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Abstract

The ability to store and manipulate information is a hallmark of computational systems. Whereas

computers are carefully engineered to represent and perform mathematical operations on struc-

tured data, neurobiological systems perform analogous functions despite flexible organization and

unstructured sensory input. Recent efforts have made progress in modeling the representation and

recall of information in neural systems. However, precisely how neural systems learn to modify

these representations remains far from understood. Here we demonstrate that a recurrent neural

network (RNN) can learn to modify its representation of complex information using only exam-

ples, and we explain the associated learning mechanism with new theory. Specifically, we drive

an RNN with examples of translated, linearly transformed, or pre-bifurcated time series from a

chaotic Lorenz system, alongside an additional control signal that changes value for each example.

By training the network to replicate the Lorenz inputs, it learns to autonomously evolve about a

Lorenz-shaped manifold. Additionally, it learns to continuously interpolate and extrapolate the

translation, transformation, and bifurcation of this representation far beyond the training data

by changing the control signal. Finally, we provide a mechanism for how these computations are

learned, and demonstrate that a single network can simultaneously learn multiple computations.

Together, our results provide a simple but powerful mechanism by which an RNN can learn to

manipulate internal representations of complex information, allowing for the principled study and

precise design of RNNs.
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I. INTRODUCTION1

Computers analyze massive quantities of data with speed and precision [1, 2]. At both the2

hardware and software levels, this performance depends on fixed and precisely engineered3

protocols for representing and executing basic operations on binary data [2–4]. In contrast,4

neurobiological systems are characterized by flexibility and adaptability. At the biophysical5

level, neurons undergo dynamic changes in their composition and patterns of connectivity6

[5–8]. At the cognitive level, they abstract spatiotemporally complex sensory information to7

recognize objects, localize spatial position, and even control new virtual limbs through expe-8

rience [9–11]. Hence, neural systems appear to work on fundamentally different computing9

principles that are learned, rather than engineered.10

To uncover these principles, artificial neural networks have been used to study the repre-11

sentation and manipulation of information. While feed-forward networks can classify input12

data [12], biological organisms contain recurrent connections that are necessary to sustain13

short-term memory of internal representations [13], allowing for more complex functions14

such as tracking time, distance, and emotional context [14–18]. Further, recurrent neural15

systems actually manipulate internal representations to simulate the outcome of dynamic16

processes such as kinematic motion and navigation [19–21], and to decide between different17

actions [22]. How do recurrent neural systems learn to represent and manipulate complex18

information?19

One promising line of work involves representing static memories as patterns of neural20

activity, or attractors, to which a network evolves over time [23]. These attractors can exist21

in isolation (e.g. an image of a face) or as a continuum (e.g. smooth translations of a face)22

using Hopfield or continuous attractor neural networks (CANNs), respectively [24, 25]. Other23

studies use a differentiable neural computer (DNC) to read and write information to these24

attractor neural networks to solve complex puzzles [26]. For understanding neurobiological25

systems, these memory networks are limited by requiring specifically engineered patterns of26

connectivity, and cannot manipulate time-varying memories necessary to plan and produce27

speech and music [27–29]. Additionally, DNCs artificially segregate the computing and28

storage components. Hence, we seek a single neural system that learns to both represent29

and manipulate temporally complex information by perceiving and replicating examples.30

In this work, we use the reservoir computing framework [30] to obtain such a system31
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(the reservoir), where the complex information is a chaotic attractor that is not static,32

but evolves in a deterministic yet unpredictable manner through time [31]. Prior work33

has demonstrated the reservoir’s ability to represent and switch between isolated attractors34

by imitating examples [32, 33]. Here, we demonstrate that reservoirs can further learn to35

interpolate and extrapolate translations, linear transformations, and even bifurcations on36

their representations of chaotic attractor manifolds simply by imitating examples. Further,37

we put forth a mechanism of how these computations are learned, providing insights into the38

set of possible computations, and offering principles by which to design effective networks.39

II. MATHEMATICAL FRAMEWORK40

Neural systems represent and manipulate periodic stimuli through example, such as baby41

songbirds modifying their song to imitate adult songbirds [28]. However, they also perform42

more advanced and original manipulations on aperiodic stimuli with higher-order structure,43

such as musicians improvising on jazz melodies [29]. To model such complex stimuli, we use44

chaotic attractors that evolve deterministically yet unpredictably along a global structure:45

a fractional-dimensional manifold. Specifically, we consider the Lorenz attractor defined as46

ẋ1 = σ(x2 − x1)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3,

(1)

and use the parameters σ = 10, β = 8/3, ρ = 28 from the original study [31] (Fig. 1).47

FIG. 1. Chaotic Lorenz manifold. Lorenz attractor plotted in space (left) and time (right).
48

49

Next, we model the neural system as a recurrent neural network driven by our inputs50

1

γ
ṙ = −r + g (Ar +Bx + d) ,

4



where r is a real-valued vector of N reservoir neuron states, A is an N ×N matrix of inter-51

neuron connections, B is an N × 3 matrix of connections from the inputs to the neurons,52

d is an N × 1 bias vector, g is a scalar activation function applied entry-wise to its input53

arguments (hence mapping vectors to vectors), and γ is a time constant.54

Several prior studies use echo state [32] and FORCE learning [33] which allow reservoirs to55

predict a chaotic time series by modifying the inter-neuron connections. This modification56

can be accomplished by using the chaotic time series x(t) to drive the reservoir, thereby57

generating the reservoir time series r(t) (Fig. 2a,b). Here, x(t) and r(t) are 3 × T and58

N × T matrices, respectively, from numerically evolving the differential equations over T59

time steps. By solving for a simple 3×N readout matrix W that uses linear combinations of60

reservoir states to approximate the input by minimizing the matrix 2-norm (see Supplement)61

W = argmin
W

‖Wr(t)− x(t)‖2,

the output x̂(t) = Wr(t) mimics the input x(t) (Fig. 2c). Finally, we close the feedback62

loop by substituting the output as the input to create the autonomous reservoir (Fig. 2d)63

1

γ
ṙ′ = −r′ + g ((A+BW )r′ + d) ,

whose evolution projects to a Lorenz-shaped attractor as x′(t) = Wr′(t) (Fig. 2e). Hence,64

reservoirs sustain representations of complex temporal information by learning to au-65

tonomously evolve along a chaotic attractor from example inputs.66

FIG. 2. Representing chaotic attractors with reservoirs. (a) Time series of a chaotic

Lorenz attractor that (b) drives the recurrent neural network reservoir. (c) Weighted sums of

the reservoir states are trained to reproduce the original time series. (d) By using these weighted

sums of reservoir states to drive the reservoir instead of the inputs, (e) the reservoir autonomously

evolves along a trajectory that projects to a Lorenz-shaped chaotic manifold.
67

68
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To study how reservoirs might perform computations by modifying the position or ge-69

ometry of these representations in a desired way, we first adapt the framework to include a70

vector of control parameters c that map to the reservoir neurons through matrix C to yield71

1

γ
ṙ = −r + g (Ar +Bx + Cc + d) .

