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Abstract

This paper studies the problem of stabilization of a nonlinear system with time-varying delays in both sensing and actuation
using event-triggered control. Our proposed strategy seeks to opportunistically minimize the number of control updates while
guaranteeing stabilization and builds on predictor feedback to compensate for arbitrarily large known time-varying delays.
We establish, using a Lyapunov approach, the global asymptotic stability of the closed-loop system as long as the open-loop
system is globally input-to-state stabilizable in the absence of time delays and sampling. We further prove that the proposed
event-triggered law has inter-event times that are uniformly lower bounded and hence does not exhibit Zeno behavior. For
the particular case of a stabilizable linear system, we show global exponential stability of the closed-loop system and analyze
the trade-off between the rate of exponential convergence and a bound on the sampling frequency. We illustrate these results
in simulation and also examine the properties of the proposed event-triggered strategy beyond the class of systems for which
stabilization can be guaranteed.

1 Introduction
Event- and self-triggered approaches have recently gained
popularity for controlling cyberphysical systems. The
basic premise is that of abandoning the assumption of
continuous or periodic updating of the control signal and
instead adopt an opportunistic perspective that leads
to deliberate, aperiodic updates. The challenge resides
in determining precisely when control signals should be
updated to improve efficiency while still guaranteeing
convergence. This paper expands the state-of-the-art
in resource-aware control by designing predictor-based
event-triggered control strategies that stabilize nonlinear
systems with known delays in both sensing and actuation
that can be arbitrarily large and time-varying.
Literature review: There exists a vast literature on both
event-triggered control and the control of time-delay
systems. Here, we review the works most closely re-
lated to our treatment. Originating from event-based
and discrete-event systems [Cassandras and Lafortune,
2007, Zou et al., 2017], the concept of event-triggered
control (i.e., updating the control signal in an oppor-
tunistic fashion) was proposed in [Kopetz, 1991, Åström
and Bernhardsson., 2002] and has found its way into the
efficient use of sensing, computing, actuation, and com-
munication resources in networked control systems, see
e.g., [Tabuada, 2007, Wang and Lemmon, 2011, Heemels
et al., 2012, Abdelrahim et al., 2017] and references
therein. On the other hand, the notion of predictor feed-
back is a powerful method in dealing with controlled

? A preliminary version of this paper appeared at the IEEE
Conference on Decision and Control as [Nozari et al., 2016].

systems subject to time delay [Smith, 1959, Mayne,
1968, Manitius and Olbrot, 1979, Nihtila, 1991, Krstic,
2009, Karafyllis and Krstic, 2012]. In essence, a predictor
feedback controller anticipates the future evolution of
the plant using its forward model and sends the control
signal early enough to compensate for the delay. Here,
we pursue a Lyapunov-based analysis of predictor feed-
back following [Bekiaris-Liberis and Krstic, 2013]. Given
that numerical implementations of predictor feedback
controllers are particularly challenging [Mirkin, 2004,
Zhong, 2004], we further discuss several methods for the
implementation of our proposed controller and show that
a carefully designed “closed-loop” method is numerically
stable and robust to errors in delay compensation.
The joint treatment of time delay and event-triggering
is particularly challenging. By its opportunistic nature,
an event-triggered controller keeps the control value un-
changed until the plant is close to instability and then
updates the control value according to the current state.
Now, if time delays exist, the controller only has ac-
cess to some past state of the plant (delayed sensing)
and it takes some time for an updated control action
to reach the plant (delayed actuation), jointly increas-
ing the possibility of the updated control value being al-
ready obsolete when it is implemented in the plant, re-
sulting in instability. Therefore, the controller needs to
be sufficiently proactive and update the control value
sufficiently ahead of time to maintain closed-loop stabil-
ity. This makes the design problem challenging. Delays
in actuation and sensing may be due to communication
delays between controller-actuator and controller-sensor
pairs, and in that sense, previous work on the event-
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triggered control literature that specifically considers de-
lays in the communication channel deals with a similar
problem setup as the one considered here. Several event-
triggered designs consider scenarios where the system dy-
namics are linear, see, e.g. [Zhang et al., 2017, Chen et al.,
2017, Selivanov and Fridman, 2016a,b, Ge and Han, 2015,
Garcia and Antsaklis, 2013]. The inclusion of nonlinear-
ity, however, makes the problem more challenging. When
digital controllers are used and the delay is smaller than
the sampling time, [Hetel et al., 2006, Wu et al., 2015]
design event-triggered controllers for the resulting delay-
free discretized system. Robust event-triggered stabiliz-
ing controllers are also designed for nonlinear systems
with sensing delays in [Li et al., 2012] and with both sens-
ing and actuation delays in [Tabuada, 2007, Dolk et al.,
2017]. In all these works, however, a key assumption is
that the (maximum) delay is smaller than the (minimum)
inter-transmission time. This assumption (also called the
small-delay case) allows for the treatment of delay as a
disturbance and, by construction, can tolerate unknown
delays. In reality, however, (minimum) inter-transmission
times can be very small, making this assumption restric-
tive. Similar to our preliminary work [Nozari et al., 2016],
we take a different perspective here and consider arbi-
trarily large delays, with the expected tradeoff in our
treatment that the delay can no longer be unknown. The
technical approach is based on using predictors that cap-
ture the effect of the delay on the system to compensate
for it. We rigorously analyze the case when the delay is
accurately known and show in simulation that our de-
sign is indeed robust to small variations when the de-
lay is only approximately known. Unlike [Nozari et al.,
2016], here we consider event-triggering and time-varying
delay both in sensing and actuation. Further, given the
well-known difficulties in the computation of predictor-
feedback controllers, we here provide a detailed discus-
sion of the numerical challenges that arise in the imple-
mentation of predictor feedback and effective solutions to
resolve them. Finally, this paper provides a complete and
thorough technical treatment, including the proofs of all
results, which are not available in [Nozari et al., 2016].
Statement of contributions: Our contributions are three-
fold. First, we design an event-triggered controller for sta-
bilization of nonlinear systems with arbitrarily large sens-
ing and actuation delays. We employ the method of pre-
dictor feedback to compensate for the delay in both and
then co-design the control law and triggering strategy to
guarantee the monotonic decay of a Lyapunov-Krasovskii
functional. Our second contribution involves the closed-
loop analysis of the event-triggered law, proving that the
closed-loop system is globally asymptotically stable and
the inter-event times are uniformly lower bounded (and
thus no Zeno behavior may exist). Due to the importance
of linear systems in numerous applications, we briefly dis-
cuss the simplifications of the design and analysis in this
case. Our final contribution pertains to the trade-off be-
tween convergence rate and sampling. Our analysis in this
part is limited to linear systems, where closed-form solu-
tions are derivable for (exponential) convergence rate and
minimum inter-event times. We provide a quantitative
account of the well-known trade-off between sampling
and convergence in event-triggered designs and show how
this trade-off can be biased in either direction by tuning

