear), and satu-
rated nodes, respectively. Thus, (1) can be rewritten in the
switched affine form

τ ẋ = (−I + Σ`W)x + Σ`u + Σsm, ∀x ∈ Ωσ, (2)

where for any σ ∈ {0, `, s}N , Σ` ∈ RN×N is a diagonal
matrix with diagonal entries

Σ`ii =

{
1 if σi = `,

0 if σi = 0, s,

and, likewise, Σs ∈ RN×N is a diagonal matrix with
diagonal entries

Σs
ii =

{
1 if σi = s,

0 if σi = 0, `.

Each Ωσ then has a corresponding equilibrium candidate

x∗σ = (I−Σ`W)−1(Σ`u + Σsm),

and the equilibria of (1) consist of all x∗σ that belong to
their respective switching regions. This allows us to derive
an exact characterization of limit cycles for E-I pairs, as
stated next.

Theorem III.1. (Limit cycles in E-I pairs). Consider the
dynamics (1) with N = 2 and

W =

[
a −b
c −d

]
, a, b, c, d ≥ 0.

All network trajectories (except those starting at an unstable
equilibrium, if any) converge to a limit cycle if and only if

d+ 2 < a, (3a)
(a− 1)(d+ 1) < bc, (3b)

(a− 1)m1 < bm2, (3c)
0 < u1 < bm2 − (a− 1)m1, (3d)

0 < (d+ 1)u1 − bu2 <
[
bc− (a− 1)(d+ 1)

]
m1. (3e)

The conditions of Theorem III.1 have simple biologi-
cal intuitions. Equation (3a) requires the positive feedback
among the neurons of the excitatory population2 to be
sufficiently stronger than the negative feedback among the
inhibitory population. This, together with the strong mutual

2Recall that each node of the network dynamics (1) represents one
population of neurons with similar activity patterns.

coupling (3b) between the two populations, ensures local
instability of the equilibrium point x∗(`,`) and prevents the
oscillations from damping. On the other hand, condition (3c)
ensures that the upper bound on the inhibitory input to
the excitatory population (bm2) is high enough to balance
the strong self-excitation. This is consistent with thin spike
widths and high firing rates of the inhibitory “fast-spiking
interneurons” in the cortex and the theory of excitatory-
inhibitory (E-I) balance [21]. Finally, the conditions (3d)
and (3e) require that the external inputs to the two nodes
are neither excessively low nor excessively high, as it would
keep the respective nodes in negative or positive saturation,
resp., which would reduce the effective dimensionality of the
network to less than two and make oscillations impossible.
We build on this result next to study the oscillatory behavior
of a network of oscillators, each represented by an E-I pair.

B. Networks of Two-Dimensional Oscillators

Consider n oscillators, each modeled by an E-I pair,
connected over a network with adjacency matrix A ∈ Rn×n≥0
via their excitatory nodes [22]. Since A captures inter-
oscillator connections, its diagonal entries are zero. Thus,
the dynamics of the resulting network of networks is

Tẋ = −x + [Wx + u]m0 , (4a)

where

x =
[
xT1 · · · xTn

]T
, xi =

[
xi,1
xi,2

]
, (4b)

T = diag(τ1, τ1, τ2, τ2, . . . , τn, τn), (4c)

W = diag(W1, . . . ,Wn) + A⊗E, E =

[
1 0
0 0

]
, (4d)

Wi =

[
ai −bi
ci −di

]
, Aii = 0, i ∈ {1, . . . , n}, (4e)

u and m have similar decompositions to x, and ⊗ denotes
the Kronecker product.

We consider the case where each E-I pair oscillates on
its own. The first question we address is whether the pairs
maintain any oscillatory behavior after their interconnection.
Since conditions for the existence of limit cycles in systems
with higher than two dimensions are in general unknown, we
use the lack of stable equilibria (which constitutes the main
condition in the Poincaré-Bendixson theory for existence of
limit cycles) as a proxy for oscillations. Later in Section III-
B, we show numerically that this proxy is indeed a tight
characterization of oscillatory dynamics.