Such control parameters were also previously used to switch between multiple attractor72

outputs [33]. The second adaptation is to approximate the reservoir dynamics using a73

Taylor series to quadratic order around equilibrium values r∗,x∗ = 0, c∗ = 0, yielding74

1

γ
δṙ = −δr + U(Aδr +Bx + Cc) + V (Aδr +Bx + Cc)2. (2)

Here, δr = r − r∗, U , and V are diagonal matrices whose i-th entries are the first and half75

of the second derivatives of gi evaluated at the fixed point, respectively, and ()2 is the entry-76

wise square of the vector (see Supplement for details). By studying quadratic reservoirs77

and how they learn to manipulate their representations of chaotic manifolds, we will gain78

an intuition due to their analytic tractability, and generalizability across many activation79

functions g when driven within a range over which the quadratic expansion is accurate.80

III. LEARNING A TRANSLATION OPERATION BY EXAMPLE81

Reservoirs learn complex information through simple imitation: approximating the driv-82

ing inputs using the reservoir states is enough to autonomously represent and evolve about a83

chaotic manifold. Here we show that this simple scheme is also enough to learn to translate84

the representation. We begin with a Lorenz time series x0(t), and create shifted copies85

xc(t) = x0(t) + Pc. (3)

For the purposes of demonstration, we consider a translation in the x1 direction such that86

P = [1; 0; 0] is a column vector, and c = 0, 1, 2, 3 is a scalar. We use these four time series87

to drive our reservoir according to Eq. 2, thereby generating four reservoir time series rc(t).88

Numerically, xc(t) and rc(t) are matrices of dimension 3× T and N × T over T time steps,89

which we concatenate along the time dimension into x(t) = [x0(t),x1(t),x2(t),x3(t)] and90

r(t) = [r0(t), r1(t), r2(t), r3(t)], respectively. Then, we compute output weights91

W = argmin
W

‖Wr(t)− x(t)‖2, (4)
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such that our output x̂ = Wr(t) approximates our input x(t) (Fig. 3a–c). Finally, we92

substitute the output as the input to yield the feedback system (Fig. 3d)93

1

γ
δṙ′ = −δr′ + U(Rδr′ + Cc) + V (Rδr′ + Cc)2, (5)

where R = A+BW (see Supplement for a discussion on Wrc(t) ≈ Wδrc(t)).94

FIG. 3. Learning and extrapolating a translation operation through examples. (a)

Schematic of the time series of the Lorenz and control inputs, beginning with the original Lorenz

time series x0(t) at c = 0, followed by three equally spaced shifts in the x1 direction and in the c

parameter. (b) These inputs generate four reservoir time series rc(t). (c) Next, weighted sums of

the reservoir states are used to generate outputs Wrc(t) = x̂c(t) ≈ xc(t) that mimic the inputs.

(d) The outputs Wr(t) replace the inputs x(t) to create a reservoir with a closed feedback loop. (e)

Over the course of a single simulation, the reservoir evolves autonomously about a Lorenz-shaped

manifold, and translates this representation along x1 by smoothly and continuously changing c as

a real number over a range much larger than the training range.

As we evolve this autonomous reservoir while varying c to extreme values −40 ≤ c ≤ 4095

both inside and outside of the training values, it has learned to evolve about a Lorenz-shaped96

manifold that is translated based on the value of c (see Supplement for translations in all97

spatial directions). Hence, by training the network on shifted copies of the input time series,98

the reservoir has learned a translation operation on the attractor.99
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IV. LEARNING A LINEAR TRANSFORMATION OPERATION BY EXAMPLE100

In addition to learning a translation operation that does not change the geometry of the101

representation, here we demonstrate that reservoirs can learn linear transformation using102

the exact same framework. Similarly, we begin with a Lorenz time series x0(t) generated103

from Eq. 1, and create linearly transformed copies of the time series such that104

xc(t) = (I + cP )x0(t), (6)

for c = 0, 1, 2, 3, where P is a matrix encoding a transformation (Fig. 4a,c). Specifically, we105

perform a squeeze along x1 by setting [P ]11 = −0.012 and the remaining elements to 0.106

Exactly as before, we drive the reservoir according to Eq. 2, concatenate our input and107

reservoir time series into x(t) and r(t) to train the output weights W according to Eq. 4,108

and feed the outputs back as inputs to yield the feedback system Eq. 5. This reservoir109

autonomously evolves about a Lorenz-shaped manifold that stretches based on the parameter110

−40 ≤ c ≤ 40 (Fig. 4b,d) far outside of the parameters used in the training regime c =111

0, 1, 2, 3 (see Supplement for more examples). Hence, using the same framework, the reservoir112

has learned the linear transformation operation on the attractor manifold.113

FIG. 4. Extrapolating a transformation operation through examples. (a) 3-dimensional

plot of the training data of the Lorenz time series that has been stretched along the x1 direction

at c = 0, 1, 2, 3. (b) 3-dimensional plot of the feedback reservoir output that autonomously evolves

about a Lorenz-shaped manifold that stretches dramatically based on varying c from −40 to 40.