a design parameter. Finally, we present simulations to
illustrate the effectiveness of our design and address its
numerical implementation.

2 Preliminaries
We introduce notational conventions and briefly review
notions on input-to-state stability. We denote by R and
R≥0 the sets of reals and nonnegative reals, respectively.
Given t ∈ R and a function f on R, t+ , max{t, 0} while
f(t+) , lims→t+ f(s) and f(t−) , lims→t− f(s) when
these limits exist. Given a vector or matrix, we use | · |
to denote the Euclidean norm. We denote by K the set
of strictly increasing continuous functions α : [0,∞) →
[0,∞) with α(0) = 0. α belongs to K∞ if α ∈ K and
limr→∞ α(r) = ∞. We denote by KL the set of contin-
uous functions β : [0,∞) × [0,∞) → [0,∞) such that,
for each s ∈ [0,∞), r 7→ β(r, s) belongs to class K and,
for each r ∈ [0,∞), s 7→ β(r, s) is monotonically de-
creasing with β(r, s) → 0 as s → ∞. We use the nota-
tion LfS = ∇S · f for the Lie derivative of a function
S : Rn → R along the trajectories of a vector field f tak-
ing values in Rn.
We follow [Sontag and Wang, 1995] to review the defini-
tion of input-to-state stability of nonlinear systems and
its Lyapunov characterization. Consider a nonlinear sys-
tem of the form

ẋ(t) = f(x(t), u(t)), a.a. t ≥ 0, x(0) = x0, (1)

where f : Rn × Rm → Rn is continuously differentiable,
f(0, 0) = 0, and “a.a." (almost all) denotes the fact that
x may not be differentiable on a set of Lebesgue measure
zero. System (1) is (globally) input-to-state stable (ISS)
if there exist α ∈ K and β ∈ KL such that for any mea-
surable locally essentially bounded input u : R≥0 → Rm
and any initial condition x(0) ∈ Rn, its solution satisfies

|x(t)| ≤ β(|x(0)|, t) + α
(
ess supt≥0 |u(t)|

)
,

for all t ≥ 0. For this system, a continuously differen-
tiable function S : Rn → R≥0 is called an ISS-Lyapunov
function if there exist α1, α2, γ, ρ ∈ K∞ such that

∀x ∈ Rn α1(|x|) ≤ S(x) ≤ α2(|x|), (2a)
∀(x, u) ∈ Rn+m LfS(x, u) ≤ −γ(|x|) + ρ(|u|). (2b)

According to [Sontag and Wang, 1995, Theorem 1], the
system (1) is ISS if and only if it admits an ISS-Lyapunov
function.