Theorem III.2. (Lack of stable equilibria in networks of E-
I pairs). Consider the dynamics (4) and assume that each Wi

satisfies the conditions of Theorem III.1. Then, the overall
network does not have any stable equilibria if and only if

n∑
j=1

Aijmj,1 < ūi,1 − ui,1, (5)

ūi,1 , bi min
{
mi,2,

ui,2 + cimi,1

di + 1

}
− (ai − 1)mi,1,



holds for at least one i ∈ {1, . . . , n}. Moreover, the state
of any E-I pair for which (5) holds may not converge to a
fixed value (except for trivial solutions starting at unstable
equilibria, if any) irrespective of the validity of (5) for other
pairs.

Theorem III.2 provides a precise characterization of the
lack of stable equilibria for the network dynamics (4). Even
though the lack of stable equilibria is in principle neither
necessary nor sufficient for the existence of limit cycles, we
show next that it is in fact almost necessary and sufficient
for the existence of oscillatory behavior. Nevertheless, such
oscillatory behavior is often chaotic, not a limit cycle, which
may have more relevance for neuronal oscillations [23].

IV. OSCILLATORY PROPERTIES AND COUPLING

In this section, we focus on the properties of oscillations
generated by (4) under the conditions of Theorem III.2. First,
we show that the lack of stable equilibria (and thus (5))
is indeed a tight proxy for existence of oscillations. Then,
motivated by the experimental and computational evidence in
brain networks, we study the phenomena of synchronization
and phase-amplitude coupling.

A. Regularity of Oscillations

To assess the oscillatory behavior of the networks that
satisfy (5), we construct random networks according to

di ∼ U(0, dmax), ai ∼ U(amin, amax), amin > dmax + 2,

bi = ci ∼ U(bmin, bmax), bmin >
√

(amax − 1)(dmax + 1),

mj,i ∼ U(mj,min,mj,max), m2,min >
amax − 1

bmin
m1,max,

τi ∼ U(τmin, τmax), i.i.d. ∀j = 1, 2, i ∈ {1, . . . , n}, (6)

all satisfying (3a)-(3c). The values of ui,1 and ui,2 are always
chosen at the center of their respective ranges in (3d)-(3e)
in order for the E-I pairs to oscillate at their maximum
amplitude before interconnection. For A, we first generate
a random G ∈ Rn×n≥0 with zero diagonal and i.i.d. U(0, 1)-
distributed off-diagonal entries and set

A = ηĀ, Ā = diag(ū1 − u1)G[diag(G1n)diag(m1)]−1.

A then satisfies (5) for all i ∈ {1, . . . , n} if and only if
η ∈ [0, 1).

To measure the existence of oscillations, we use the notion
of regularity of oscillations. Given a zero-mean signal x(t),
we construct a regularity index as follows. Let X(f) be the
Fourier transform of x(t), fmax = arg maxf |X(f)|, and

χreg =
|X(fmax)|

max{|X((1− ε)fmax)|, |X((1 + ε)fmax)|}
∈ [1,∞),

where ε ∈ (0, 1). χreg = 1 indicates a flat power spectrum
(lack of oscillations) whereas χreg → ∞ indicates a Dirac
delta at fmax (perfectly regular oscillations). In practice,
values of χreg & 2 for ε . 0.1 capture oscillatory behavior,
with more regularity (less chaotic behavior) as χreg grows.

(a) (b)

Fig. 2: Regularity of oscillations as a function of network size (n)
and inter-oscillator connection strength (η). The probability density
function of logχreg is plotted for (a) n = 10 and varying η and
(b) η = 0.9 and varying n. Each distribution is based on 500
random networks (6) with dmax = 1, amin = 3.5, amax = 5,
bmin =

√
8 + 0.5, bmax =

√
8 + 2, m1,min = 1, m1,max = 2,

m2,min = 8/bmin+0.5, m2,max = 8/bmin+2, τmin=1, τmax=10.