We also provide a top view of the (c) training data and (d) predicted output data.
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V. LEARNING TO INFER A BIFURCATION BY EXAMPLE114

For both translations and transformations, the reservoir learned a smooth change in its115

representation of the chaotic manifold. Here we demonstrate that a reservoir can infer,116

without actually ever having experienced, a much more dramatic change: a bifurcation. In117

the Lorenz attractor (Eq. 1 for ρ > 1, σ = 10, β = 8/3), there are two fixed points: one at118

the center of each wing, which undergo a subcritical Hopf bifurcation when ρ = ρ∗ ≈ 24.7119

[23]. When ρ < ρ∗, these two fixed points are stable. When ρ > ρ∗, the fixed points become120

unstable, yielding the characteristic wing-shaped flow. Here we demonstrate that a reservoir121

trained only on stable examples (ρ < ρ∗) can accurately predict the unstable flow (ρ > ρ∗).122

FIG. 5. Extrapolating the bifurcation of the Lorenz. (a) Two training trajectories for each

of the stable Lorenz fixed points at the wings, for ρ = 23 with c = 0 (blue) and for ρ = 24 with

c = 1 (light blue). (b) The predicted trajectory of the feedback reservoir moves towards a stable

fixed point for c = 0, and bifurcates into a Lorenz-shaped manifold as c is increased. (c) Four

training examples for one of the stable Lorenz fixed points for ρ = 21, 22, 23, 24 with c = 0, 1, 2, 3.

(d) The predicted trajectory moves towards a stable fixed point for c = 0, and then bifurcates into

a Lorenz-shaped manifold as c is increased.
123

124

For the two fixed points a and b, we begin with four training trajectories: xa23(t) and125

xb23(t) that evolve stably towards the fixed points for ρ = 23, and xa24(t) and xb24(t) that126

evolve stably towards the fixed points for ρ = 24 (Fig. 5a). We then drive the reservoir with127

xa23(t) and xb23(t) while setting c = 0, and with xa24(t) and xb24(t) while setting c = 1, and128

train the output weights. Finally, we evolve the feedback reservoir while changing c from 0129

to 5, and note that the trajectory bifurcates into a Lorenz-shaped manifold (Fig. 5b).130

As a second demonstration, we begin with another set of four training trajectories:131

xa21(t), · · · ,xa24(t) that evolve stably towards only one fixed point for ρ = 21, · · · , 24 (Fig. 5c).132
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We then drive the reservoir with xa21(t), · · · ,xa24(t) while setting c = 0, · · · , 3, and train the133

output weights. Finally, we evolve the feedback reservoir while changing c from 0 to 7, and134

note that the trajectory again bifurcates into a Lorenz-shaped manifold (Fig. 5d). Hence,135

after only observing a few stable trajectories before the bifurcation (ρ < ρ∗), the reservoir136

accurately extrapolates the geometry of the Lorenz trajectory after the bifurcation (ρ > ρ∗).137

VI. MECHANISM OF HOW OPERATIONS ARE LEARNED138

Now that we have taught reservoirs to manipulate chaotic manifolds, we seek to under-139

stand the mechanism. We begin with some intuition by expanding the feedback dynamics140

1

γ
δṙ′ = ([U + 2V diag(Cc)︸ ︷︷ ︸

stretch

]R− I)δr′ + UCc︸︷︷︸
shift

+V (Rδr′)2 + V (Cc)2︸ ︷︷ ︸
small

,

and notice that the control parameter can scale the shape of the reservoir’s internal dynamics141

(stretch), and add a constant driving input (shift). For small changes in c, the quadratic142

term Cc is negligible. To formalize this intuition, we consider the time series r′(t) = r′c=0(t)143

generated by evolving the autonomous reservoir according to Eq. 5 at c = 0. Next, we take144

the total differential of Eq. 5 evaluated at r′(t) and c = 0 to yield145

(I −KA)dr′ +
1

γ
dṙ′ = K(BWdr′ + Cdc), (7)

where K = U + 2V diag(Rδr′(t)). Our goal is to write the change in the reservoir state146

dr′(t) that is induced by changing the control parameter by an infinitesimal amount dc.147

When learning translations, the output weights are trained such that Wrc(t) ≈ xc(t) =148

x(t) + Pc. For sufficiently nearby training examples (small P, c), we also implicitly ap-149

proximate the differential relation Wdr(t) ≈ Pdc. Additionally, if the feedback reservoir150

stabilizes these examples, then Wdr′(t) ≈ Pdc. Substituting this relation into Eq. 7 yields151

(I −KA)dr′ +
1

γ
dṙ′ ≈ K(BP + C)dc.

If we fix dc, we have 2N variables, dr′ and dṙ′, but only N equations. By taking the time152

derivative of the differential relation, we generate another N variables and N equations.153
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FIG. 6. Changing the control parameter changes the reservoir dynamics to manipulate

representations. (a) Schematic of a reservoir with feedback connections after the output weights

W have been trained. (b) Reservoir time series generated by evolving the autonomous reservoir

with the original Lorenz input with c = 0 (dark gold). We also show the predicted time series

from solving Eq. 8 after training on translated examples and setting dc = ∆c = 20 (light gold).

The output projections of the two time series are shown in blue and green, respectively. (c) The

original and predicted reservoir states and their output projections for ∆c = −40 after training

on transformed Lorenz inputs by solving Eq. 9. (d) Plot of the real and imaginary components

of the two most unstable eigenvalues of the autonomous reservoir trained on two stable Lorenz

trajectories (Fig. 5a,b). The reservoir is linearized about its fixed point according to Eq. 10 as c is

slowly changed.

Continuing to take time derivatives yields the following system of equations154 
H0 H−1 0 · · ·

H1 H0 H−1 · · ·

H2 2H1 H0 · · ·
...

...
...

. . .




dr′

dṙ′

dr̈′

...

 ≈

K

K̇

K̈
...

 (BP + C)dc,

where H−1 = 1
γ
I, H0 = I −KA, and Hi = −K(i)A is the i-th time-derivative of KA. This155

matrix is a block-Hessenberg matrix, with an analytic solution [34] for the first term dr′.156

11



We truncate this solution (see Supplement) to explicitly relate dc to dr′ as follows:157

dr′ ≈ −
[
γH2

0 −H1

]−1 [
−γH0 I

]K
K̇

 (BP + C)dc. (8)

As a demonstration, we pick a finite ∆c = 20, and plot the original and predicted change158

in the reservoir states, and their outputs in spatial coordinates (Fig. 6b). Hence, using only159

the feedback dynamics Eq. 5 and sufficiently nearby training examples, changing c causes160

changes in the reservoir states from Eq. 8 that map to a translation.161

The same approach can be used for linear transformations, where the output weights are162

trained such that Wrc(t) ≈ xc(t) = (I + cP )x(t). For sufficiently nearby training examples,163

we implicitly approximate the differential relation Wdr(t) ≈ Px(t)dc ≈ PWr(t)dc, which164

if properly stabilized, yields Wdr′(t) ≈ PWr′(t). Performing the same time derivatives and165

solution truncation as in the translation, we get the following relation between dc and dr′:166

dr′ ≈ −
[
γH2

0 −H1

]−1 [
−γH0 I

] K(BPWr′ + C)