3 Problem Statement
Consider the nonlinear system (“plant”) with dynamics

ẋ(t) = f(x(t), up(t)), a.a. t ≥ 0, x(0) = x0, (3)

where f : Rn×Rm → Rn. Our goal is to provide a state-
feedback controller ensuring global asymptotic stability
under the following challenges:
(i) Actuation delay: Let u(t) be the control signal gen-
erated by the controller. Actuation delay is modeled as

up(t) = u(φ(t)), t ≥ 0, (4)
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where t − φ(t) > 0 is the amount of time that it takes
for a control action generated at time φ(t) to reach the
plant/actuator. For instance, In the case of a constant
actuation delay D, we have φ(t) = t − D. This delay
further requires an initial value {u(t) | φ(0) ≤ t < 0} on
the control input for (3) to be well-defined.
(ii) Sensing delay: We allow the existence of a delay
between the sensor and the controller such that at any
time t, the controller may have access to x(s), s ≤ ψ(t)
(alternatively, x(t) takes ψ−1(t)− t seconds to reach the
controller) for some delay function ψ(t) ≤ t.
(iii) Actuation event-triggering: We seek to design a
controller that updates u(t) only at a sequence of discrete
times {tk}∞k=0,

u(t) = u(tk), t ∈ [tk, tk+1), k ≥ 0. (5)

(iv) Sensing event-triggering: We further allow for
the possibility that the event-triggering mechanism does
not have access to the plant state at all times t ∈ R≥0,
but only at some time instants denoted τ `, ` ∈ Z≥0. 1 In
this case, we let for simplicity that τ0 = 0, t0 = ψ−1(0),
and u(t) be arbitrarily set in [0, t0) as the controller has
not received any state information yet.
In the sequel, we impose the following assumptions on
the system dynamics.
Assumption 3.1 (Standing assumptions):
(i) f is continuously differentiable, f(0, 0) = 0, and (3)

is forward complete (does not exhibit finite escape
time) for all initial conditions and bounded inputs;

(ii) the initial control {u(t) | φ(0) ≤ t < 0} is given and
continuously differentiable;

(iii) the delay function φ is continuously differentiable;
(iv) the delay functions φ and ψ are monotonically in-

creasing so the argument of u(φ(t)) and x(ψ(t)) do
not go back in time;

(v) the origin of (3) is robustly globally asymptotically
stabilizable in the absence of delays and with con-
tinuous sensing and actuation. Formally, there ex-
ists a globally Lipschitz feedback lawK : Rn → Rm,
K(0) = 0, that makes

ẋ(t) = f(x(t),K(x(t)) + w(t)), (6)

ISS with respect to the additive input disturbancew;
(vi) the delay function φ is known to the controller; on

the other hand, ψ need not be known a priori or for
all times, but only a posteriori and at times when
state is measured;

(vii) the delay function φ and its derivative are bounded,
i.e., there exist M0 > 0, M1 ≥ 1, and 0 < m2 ≤ 1
such that

t− φ(t) ≤M0 and m2 ≤ φ̇(t) ≤M1, ∀t ≥ 0; (7)

(viii) the sensing triggering times {τ `}∞`=0 are given (de-
termined by the sensor independently of our design).

1 We note that this sampled sensing scheme is also called
periodic event-triggered control, even when the sampling times
are not equally spaced. Nevertheless, we do not adopt this
terminology here to avoid the latter interpretation.

In particular, the sensor ensures that {τ `}`≥0∩ [a, b]
is finite for any a, b < ∞ (lack of Zeno behavior)
while {τ `}∞`=0 can be arbitrary otherwise. •

Assumption 3.1(i)-(iv) are standard in predictor-based
control of delay systems. In the case of digital commu-
nications, Assumption 3.1(iv) requires the lack of packet
reordering. Nevertheless, the nature of the control sys-
tem is such that any u(tk) has become obsolete and can
be safely discarded, should it arrive later than u(ti), i ≥
k. The same applies to {x(τ `)}∞`=1. Thus, φ and ψ can
be, without loss of generality, replaced by a monotoni-
cally increasing upper bound if they are not so originally.
Assumption 3.1(i), together with the piecewise-constant
form of up, further ensures existence and uniqueness of
solutions for (3). Assumption 3.1(v) is also standard in
event-triggered control, though not necessarily with the
globally Lipschitz property assumed here. This allows
us to focus on the challenges that arise by time delays
and event-triggered control. Further, the a priori knowl-
edge of φ in Assumption 3.1(vi) is most realistic in ap-
plications where the same control task is repeatedly ex-
ecuted and thus a data-driven estimate of future φ can
be computed using its history. Moreover, note that As-
sumption 3.1(vii) is trivially satisfied for a constant delay
(φ(t) = t−D) with M0 = D and M1 = m2 = 1. Finally,
Assumption 3.1(viii) is imposed for simplicity and to let
us focus on the design of the actuation triggering times.
In fact, the values of {τ `} other than τ0 are irrelevant
theoretically but practically critical for stability, a point
we discuss in detail in Sections 4.4 and 6.
The resulting networked control scheme is illustrated in
Figure 1. Our considered problem is then as follows.
Problem 1 (Event-Triggered Stabilization under Sens-
ing and Actuation Delay): Design the sequence of actu-
ation triggering times 2 {tk}∞k=1 and the corresponding
control values {u(tk)}∞k=0 such that {tk+1− tk}k≥0 is uni-
formly lower bounded by a strictly positive constant and
the closed-loop system (3) is globally asymptotically stable
using the piecewise constant control (5) and the delayed in-
formation {x(τ `)}∞`=0 received, resp., at {ψ−1(τ `)}∞`=0.