Figure 2(a) shows the probability distribution of χreg for
random networks of n = 10 oscillators (N = 20 nodes),
ε = 0.1, and varying interconnection strength η. For discon-
nected oscillators (η = 0), each oscillator has a perfectly
regular oscillation (by Theorem III.1) and thus very large
χreg (though finite due to finite signal length and numerical
error). These oscillations lose their regularity as we increase
the connection strength η towards 1, but still persist up to
η = 0.99, showing the almost sufficiency of (5). Further,
moving beyond η = 1, about 10% of oscillations persist at
η = 1.01 but all disappear at η = 1.05 due to convergence to
the stable equilibria ensured by Theorem III.2. This shows
that (5) is also almost necessary for existence of oscillations
in the network dynamics (4).

In addition to η, the regularity of oscillations also depend
on the network size. Figure 2(b) shows the distribution of
χreg for networks of varying size at η = 0.9. Interestingly,
network oscillations lose regularity as we increase network
size, which is in line with existing observations on the
relation between chaos and network size [24].

Figure 2 suggests, indirectly via the regularity of oscil-
lations, that the network dynamics (4) become increasingly
chaotic as either n or η increases. To assess this more di-
rectly, we compute the maximal Lyapunov exponent (MLE)
for random networks with the same statistics as (6), cf.
Figure 3. MLE measures the exponential rate at which the
norm of the solutions of the linearization of the dynamics
around a certain trajectory (network attractor in this case)
grow or decay. Therefore, a positive MLE is traditionally
used as an indication of chaos [25]. As expected, Figure 3
shows a clear increase in MLE both as a function of η < 1
and n, while moving η beyond 1 rapidly decreases MLE.

Somewhat surprisingly, even though at η = 0 each E-I
pair has a perfectly regular oscillation (limit cycle) giving
an individual MLE of 0 (see also [26], [27]), the network
dynamics (4) is still slightly chaotic, potentially due to the
mismatch between the periods of the individual oscillators.



Fig. 3: Maximal Lyapunov exponent for varying network size n
and inter-oscillator connection strength η. Each point is the average
MLE of 200 networks with the same statistics as in Figure 2.

Interestingly, increasing η up to ∼ 0.2 enhances order among
the oscillators due to their effort to synchronize. This further
motivates the analysis of synchronization within the network
(cf. Problem 1(iii)), which we tackle next.

B. Synchronization and Phase-Amplitude Coupling

The literature is rich in measures of synchronization, see
e.g., [28] for a review and comparison of different methods.
Given two discrete signals z1(k), z2(k), k ∈ {1, . . . ,K}, we
use the measure of phase synchronization

χsync =

∣∣∣∣∣ 1

K

K∑
k=1

ej(φ1(k)−φ2(k))

∣∣∣∣∣ ∈ [0, 1], (7)

where φi(k) is the instantaneous phase3 of {zi(k)}Kk=1. This
is simply a circular average of the phase difference between
the two oscillators, giving a value of 1 if the two oscillators
are phase-locked and about 0 if they oscillate independently.4

Figure 4(a) shows the average value of χsync as a function
of interconnection strength η for pairs of oscillators (n =
2, N = 4) with the same statistic as in (6), except that
the values of the time constants τ1 and τ2 are chosen
precisely to obtain a desired ratio ω1/ω2 of their natural
frequencies. Similar to networks of phase oscillators such
as the Kuramoto model [12], networks with ω1 = ω2

are always synchronized irrespective of η, while synchro-
nization increases with η and decreases with frequency
mismatch ω1/ω2. However, the important distinction with
the Kuramoto model is that here it is not possible to fully
synchronize arbitrary pairs of oscillators by increasing their
connection strength since oscillations vanish for η > 1 (the
so-called oscillator death due to saturation [16]). This results
in a more realistic synchronization scheme and is consistent
with the fact [15] that the Kuramoto model approximates E-
I dynamics similar to (3) only locally around η = 0 (a.k.a.
weakly coupled oscillators).