K̇(BPWr′ + C) +KBPW ṙ′

 dc. (9)

As another demonstration, we set ∆c = −40, and plot the original and predicted change in167

the reservoir states, and their outputs (Fig. 6c).168

Finally, to understand how the reservoir is able to infer a bifurcation, we demonstrate169

that it learns a smooth translation of eigenvalues. Specifically, at ρ∗, the fixed points at170

the wings of the Lorenz system undergo a Hopf bifurcation, whereby the real component of171

complex conjugate eigenvalues goes from negative to positive. To track the eigenvalues of172

the autonomous reservoir, we linearize Eq. 5 about a fixed point δr∗ such that173

1

γ
δṙ′ ≈ [−I + UR + 2V diag(Rδr∗ + Cc)R](δr′ − δr∗). (10)

Then, using the output weights trained only on stable Lorenz trajectories (at c = 0, ρ = 23174

and c = 1, ρ = 24; Fig. 5a,b), we track the autonomous reservoir’s two most unstable175

eigenvalues (largest real component) at the fixed point as we vary the control parameter176

from c = 0 to c = 3. We find that these eigenvalues are complex conjugates whose real177

components go from negative to positive (Fig. 6d). Hence, we demonstrate that not only178

can reservoirs learn smooth translations and transformations by mapping dc to dr′, but they179

can also perform bifurcations by learning smooth changes in their eigenvalues.180
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VII. SIMULTANEOUS LEARNING OF MULTIPLE OPERATIONS181

FIG. 7. Flight of the Lorenz. A reservoir trained on translated inputs along the x1 and x3

directions evolves autonomously along a Lorenz-shaped chaotic manifold. We can change the x1

and x3 position of its representation by changing control parameters c1 and c2, respectively.

To close, here we demonstrate that reservoirs can easily learn multiple computations by182

changing multiple control inputs. We train a translation in the x1 direction with control183

parameter c1, and a translation in the x3 direction with control parameter c2. As before, we184

begin with a Lorenz time series x0,0(t) generated from Eq. 1, and created shifted copies185

xc1,c2(t) = x0,0(t) + c1a1 + c2a2,

where a1 = [1; 0; 0] corresponds to an x1 shift, and a2 = [0; 0; 1] corresponds to an x3 shift.186

We generate 10 shifted inputs, with one unshifted attractor (c1 = 0, c2 = 0), three shifts in187

the x1 direction (c1 = 1, 2, 3, c2 = 0), three shifts in the x3 direction (c1 = 0, c2 = 1, 2, 3),188

and three shifts in both directions (c1 = 1, 2, 3, c2 = 1, 2, 3). We use these shifted copies189

along with their corresponding control inputs to drive our reservoir and produce 10 reservoir190

time series rc1,c2(t). Then, we concatenate these 10 time series into x(t) and r(t) to train191

output weights W according to Eq. 4, and perform the feedback according to Eq. 5 where192

c = [c1; c2] is a vector. By changing parameters c1 and c2, the reservoir evolves about a193

Lorenz-shaped manifold that is shifted in the x1 and x3 directions (Fig. 7).194
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VIII. DISCUSSION195

In this paper, we teach an RNN to evolve about a Lorenz-shaped manifold, and to control196

its evolution about a translated, transformed, and bifurcated continua of such manifolds.197

Our approach contributes to prior work on artificial neural networks in three significant ways198

[25, 32, 33, 35]. First, we provide a means by which a neural system can learn continuous199

interpolated and extrapolated modifications, along with discontinuous bifurcations, of its200

own representation solely through examples. Second, the learned manifolds are spatially201

and temporally complex, allowing for potential extensions to learning modifications of time202

series data such as speech or music with a structured yet unpredictable evolution. Third,203

we use a randomly generated and arbitrarily connected network that does not need to be204

artificially engineered to preserve invariance or manipulate information [25].205

One of the main limitations of this work is the lack of a clear mechanism of how the net-206

work connectivity ultimately stabilizes the chaotic manifold. Much progress has been made207

in tackling this limitation, both by exercising theoretical concepts of generalized synchro-208

nization [36], and by developing tools for controlling chaos [37]. However, there is insufficient209

knowledge to guarantee that a set of training and reservoir parameters will always success-210

fully teach the desired computation. Similarly, we are unable to specify exactly how far211

to space the training examples for the feedback reservoir to successfully learn the linear212

relationships between the differential of the reservoir states and the control parameter.213

A particularly promising area for future work is related to the simple quadratic form of the214

reservoir. Because all of these results are obtained by driving our reservoir in the quadratic215

regime, the same results should hold for common neural mass models, such as the Wilson-216

Cowan model [38]. Hence, these results may provide a unifying framework for learning217

and computing in dynamical neural models. Additionally, these results provide a basis for218

exploring more complex computations, such as inferring bifurcations in experimental data,219

and testing the reservoir’s “imagination” in reconstructing more complex chaotic manifolds220

using incomplete data. Finally, and perhaps most astonishingly, the reservoir’s ability to221

accurately reconstruct the full nonlinear geometry of the bifurcated Lorenz manifold after222

only observing pre-bifurcation data implies that it is not only imitating examples, but actu-223

ally inferring higher-order nonlinear structure. This work therefore provides a starting point224

for exploring exactly how higher-order structure is learned by neural systems.225
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I. METHODS1

In this section, we describe additional details about the methods and simulations used2

in the main text. We begin with a more thorough overview of reservoir dynamics and their3

derivation, followed by specific details of the numerical simulations.4

A. Reservoir dynamics5

The reservoir computing framework is a general scheme by which a nonlinear dynamical6

system (the reservoir) is driven by some input, and a simple linear readout of the reservoir7

states is trained [1]. The reservoir consists of N neural units, where each unit i has a8

real-valued level of activity over time, ri(t). We collect this activity into an N -dimensional9

column vector10

r(t) =


r1(t)

r2(t)
...

rN(t)

 ,

that we refer to as the reservoir state. These reservoir states are driven by some input time11

series of M inputs x1(t), x2(t), · · · , xM(t), that we collect into the input vector12

x(t) =


x1(t)

x2(t)
...

xM(t)

 .

In our framework, we add a set of K control inputs c1, · · · , cK that we collect into the control13

vector14

c =


c1

c2

...

cK

 .