3

•
The requirement that {tk}k≥0 ∩ [a, b] be finite for any
0 ≤ a ≤ b < ∞ ensures the resulting design is im-
plementable by avoiding finite accumulation points, i.e.,
Zeno behavior. We propose a solution to Problem 1 in
the next section.

4 Event-Triggered Design and Analysis
In this section, we propose an event-triggered control pol-
icy to solve Problem 1. We start our analysis with the
simpler case where the controller receives state feedback
continuously (i.e., {x(t)}∞t=0 instead of {x(τ `)}∞`=0) with-
out delays (i.e., ψ(t) = t), and later extend it to the gen-
eral case.

2 Recall that t0 = ψ−1(0) is fixed.
3 We require that the control law is causal, i.e., tk and u(tk)
depend only on the states {x(τ `)} that have reached the con-
troller by the time tk. While sampling may be modeled as a
specific type of delay, we capture it with the prediction error
e(t) (defined later). The values φ(t) and ψ(t) only capture
the delays in actuation and sensing, resp.
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PredictorK(·)
x(ψ(τ`))p(t)K(p(t))

Fig. 1. The considered networked control scheme with sens-
ing and actuation delays and event-triggering (top) and the
proposed predictor-based controller (bottom).

4.1 Predictor Feedback Control for Time-Delay Systems
Here we review the continuous-time stabilization of the
dynamics (3) bymeans of a predictor-based feedback con-
trol [Bekiaris-Liberis and Krstic, 2013]. For convenience,
we denote the inverse of φ by σ(t) = φ−1(t), for all t ≥ 0.
The inverse exists since φ is strictly monotonically in-
creasing. From (7), for all t ≥ φ(0),

σ̇(t) ≤M2 , m−1
2 .

To compensate for the delay, at any time t ≥ φ(0), the
controller makes the following prediction of the future
state of the plant,

p(t) = x(σ(t)) = x(t+) +

∫ t

φ(t+)

σ̇(s)f(p(s), u(s))ds. (8)

This integral is computable by the controller since it only
requires knowledge of the initial or current state of the
plant and the history of u(t) and p(t), all of which are
available to the controller. In the remainder, we thus as-
sume that p(t) can be computed exactly, but hint that
numerical integration errors can lead to instability if not
treated properly. We will give a detailed empirical discus-
sion of this matter in Section 6 but its rigorous analysis
remains open for future research.
As shown in Figure 1, the controller applies the control
law K on the prediction p to compensate for the delay,

u(t) = K(p(t)), t ≥ 0. (9)

The next result shows convergence for the closed-loop
system.
Proposition 4.1 (Asymptotic Stabilization by Predictor
Feedback [Bekiaris-Liberis and Krstic, 2013]): Under As-
sumption 3.1, the closed-loop system (3) under the con-
troller (9) is globally asymptotically stable, i.e., there ex-
ists β ∈ KL such that for any x(0) ∈ Rn and bounded
{u(t)}0t=φ(0), for all t ≥ 0,

|x(t)|+ sup
φ(t)≤τ≤t

|u(τ)| ≤ β
(
|x(0)|+ sup

φ(0)≤τ≤0

|u(τ)|, t
)
.

4.2 Design of Event-triggered Control Law
Following Section 4.1, we let the controller make the pre-
diction p(t) according to (8) for all t ≥ φ(0). Since the
controller can only update u(t) at discrete times {tk}∞k=0,
it uses the piecewise-constant control (5) and assigns the
control

u(tk) = K(p(tk)), (10)

for all k ≥ 0. In order to design the triggering times
{tk}∞k=1, we use Lyapunov stability tools to determine
when the controller has to update u(t) to prevent insta-
bility. We define the triggering error for all t ≥ φ(0) as

e(t) =

{
p(tk)− p(t) if t ∈ [tk, tk+1) for k ≥ 0,

0 if t ∈ [φ(0), t0),
(11)

so that u(t) = K(p(t) + e(t)), for t ≥ t0. Let

w(t) = u(t)−K(p(t) + e(t)), t ≥ φ(0), (12)

where w(t) = 0 for t ≥ t0 but w(t) is in general nonzero
for t ∈ [φ(0), t0). Computing u(φ(t)) from (12) and sub-
stituting it in (3), the closed-loop system can be written

ẋ(t) = f
(
x(t),K

(
x(t) + e(φ(t))

)
+ w(φ(t))

)
, (13)

for all t ≥ 0. Notice that (13) simplifies to [Tabuada, 2007,
Eq. (3)] in the absence of delay (φ(t) = t). Let g(x,w) =
f(x,K(x) +w) for all x,w. By Assumption 3.1(v), there
exists a continuously differentiable function S : Rn → R
and α1, α2, γ, ρ ∈ K∞ such that