Next, we move to the analysis of PAC as given in
Problem 1(iii). Here, we study the same random networks of

3We here use Hilbert transform to obtain the instantaneous phase. For a
review and comparison of different methods, see [29].

4To avoid edge effects and initial transients, we always compute (7) over
a middle portion of {φi(k)}Kk=1, i = 1, 2, for K equal to 103 times the
period of the slower oscillator.

(a)

(b)

Fig. 4: Cross-frequency coupling between pairs of oscillators. The
average value of (a) χsync and (b) χPAC is plotted for pairs of
oscillators with varying ratios of natural frequencies ω1/ω2 and
connection strength η and the same statistics as in Figure 2.

n = 2 oscillators as above and see how strongly the phase
of the slower oscillator affects the frequency of the faster
one. To measure PAC in any signal5 {z(k)}Kk=1, we use the
measure

χPAC =
DKL(PA ‖ U(−π, π))

log(Nbin)
∈ [0, 1],

recommended in [30] following a comparison of several
measures available in the literature. Here, we first bandpass-
filter z around the two frequency ranges of interest to obtain
a slow component zslow and a fast one zfast. Then, we bin the
instantaneous phases of zslow into Nbin bins and for each bin,
compute the average instantaneous amplitude of zfast over
that bin.6 This gives a phase distribution PA over [−π, π]
that is uniform in the absence of PAC but is centered around
a “preferred phase” if the amplitude of zfast is larger at a
certain phase of zslow. The measure χPAC then computes
the KL divergence of PA from the uniform distribution,
normalized by its maximum possible value.7

Figure 4(b) shows the value of χPAC for the same net-
works as in Figure 4(a). Interestingly, χPAC also increases
as a function of η, similarly to χsync but it increases as

5Note that unlike synchronization, PAC is defined and measured for a
single signal, even though it arises as a result of the interaction between two
oscillators. Throughout, we measure PAC using the state of the excitatory
node of the faster oscillator.

6We compute both the instantaneous phases and amplitudes using the
Hilbert transform and use Nbin = 10 throughout.

7As a reference, χPAC ∼ 10−4 for θ-γ coupling in rodents hippocam-
pus [30] (being a prominent example of PAC in neural data).



a function of frequency mismatch between the oscillators.
This shows, for the first time, a clear trade-off between
synchronization and PAC, with χPAC reaching in vivo values
of ∼ 10−4 only for large values of frequency mismatch
ω1/ω2 & 5 and strong coupling η & 0.7. Note that
this tradeoff (and PAC in general) cannot be observed or
explained using models of phase oscillators that exclude
amplitude dynamics, such as Kuramoto. These results also
match observations in the brain, where the most prominent
examples of PAC are between theta (4-8Hz) and gamma (30-
100Hz) frequency ranges with ω1/ω2 & 5 [30], providing an
exciting and promising encouragement for further analysis
and understanding of the structure of the underlying brain
networks.

V. CONCLUSIONS AND FUTURE WORK

We have studied the existence of oscillations and cross-
frequency coupling in brain networks with bounded linear
threshold rate dynamics. We have provided a complete char-
acterization of structural parameters in two-dimensional E-I
pairs that generate limit cycles as well as generalizations to
higher dimensional networks of E-I pairs. We further showed
that this class of models can generate synchronization and
PAC similar to in vivo observations and that both phenom-
ena increase with inter-oscillator connection strength while
having an opposite dependence on inter-oscillator frequency
mismatch. Future work will include the generalization of our
results to arbitrary network structures with higher than two
dimensions, analytical characterization of the effects of inter-
oscillator connectivity strength and frequency mismatch on
synchronization and PAC, exploring the applications of these
results to in vivo recordings and information transfer, and
generalizations to incorporate conduction delays and noise.
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