For continuous time systems (t ∈ R≥0), a typical equation for the time-evolution of a15

reservoir consists of a nonlinear (usually sigmoidal [1]) transformation g on a linear sum of16

3



all inputs and states written as17

1

γ
ṙ(t) = −r(t) + g(Ar(t) +Bx(t) + Cc + d),

where ṙ(t) represents the time derivative [2, 3], A is a real-valued matrix of dimension N×N ,18

B is a real-valued matrix of dimension N×M , C is a real-valued matrix of dimension N×K,19

and d is a constant bias vector of dimension N × 1. We can write the dynamics for each20

reservoir state, ri(t), as21

1

γ
ṙi(t) = −ri(t) + gi

(
N∑
n=1

Ainrn(t) +
M∑
m=1

Bimxm(t) +
K∑
k=1

Cikck + di

)
.

If we write Ai∗, Bi∗, and Ci∗ as the i-th row of matrices A,B, and C, respectively, we can22

write this equation more concisely as23

1

γ
ṙi(t) = −ri(t) + gi (Ai∗r(t) +Bi∗x(t) + Ci∗c + di) . (1)

We begin by observing that the reservoir states are evolved according to some prede-24

termined input x(t) and control input c to generate the reservoir state time series r(t).25

Next, linear combinations of the reservoir state are taken to approximate the input x(t) by26

minimizing the matrix 2-norm of the difference in the numerical time series (see Sec. I E)27

‖Wr(t)− x(t)‖2,

where W is the real valued matrix of dimension M ×N that is trained. After training, we28

perform feedback by replacing the inputs x(t) with the trained outputs Wr(t) to yield the29

feedback dynamics30

1

γ
ṙ′(t) = −r′(t) + g(Ar′(t) +BWr′(t) + Cc + d),

and by factoring the term R = A+BW , we obtain31

1

γ
ṙ′(t) = −r′(t) + g(Rr′(t) + Cc + d).

This feedback equation is written element-wise as32

1

γ
ṙ′i(t) = −r′i(t) + gi

(
N∑
n=1

Rinr
′
n(t) +

K∑
k=1

Cikck + di

)
.

We note that R is an N ×N matrix.33
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B. Derivation of quadratic reservoir34

While the reservoir computing framework often uses a specific nonlinear sigmoid function35

for g, our goal is to find principles of learning relevant to a broad range of functional forms of36

g. To achieve this goal, we study the reservoir in the weakly nonlinear regime. By deriving37

insights in this regime, we aim to make statements about dynamical systems with many38

different forms of g as long they are driven in the same regime. By weakly nonlinear, we39

mean the quadratic regime, where the reservoir evolves nearby some constant stable fixed40

point attractor r∗. This regime is explicitly encoded by taking the second-order Taylor series41

expansion of the dynamics about a steady state in all of the inputs r∗,x∗, c∗. For notational42

convenience, we write δr = r−r∗, δx = x−x∗, and δc = c−c∗, and also omit the notation43

of time dependence, (t). If we write the full dynamics from Eq. 1 as44

1

γ
ṙi = fi(r,x, c) = −ri + gi (Ai∗r +Bi∗x + Ci∗c + di) ,

then the Taylor series expansion to second order contains terms45

Ti,0 = fi|r=r∗,x=x∗,c=c∗

Ti,1 = ∇r,x,cfi|r=r∗,x=x∗,c=c∗

Ti,2 = ∇2
r,x,cfi|r=r∗,x=x∗,c=c∗ ,

where ∇ is the gradient operator with respect to the subscripted variables46

∇r,x,c =
[
∇r, ∇x, ∇c

]
=
[
∂
∂r1
, · · · , ∂

∂rN
, ∂
∂x1
, · · · , ∂

∂xM
, ∂
∂c1
, · · · , ∂

∂cK

]
,

yielding a vector of partial derivatives, and ∇2 yields a matrix of all pairwise second partial47

derivatives. Then the quadratic dynamics become48

1

γ
δṙi ≈ Ti,0 + Ti,1


δr

δx

δc

+
1

2

[
δr> δx> δc>

]
Ti,2


δr

δx

δc

 .
As we are evaluating the dynamics about a fixed point, the reservoir does not change its49

state at this point, such that fi|r=r∗,x=x∗,c=c∗ = 0. Hence the term50

Ti,0 = 0
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vanishes. The next term, Ti,1, is a linear approximation of the dynamics fi51

Ti,1 = ∇r,x,c(−ri) +∇r,x,cgi (Ai∗r +Bi∗x + Ci∗c + di)

=
[
0, · · · , 0, −1, 0, · · · , 0

]
+ ui

[
Ai∗, Bi∗, Ci∗

]
,

where ui = ∂gi
∂(r,x,c)

∣∣∣
r∗,x∗,c∗

is the evaluation of the first derivative of gi at the fixed point,52

and the subsequent term Ti,2 approximates the quadratic curvature of fi as follows:53

Ti,2 = ∇2
r,x,cfi|r=r∗,x=x∗,c=c∗

= 2vi


A>i∗

B>i∗

C>i∗

[Ai∗, Bi∗, Ci∗

]
,

where vi = 1
2

∂2gi
∂(r,x,c)2

∣∣∣
r∗,x∗,c∗

is half of the evaluation of the second derivative of gi at the54

fixed point. Substituting these values back into the quadratic dynamics, we obtain55

1

γ
δṙi ≈ −δri + ui

[
Ai∗, Bi∗, Ci∗

]
δr

δx

δc

+ vi

[
δr> δx> δc>

]
A>i∗

B>i∗

C>i∗

[Ai∗, Bi∗, Ci∗

]
δr

δx

δc

 ,
and we notice that56

[
δr> δx> δc>

]
A>i∗

B>i∗

C>i∗

 =
[
Ai∗, Bi∗, Ci∗

]
δr

δx

δc

 ,
to yield57

1

γ
δṙi ≈ −δri + ui

[
Ai∗, Bi∗, Ci∗

]
δr

δx

δc

+ vi

[Ai∗, Bi∗, Ci∗

]
δr

δx

δc




2

,

which can be rewritten as58

1

γ
δṙi ≈ −δri + ui(Ai∗δr +Bi∗δx + Ci∗δc) + vi(Ai∗δr +Bi∗δx + Ci∗δc)2.