α1(|x(t)|) ≤ S(x(t)) ≤ α2(|x(t)|), (14)

and (LgS)(x,w) ≤ −γ(|x|) + ρ(|w|). Therefore, we have

(LfS)
(
x(t),K

(
x(t) + e(φ(t))

)
+ w(φ(t))

)
(15)

= (LgS)
(
x(t),K

(
x(t)+e(φ(t))

)
+w(φ(t))−K(x(t))

)
≤−γ(|x(t)|) + ρ

(∣∣K(x(t)+e(φ(t))
)
+w(φ(t))−K(x(t))

∣∣).
As in [Bekiaris-Liberis and Krstic, 2013, eq. (8.47)], let 4

V (t) = S(x(t)) +
2

b

∫ 2L(t)

0

ρ(r)

r
dr, (16a)

L(t) = sup
t≤τ≤σ(t)

|eb(τ−t)w(φ(τ))|, (16b)

where b > 0 is a design parameter. Note that the second
term in (16a) may only be nonzero for t ∈ [φ(0), t0) since
the system is open-loop over this interval (cf. (11),(12)).
The next result establishes an upper bound on dV/dt.
Proposition 4.2 (Upper-bounding V̇ (t)): For the sys-
tem (3) under the control defined by (5) and (10) and the

4 Note that ρ can always be chosen such that (16a) is well-
defined, e.g., by choosing it such that ρ(r)/r ∈ K∞ using [Son-
tag and Teel, 1995, Thm 1].
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predictor (8), we have for any solution with maximal in-
terval of existence [0, tmax),

V̇ (t) ≤ −γ(|x(t)|)− ρ(2L(t)) + ρ(2LK |e(φ(t))|), (17)

for all t ∈ [0, tmax)\{t̄} and V (t̄−) ≥ V (t̄+), where LK is
the Lipschitz constant ofK and t̄ ∈ [0, σ(0)] is the greatest
time such that w(t) = 0 for all t > t̄.
Proof. Using (15), we have

LfS(x(t))

≤−γ(|x(t)|) + ρ
(
|w(φ(t))|+|K(x(t)+e(φ(t)))−K(x(t))|

)
≤ −γ(|x(t)|) + ρ

(
|w(φ(t))|+ LK |e(φ(t))|

)
≤ −γ(|x(t)|) + ρ(2|w(φ(t))|) + ρ(2LK |e(φ(t))|). (18)

In the following, we provide a rigorous proof of the fact
L̇(t) = −bL(t) stated in [Bekiaris-Liberis and Krstic,
2013]. Similar to Lemma 8.9 therein, it holds that

L(t) = lim
n→∞

[ ∫ σ(t)

t

e2nb(τ−t)w(φ(τ))2ndτ

] 1
2n

, lim
n→∞

Ln(t),

since e−b(t−τ)w(φ(τ)) is bounded for τ ∈ [t, σ(t)] and
any t ≥ 0 and [t, σ(t)] has finite measure. In fact, it can
be shown that this convergence is uniform over [0, t1]

for any t1 < t̄. Therefore, since L̇n(t) = −bLn(t) −
Ln
2n

(
w(φ(t))
Ln

)2n

, w(φ(t))
Ln

< 1 for t ∈ [0, t1] and sufficiently
large n and b, and t1 ∈ [0, t̄) is arbitrary, it follows
from [Rudin, 1976, Thm 7.17] that L̇(t) = −bL(t) for
t ∈ (0,∞) \ {t̄}. Combining this and (18), we get

V̇ (t) ≤ −γ(|x(t)|) + ρ(2|w(φ(t))|) + ρ(2LK |e(φ(t))|)

+
2

b
2L̇(t)

ρ(2L(t))

2L(t)

≤ −γ(|x(t)|) + ρ(2|w(φ(t))|) + ρ(2LK |e(φ(t))|)
− 2ρ(2L(t)).

for t ∈ (0,∞) \ {t̄}. Equation (17) thus follows since
|w(φ(t))| ≤ L(t) (c.f. (16b)) and the fact that ρ is strictly
increasing. Finally, since S(x(t)) is continuous, L(t̄−) ≥
0, and L(t̄+) = 0, we get V (t̄−) ≥ V (t̄+).
Proposition 4.2 is the basis for our event-trigger design.
Formally, we select θ ∈ (0, 1) and require

ρ(2LK |e(φ(t))|) ≤ θγ(|x(t)|), t ≥ 0,

which can be equivalently written as

|e(t)| ≤ ρ−1(θγ(|p(t)|))
2LK

, t ≥ φ(0). (19)

Notice from (11) and the fact t = 0 that (19) holds on
[φ(0), t0]. Equation (19) fully specifies the sequence of
times {tk}∞k=1 and its dependence on the actuation de-
lay. For each k, after each time tk, the controller keeps
evaluating (19) until it reaches equality. At this time,
labeled tk+1, the controller triggers the next event that
sets e(tk+1) = 0 and maintains (19). Notice that “larger”

γ and “smaller” ρ (corresponding to “stronger” input-to-
state stability in (2)) are then more desirable, as they
are intuitively expected to let the controller update u less
often. Our ensuing analysis shows global asymptotic sta-
bility of the closed-loop system and the existence of a
uniform lower bound on the inter-event times.