Compiling the dynamics of all reservoir nodes r, we write the compact vector form of the59

dynamics as60

1

γ
δṙ = −δr + U(Aδr +Bδx + Cδc) + V (Aδr +Bδx + Cδc)2,

6



where U and V are diagonal matrices where the i-th elements are ui and vi obtained by eval-61

uating the first and second derivatives of gi, respectively. To avoid making any assumptions62

about the operating point of the input states or control inputs, we linearize about x∗ = 063

and c∗ = 0. Further, we notice that δṙ = d
dt

(r − r∗) = ṙ. Hence, the above vector form of64

the equation becomes65

1

γ
δṙ = −δr + U(Aδr +Bx + Cc) + V (Aδr +Bx + Cc)2. (2)

Importantly, we note that the elements of U and V are not allowed to arbitrarily be66

any value. Instead, their values depend on the first and second derivatives of the activation67

function g evaluated at the fixed points r∗,x∗, and c∗. For the sake of remaining relevant68

to the existing literature that frequently uses the hyperbolic tangent function tanh [1], we69

will restrict the values of U and V . First, we note that at the fixed point, we have70

0 = −r∗ + g(Ar∗ +Bx∗ + Cc∗).

Recall that we evaluate our functions at x∗ = 0 and c∗ = 0, such that g(Ar∗) = r∗,71

regardless of the form of g. Next, we consider the specific activation function72

g(r,x, c) = tanh(Ar +Bx + Cc + d),

and evaluate its first derivative at r∗,x∗ = 0, c∗ = 0 to yield73

dgr∗,x∗=0,c∗=0 = 1− tanh(Ar∗)2 = 1− r∗2, (3)

where 1 is an N -dimensional vector of ones, and the square notation of the vector implies an74

element-wise square. Hence, U is a diagonal matrix where the i-th entry is 1− r∗2i . Finally,75

we take the second derivative76

d2gr∗,x∗=0,c∗=0 = −2(tanh(Ar∗)− tanh(Ar∗)3) = 2(r∗3 − r∗), (4)

such that the i-th diagonal element of V is given by r∗3i − r∗i . Hence, for the quadratic77

approximation of tanh, it is sufficient to specify a fixed point r∗ to fully determine the78

matrices U and V .79
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C. Simulation parameters80

For all simulations in the main text of the paper, we used the following parameter choices:81

1. Global parameters82

• simulation time step: ∆t = 0.001.83

2. Lorenz training data parameters84

• dynamical equation:85

ẋ1 = σ(x2−x1) ẋ2 = x1(ρ−x3)−x2 ẋ3 = x1x2−βx3.86

• parameters: σ = 10, β = 8/3, ρ = 28 (except in the bifurcation example).87

• uniform random initial conditions: x1, x2, x3 ∈ [0, 10].88

• throwaway simulation time (per attractor): Twaste = 20.89

• training simulation time (per attractor): Ttrain = 200.90

• translation training shift: P =


1

0

0

.91

• transformation training stretch: P =


−.012 0 0

0 0 0

0 0 0

.92

3. Reservoir93

• dynamical equation: 1
γ
ṙ = −δr + U(Aδr +Bx + Cc) + V (Aδr +Bx + Cc)2.94

• reservoir initial condition: r(0) = 0.95

• adjacency matrix A has 10% binary density. We begin with matrix Ã where each96

nonzero element is drawn from a uniform random distribution Ãij ∈ [−1, 1]. Then the97
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matrix is normalized such that A = 0.95 Ã
real(λmax)

, where λmax is the eigenvalue with98

the largest real value. For a tanh activation function, this normalization is used to99

ensure the echo-state property in discrete time reservoir systems [2].100

• number of reservoir neurons: N = 300.101

• time constant: γ = 100.102

• fixed point: each element was drawn from a random uniform distribution r∗i ∈103

[−1,−0.8] ∪ [0.8, 1].104

• data input matrix: every row i of B has one non-zero element at index j. This105

index is chosen uniformly at random (Pr(j = 1) = · · · = Pr(j = M)). For examples106

involving translations and transformations, the value of the element is drawn uniformly107

from Bij ∈ [−0.004, 0.004]. For examples involving bifurcations, the magnitude of108

the observed data is much smaller (local to the stable fixed point, instead of the109

full chaotic attractor manifold), and therefore the element is drawn uniformly from110

Bij ∈ [−0.04, 0.04].111

• control input matrix: every row i of C has one non-zero element at index j. This index112

is chosen uniformly and randomly (Pr(j = 1) = · · · = Pr(j = K)), and the value of113

the element is drawn uniformly from Cij ∈ [−0.002, 0.002].114

D. Simulation method115

To simulate both the input and reservoir dynamics, we used a 4-th order Runge-Kutta

numerical integration. For the dynamics of the Lorenz attractor,

ẋ = f(x),

the Runge-Kutta computes the following values116

kx1 = ∆t · f (x(t))

kx2 = ∆t · f
(
x(t) +

kx1

2

)
kx3 = ∆t · f

(
x(t) +

kx2

2

)
kx4 = ∆t · f (x(t) + kx3) ,

9



and evolves the state forward using117

x(t+ ∆t) = x(t) +
1

6
(kx1 + 2kx2 + 2kx3 + kx4).

The simulation of the reservoir dynamics requires more careful analysis, because it is a118

system driven by external inputs. For the original reservoir dynamics given by Eq. 2119

1

γ
ṙ = f(r,x, c) = −δr + U(Aδr +Bx + Cc) + V (Aδr +Bx + Cc)2,

the algorithm to update the reservoir states is given by120

kr1 = ∆t · f (r(t),x(t), c(t))

kr2 = ∆t · f
(
r(t) +

kr1
2
,x(t) +

kx1

2
, c(t) +

kc1
2

)
kr3 = ∆t · f

(
r(t) +

kr2
2
,x(t) +

kx2

2
, c(t) +

kc2
2

)
kr4 = ∆t · f (r(t) + kr3,x(t) + kx3, c(t) + kc3) ,

and the reservoir state evolves forward according to121

r(t+ ∆t) = r(t) +
1

6
(kr1 + 2kr2 + 2kr3 + kr4).

Hence, when we simulate the Lorenz state x(t), we also save the corresponding values122

kx1, · · · , kx3 to use in the reservoir update algorithm. Finally, we note that in our simulations,123

we slowly vary the control input c(t) over time, requiring us to determine the trajectory of124

c(t) beforehand. However, we require a differential equation that generated c(t) to solve for125

the final parameters kc1, · · · , kc4. We assume the differential equations that generate c are126

constant, such that between time t and t+ ∆t, the rate of change of c(t) is given by127

ċ(t) = f(c(t)) =
c(t+ ∆t)− c(t)

∆t
.

Such dynamics yield the parameters128

kc1 = ∆t · f (c(t)) = c(t+ ∆t)− c(t)

kc2 = ∆t · f
(
c(t) +

kc1
2

)
= ∆t · f

(
c(t+ ∆t) + c(t)

2

)
= c(t+ ∆t)− c(t)

kc3 = ∆t · f
(
c(t) +

kc2
2

)
= ∆t · f

(
c(t+ ∆t) + c(t)

2

)
= c(t+ ∆t)− c(t).

The same integration is used with feedback where 1
γ
ṙ = f(r, c) = −δr + U(Rδr + Cc) +129

V (Rδr + Cc)2.130
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E. Training131

Using the dynamical equations and RK4 integration scheme, we first generated the Lorenz132

attractor training inputs x(t). Each of the single direction translation and transformation133

examples described in the main text used four Lorenz attractor inputs. The first was the134

original Lorenz time series x(t), and the remaining three were translations or rotations of the135

original. Each of these four time series were simulated for T = Twaste+Ttrain = 20+200 = 220136

time. At a time step of ∆t = 0.001, each time series x(t) contained T
∆t

= 220, 000 simulation137

time points, stored in data matrix X0 for the original attractor. Because we also kept the138

4 outputs of the RK4 numerical integration scheme, the data matrix X0 had dimensions139

variables × time steps × RK4 = 3 × 220, 000 × 4. With three additional time series for140

translation or rotation, X1, X2, X3, we concatenated the four time series along the second141

dimension into the full matrix X with dimension 3× 880, 000× 4.142

Using this Lorenz data matrix X, and a corresponding control input data matrix, we143

drove the reservoir to generate r(t), contained in a reservoir data matrix D that was of144

size N = 300 × 880, 000. For every T
∆t

= 220, 000 time steps, we threw away the first145

Twaste

∆t
= 20, 000 time points, as this simulation allowed both the Lorenz and reservoir systems146

to forget their initial conditions. The remaining Ttrain
∆t

= 200, 000 time points of each attractor147

were kept for training. This process yields a Lorenz training matrix Xtrain of dimension148

3× 800, 000 (as we throw away the RK4 simulation parameters after driving the reservoir),149

and a reservoir training matrix Dtrain of dimension 300× 800, 000.150

Finally, we seek a training matrix M of dimension 3 × 300 that minimizes the matrix151

2-norm152

‖MDtrain −Xtrain‖2.

Specifically, we use MATLAB’s command lsqminnorm, that not only minimizes this norm,153

but in the event that multiple solutions exist, also minimizes the norm of M .154
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F. Training maps the fixed point to 0155

Here, we describe a particular but important methodological nuance to the training.156

Recall that from Eq. 2, our reservoir evolves according to157

1

γ
δṙ = −δr + U(Aδr +Bx + Cc) + V (Aδr +Bx + Cc)2,

where δr = r − r∗. If our training scheme involved approximating the inputs with the158

difference of the reservoir states δr such that Wδr(t) ≈ x(t), then this nuance would be159

unnecessary, as the feedback dynamics would take the proper form160

1

γ
ṙ′ = −δr′ + U(Aδr′ +BWδr′ + Cc) + V (Aδr′ +BWδr′ + Cc)2

= −δr′ + U(Rδr′ + Cc) + V (Rδr′ + Cc)2.

Unfortunately, such a scheme would require the additional assumptions that during training,161

the neural system was able to accurately retain knowledge of its fixed point r∗, and that it162

was also able to take the difference of the neural activity with respect to this fixed point in163

real time. We avoid these additional assumptions by training on the true reservoir states164

such that Wr(t) ≈ x(t), yielding165

1

γ
δṙ′ = −δr′ + U(Aδr′ +BWr′ + Cc) + V (Aδr′ +BWr′ + Cc)2

= −δr′ + U(Rδr′ +BWr∗ + Cc) + V (Rδr′ +BWr∗ + Cc)2.

In both the linear and quadratic terms, we notice an extra and undesired term BWr∗. In166

all of our simulations, the training of matrix W actually maps the fixed point to a small167

number, such that Wr∗ is on the order of 10−6, whereas Wδr(t) is on the order of 101.168

Hence, the matrix W maps the fixed point to values that are 7 orders of magnitude smaller169

than the magnitude of the inputs, such that Wr′(t) = Wδr′(t) + Wr∗ ≈ Wδr′(t), thereby170

rendering the undesired term BWr∗ effectively negligible.171

At first, we might be tempted to explain this phenomenon by the fact that the Lorenz172

attractor x(t) is centered around x1 = 0 and x2 = 0. Hence, it would make sense that a173

constant fixed point r∗ would map to a value of 0. However, the third coordinate of the174

Lorenz system is centered around x3 = ρ− 1 = 27, and yet in our simulations training still175

produces an output matrix M that maps the fixed point to 0, even along the x3 coordinate,176

across randomly assigned fixed points r∗ and reservoir parameters A, B, and C.177
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G. Truncation of the block-Hessenberg matrix178

To understand the mechanism of learning translations and transformations, we had taken179

the differential of the reservoir feedback dynamics,180

(I −KA)dr′ +
1

γ
dṙ′ = K(BWdr′ + Cdc).

If we take time derivatives of the left-hand side of this equation, we obtain181 

(I −KA) 1
γ
I 0 0 0 · · ·

↓ ↘ ↘

−K̇A (I −KA) 1
γ
I 0 0 · · ·

↓ ↘ ↓ ↘ ↘

−K̈A −2K̇A (I −KA) 1
γ
I 0 · · ·

↓ ↘ ↓ ↘ ↓ ↘ ↘

−
...
KA −3K̈A −3K̇A (I −KA) 1

γ
I · · ·

...
...

...
...

...
. . .





dr′

dṙ′

dr̈′

d
...
r ′

...



,

where the element in the i-th row and j-th column has a coefficient182

pi,j =

i− 1

j − 1

 for j ≤ i,

according to Pascal’s triangle. For the translation examples, we can write the continued183

time derivatives of the differential relation as184 

H0 H−1 0 0 · · ·

H1 H0 H−1 0 · · ·

H2 2H1 H0 H−1 · · ·

H3 3H2 3H1 H0 · · ·
...