4.3 Convergence Analysis under Event-triggered Law
In this section we show that our event triggered law (19)
solves Problem 1 by showing, in the following result, that
the inter-event times are uniformly lower bounded (so, in
particular, there is no finite accumulation point in time)
and the closed-loop system achieves global asymptotic
stability.
Theorem 4.3 (Uniform Lower Bound for the Inter-
Event Times and Global Asymptotic Stability): Suppose
that the class K∞ function G : r 7→ γ−1(ρ(r)/θ) is (lo-
cally) Lipschitz. For the system (3) under the control (10)
and the triggering condition (19), the following hold:
(i) there exists δ= δ(x(0), {u(t)}0t=φ(0)) > 0 such that

tk+1 − tk ≥ δ for all k ≥ 1,
(ii) there exists β ∈ KL such that for any x(0) ∈ Rn and

bounded {u(t)}0t=φ(0), we have for all t ≥ 0,

|x(t)|+ sup
φ(t)≤τ≤t

|u(τ)| ≤ β
(
|x(0)|+ sup

φ(0)≤τ≤0

|u(τ)|, t
)
. (20)

Proof. Let [0, tmax) be the maximal interval of exis-
tence of the solutions of the closed-loop system. The proof
involves three steps. First, we prove that (ii) holds for
t < tmax. Then, we show that (i) holds until tmax, and
finally that tmax =∞.
Step 1: From Proposition 4.2 and (19), we have

V̇ (t) ≤ −(1− θ)γ(|x(t)|)− ρ(2L(t))

≤ −γmin(|x(t)|+ L(t)), t ∈ [0, tmax) \ {t̄},

where γmin(r) = min{(1 − θ)γ(r), ρ(2r) for all r ≥ 0, so
γmin ∈ K. Also, note that

V (t) ≤ α2(|x(t)|) + α0(L(t)) ≤ 2αmax(|x(t)|+ L(t)),

where αmax(r) = max{α2(r), α0(r)} and α0(r) =
2
b

∫ 2r

0
ρ(s)
s ds for all r ≥ 0. Since α0, α2 ∈ K∞, we have

αmax ∈ K∞, so α−1
max ∈ K. Hence,

V̇ (t) ≤ −αmin(α−1
max(V (t)/2)) , α(V (t)), t ∈ [0, tmax) \ {t̄},

where α ∈ K. Therefore, using the Comparison Princi-
ple [Khalil, 2002, Lemma 3.4], [Khalil, 2002, Lemma 4.4],
and V (t̄−) ≥ V (t̄+), there exists β1 ∈ KL such that
V (t) ≤ β1(V (0), t), t < tmax. Therefore,

|x(t)|+ L(t) ≤ β2(|x(0)|+ L(0), t), t < tmax,

where β2(r, s) = α−1
min(β(2αmax(r), s)) for any r, s ≥ 0.

Note that β2 ∈ KL. Since we have

sup
φ(t)≤τ≤t

|w(τ)| ≤ L(t) ≤ ebM0 sup
φ(t)≤τ≤t

|w(τ)|,

5



it then follows that

|x(t)|+ sup
φ(t)≤τ≤t

|w(τ)| ≤ β3

(
|x(0)|+ sup

φ(0)≤τ≤0

|w(τ)|, t
)
, (21)

for all t < tmax, where β3(r, s) = β2(ebM0r, s). This in-
equality leads to (20) using the same steps as in [Bekiaris-
Liberis and Krstic, 2013, Lemmas 8.10, 8.11] (the only
difference being the multiplicity of inputs).
Step 2: Equation (19) can be rewritten as

|p(t)| ≥ γ−1
(ρ(2LK |e(t)|)

θ

)
.

From step 1, the prediction p(t) = x(σ(t)) and its error
e(t) = p(tk) − p(t) are bounded. Therefore, there exists
Lγ−1ρ/θ > 0 such that for all t ≥ 0,

γ−1
(ρ(2LK |e(t)|)

θ

)
≤ 2Lγ−1ρ/θLK |e(t)|.

where Lγ−1ρ/θ is the Lipschitz constant of G on the
compact set that contains {e(t)}tmax

t=0 . Hence, a sufficient
(stronger) condition for (19) is

|p(t)| ≥ 2Lγ−1ρ/θLK |e(t)|. (22)

Note that (22) is only for the purpose of analysis and is
not executed in place of (19). Clearly, if the inter-event
times of (22) are lower bounded, so are the inter-event
times of (19). Let r(t) = |e(t)|

|p(t)| for any t ≥ 0 (with r(t) = 0

if p(t) = 0). For any k ≥ 0, we have r(tk) = 0 and tk+1−tk
is greater than or equal to the time that it takes for r(t)
to go from 0 to 1