...
...

...
. . .


︸ ︷︷ ︸

J



dr′

dṙ′

dr̈′

d
...
r ′

...


≈



K

K̇

K̈
...
K
...


(BP + C)dc,

where H−1 = 1
γ
I, H0 = I −KA, and Hi = −K(i)A is the i-th time-derivative of KA. This185

matrix is a block matrix (each element H is a matrix), and is specifically a block-Hessenberg186

matrix (zero above the first block-super diagonal). The goal here is to solve for dr′ with187

respect to dc. If we truncate J to a finite-dimensional matrix such that188

J '

J11 J12

J21 J22

 ,
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where189

J11 =


H0

H1

...

Hk−1

 , J12 =


H−1, 0, · · · , 0

H0, H−1, · · · , 0
...

...
. . .

...

pk,2Hk−2, pk,3Hk−3, · · · , H−1

 ,

J21 =
[
pk+1,1Hk

]
, J22 =

[
pk+1,2Hk−1 pk+1,3Hk−2 · · · H0

]
,

Then, the closed form solution for the first N rows of J−1 (the first block) can be written190

[4] as191

[J−1](1:N,:) ' −(J22J
−1
12 J11 − J21)−1

[
−J22J

−1
12 I

]
. (5)

However, in reality, J is not a finite matrix, but an infinite dimensional matrix. An important192

fact to verify, then, is whether there exists a sufficiently large value of k to yield an accurate193

inversion. While proving that this inverse converges is outside the scope of this work, we194

numerically demonstrate in what follows that after k = 1, successive terms do not perceivably195

change the results. Specifically, we solve for dr′ with respect to dc for k = 0, 1, 2, 3.196

As a reference for translation, at k = 0, the approximation becomes197

dr′ ≈ H−1
0 K(BP + C)dc,

and at k = 1, we obtain the approximation used in the main text. The 0-th order approxi-198

mation at k = 0 yields no change (Fig. 1a), where the predicted reservoir states (light gold)199

are identical to the original states (dark gold). The first order approximation at k = 1200

(Fig. 1b) yields a change in the reservoir states that outputs to the expected translation in201

spatial coordinates. Taking more terms in the approximation (k = 2, Fig 1c; and k = 3,202

Fig. 1d) yields no perceivable change in either the reservoir states or their outputs.203
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FIG. 1. Predicted change in reservoir states given a change in control parameter.

Reservoir time series generated by driving the reservoir with the original Lorenz input with c = 0

(dark gold), and the predicted time series from solving for dr′ after training on translated examples

and changing the control parameter ∆c = 20 (light gold), along with their output projections (dark

and light red, respectively). These approximations were taken by computing the inverse Eq. 5 for

(a) k = 0, (b) k = 1, (c) k = 2, and (d) k = 3.

H. Summary204

In sum, we have provided a general form for reservoir dynamics (Eq. 1), the derivation205

for the quadratic form of the reservoir (Eq. 2), as well as the dependence of matrices U206

and V that arise from the choice of fixed point when using tanh as the activation function207

(Eq. 3,4). We further provide all simulation parameters (time step, Lorenz parameters208

and initial conditions, reservoir parameters and initial conditions), along with the specific209

details of our simulation method, data dimensions, and training process. Finally, we provide210

numerical justification for the truncation of our approximation when deriving the mechanism211

of learning (Eq. 5).212
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II. RESULTS213

In this section, we provide some additional results to support the generalizability of the214

framework.215

A. Translation in multiple directions216

In the main text, we demonstrated that a reservoir can translate its representation of a217

Lorenz attractor along the x1 direction. Specifically, we took an untranslated Lorenz time218

series x0(t), and generated three additional training examples xc(t) for c = 1, 2, 3 such that219

xc(t) = x0(t) + c


1

0

0

 .
We then drove the reservoir using these four training examples and an additional control220

parameter c that we also varied from c = 0, · · · , 4. Afterwards, we performed the feedback,221

and translated the reservoir’s representation by varying the external control parameter c222

from −40 to 40. We reproduce this translated representation here (Fig. 2a). We show the223

same output of the feedback reservoir trained on four examples translated in the x2 direction224

(xc(t) = x0(t)+c[0; 1; 0]) and in the x3 direction (xc(t) = x0(t)+c[0; 0; 1]) (Fig. 2b,c). Hence,225

we demonstrate that the reservoir can learn these translations in arbitrary directions.226227
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FIG. 2. Translation of the Lorenz representation in all three spatial directions. (a)

Output of the feedback reservoir after being trained on 4 time series of a Lorenz attractor translated

in the x1 direction at c = 0, · · · , 4. By varying c from −40 to 40, the representation shifts in the

x1 direction. (b) The same scheme is employed for translations in the x2 direction, and (c) in the

x3 direction.

B. Different types of transformations228

In the main text, we demonstrated that a reservoir trained on the original Lorenz attractor229

x0(t) and on three transformed examples xc(t) = (I + cP )x0(t) for c = 1, 2, 3, was able to230

continuously interpolate and extrapolate the transformation on its internal representation,231

even for control inputs between −40 and 40. Here, we consider a stretch in the x3 direction,232

a shear in the x1 direction, and a shear in the x1 and x2 directions. Specifically, we use the233

three matrices234

Pstretch,x3 =


0 0 0

0 0 0

0 0 0.012

 , Pshear,x1 =


0 0 0

0.012 0 0

0 0 0

 , Pshear,x1,x2 =


0 −0.012 0

0.012 0 0

0 0 0

 ,
to train our reservoir for c = 0, · · · , 4. For each transformation, we drive the reservoir with235

the input Lorenz attractors xc(t) and an additional control input c for c = 0, · · · , 4. We236

then train the reservoir by applying the feedback method used in the main text. Finally, we237

drive the autonomous feedback reservoir by varying the control parameter from c = −40 to238

c = 40 for these three transformations (Fig. 3).239240
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FIG. 3. Transformation of the Lorenz representation using stretch and shear in several

spatial directions. (a) Output of the feedback reservoir after being trained on 4 time series of a

Lorenz attractor stretched in the x3 direction at c = 0, · · · , 4. By varying c from −40 to 40, the

representation stretches in the x3 direction. (b) The same scheme is employed for a shear in the

x2 direction, and (c) for a shear in the x1 and x2 directions.
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