2Lγ−1ρ/θLK
. Note that for any t ≥ 0,

ṙ =
d

dt

|e|
|p|

=
d

dt

(eT e)1/2

(pT p)1/2

=
(eT e)−1/2eT ė(pT p)1/2 − (pT p)−1/2pT ṗ(eT e)1/2

pT p

= − eT ṗ

|e||p|
− |e|p

T ṗ

|p|3
≤ |ṗ|
|p|

+
|e||ṗ|
|p|2

= (1 + r)
|ṗ|
|p|
,

where the time arguments are dropped for better read-
ability. To upper bound the ratio |ṗ(t)|/|p(t)|, we have
from (8) that ṗ(t) = σ̇(t)f(p(t), u(t)) for all t ≥ φ(0). By
continuous differentiability of f (which implies Lipschitz
continuity on compacts) and global asymptotic stability
of the closed loop system, there exists Lf > 0 such that

|ṗ(t)| = |σ̇(t)f(p(t), u(t))| ≤M2|f(p(t),K(p(t) + e(t)))|
≤M2Lf |(p(t),K(p(t) + e(t)))|
≤M2Lf (|p(t)|+ |K(p(t) + e(t))|)
≤M2Lf (|p(t)|+ LK |p(t) + e(t)|)
≤M2Lf (1 + LK)|p(t)|+M2LfLK |e(t)|

⇒ ṙ(t) ≤M2(1 + r(t))(Lf (1 + LK) + LfLK |r(t)|).

Thus, using the Comparison Principle [Khalil, 2002,
Lemma 3.4], we have tk+1 − tk ≥ δ, k ≥ 0 where δ is the

time that it takes for the solution of

ṙ = M2(1 + r)(Lf (1 + LK) + LfLKr), (23)

to go from 0 to 1
2Lγ−1ρ/θLK

.

Step 3: Since all system trajectories are bounded and
tk

k→∞−−−−→∞, we have tmax =∞, completing the proof.
A particular corollary of Theorem 4.3 is that the pro-
posed event-triggered law does not suffer from Zeno be-
havior, i.e., tk accumulating to a finite point tmax. Also,
note that the lower bound δ in general depends on the
initial conditions x(0) and {u(t)}0t=φ(0) through the Lip-
schitz constant Lγ−1ρ/θ. 5 Finally, while Theorem 4.3 ex-
plicitly bounds x and u, the simple time-shift relation-
ship (8) between p and x ensures that any bound satis-
fied by x(t), t ≥ 0, including that of Theorem 4.3, is also
satisfied by p(t), t ≥ 0.

4.4 Delayed and Event-Triggered Sensing
So far, we have not considered any delays in the avail-
ability of the sensing information about the plant state,
which we consider next. Our treatment here shows that
the above event-triggered controller with the same trig-
gering condition (19), and with slight adjustments in the
employed control and predictor signals, globally asymp-
totically stabilizes the plant while maintaining the same
lower bound on the inter-event times.
To address the general scenario in Problem 1, let

¯̀= ¯̀(t) = max{` ≥ 0 | τ ` ≤ ψ(t)},

be the index of the last plant state available at the con-
troller at time t. Then, (8) is replaced with

p(t) = x(τ ¯̀) +

∫ t

φ(τ ¯̀)

σ̇(s)f(p(s), u(s))ds, t ≥ ψ−1(0), (24)

which is the best estimate of x(σ(t)) available to the con-
troller 6 . Since p(t) is not available before ψ−1(0), the
control signal (5), (10) is updated as

u(t) =

{
K(p(tk)) if t ∈ [tk, tk+1), k ≥ 0,

0 if t ∈ [0, t0),
(25)

where the first event time is now t0 = ψ−1(0). We next
provide the same guarantees as Theorem 4.3.
Theorem 4.4 Consider the plant dynamics (3) driven
by the predictor-based event-triggered controller (25)
with the predictor (24) and triggering condition (19).
Under Assumption 3.1, the closed-loop system is globally
asymptotically stable, namely, there exists β ∈ KL such

5 However, for any given compact set of |x(0)| and |u(t)|, t <
0, equations (21), (12), (11), and (8) ensure that x(t) and
therefore p(t) are bounded for all t, and so e(t) belongs to a
compact set due to (19). Hence, Lγ−1ρ/θ and thus δ can be
chosen uniformly over this set.
6 This only requires the controller to know ψ(τ `) for every
received state (not the full function ψ), which is realized by
having a time-stamp for x(τ `).
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that (20) holds for all x(0) ∈ Rn, continuously differen-
tiable {u(t)}0t=φ(0), and t ≥ 0. Furthermore, there exists
δ= δ(x(0), {u(t)}0t=φ(0)) > 0 such that tk+1 − tk ≥ δ for
all k ≥ 0.
Proof. For simplicity, let U(t) = supφ(t)≤τ≤t |u(t)|.
Since the open-loop system exhibits no finite escape time
behavior, the state remains bounded during the initial
period [0, t0]. Hence, for any x(0) and any {u(t)}0t=φ(0)

there exists Ξ > 0 such that |x(t)| ≤ Ξ for t ∈ [0, t0].
Without loss of generality, Ξ can be chosen to be a class
K function of |x(0)|+ U(0). Thus,

|x(t)|+U(t) ≤ Ξ(|x(0)|+ U(0)) + U(0) (26)
≤
[
Ξ(|x(0)|+ U(0)) + U(0)

]
e−(t−t0), t ∈ [0, t0].

As soon as the controller receives x(0) at t0, it can esti-
mate the state x(t) by simulating the dynamics (3), i.e.,

x(t) = x(0) +

∫ t

0

f(x(s), u(φ(s)))ds. (27)

This estimation is updated whenever a new state x(τ `)
arrives and used to compute the predictor (8), which
combined with (27) takes the form (24). Since the con-
troller now has access to the same prediction signal p(t)
as before, the same Lyapunov analysis as above holds for
[t0,∞). Therefore, let β̂ ∈ KL be such that (20) holds for
t ≥ t0. By (26),

|x(t)|+ U(t) ≤ β̂
(
Ξ(|x(0)|+ U(0)) + U(0), t− t0

)
t ≥ t0.

Therefore, (20) holds by choosing β(r, t) = max
{
β̂
(
Ξ(r)+

r, t − t0
)
,
[
Ξ(r) + r

]
e−(t−t0)

}
. Finally, since the trigger-

ing condition (19) has not changed, tk+1 − tk ≥ δ, k ≥ 0
for the same δ > 0 as in Theorem 4.3.
Remark 4.5 (Separation of sensing and actuation de-
lays): It is a standard practice in the literature to combine
the sensing and actuation delays into a single quantity,
i.e., “networked induced delays". This is in fact the basis
of the predictor design in equation (23). However, in our
treatment, it is beneficial to keep the two delays distinct
since their sources are often physically distinct and the as-
sumptions on the sensing delay ψ are significantly weaker
than on the actuator delay φ (cf. Assumption 3.1). •
Remark 4.6 (Practical importance of feedback): While
the controller can theoretically discard {x(τ `)}∞`=1 and
rely on x(0) for estimating the state at all future times,
closing the loop using the most recent state value x(τ ¯̀)
is in practice critical for preventing the estimator (27)
from drifting due to noise and un-modeled dynamics, even
when the system dynamics are perfectly known. This is
apparent, for instance, in Example 6.2 shown later, where
facing the errors caused by the numerical approximation
of the prediction signal. •

5 The Linear Case
Here, we specialize the general treatment of Section 4 to
the linear case

ẋ(t) = Ax(t) +Bu(φ(t)), a.a. t ≥ 0, x(0) = x0. (28)

For simplicity, we restrict our attention to the perfect
sensing case, with similar generalizations to sampled and
delayed sensing as in Section 4.4. Assuming that the pair
(A,B) is stabilizable, we can use pole placement to find
a linear feedback law K : Rn → R that satisfies Assump-
tion 3.1(v). Moreover, p(t) has the explicit form

p(t) = eA(σ(t)−t+)x(t+) +

∫ t

φ(t+)

σ̇(s)eA(σ(t)−σ(s))Bu(s)ds,

(29)

for all t ≥ φ(0) and the closed-loop system takes the form

ẋ(t) = (A+BK)x(t) +Bw(φ(t)) +BKe(φ(t)).

Furthermore, given an arbitrary Q = QT > 0, the con-
tinuously differentiable function S : Rn → R is S(x) =
xTPx, where P = PT > 0 is the unique solution to the
Lyapunov equation (A + BK)TP + P (A + BK) = −Q.
Clearly, (14) holds with α1(r) = λmin(P )r2 and α2(r) =
λmax(P )r2. Also, using Young’s inequality [Young, 1912],

LfS = −x(t)TQx(t) + 2x(t)TPB(w(φ(t)) +Ke(φ(t))),

so (15) holds with γ(r) = 1
2λmin(Q)r2 and ρ(r) =

2|PB|2
λmin(Q)r

2. Thus, (19) also takes the simpler form

|e(t)| ≤ λmin(Q)
√
θ

4|PB||K|
|p(t)|. (30)

In addition to these simplifications, we show next that
the closed-loop system is globally exponentially stable.

5.1 Exponential Stability under Event-triggered Control
We next show that, in the linear case, we obtain the
stronger feature of global exponential stability using a
slightly different Lyapunov-Krasovskii functional.
Theorem 5.1 (Exponential Stabilization): The sys-
tem (28) subject to the piecewise-constant closed-loop
control u(t) = Kp(tk), t ∈ [tk, tk+1), with p(t) given
in (29) and {tk}∞k=1 determined according to (30) satisfies

|x(t)|2 +

∫ t

φ(t)

u(τ)2dτ ≤ Ce−µt
(
|x(0)|2 +

∫ 0

φ(0)

u(τ)2dτ
)
,

for some C > 0, µ = (2−θ)λmin(Q)
4λmax(P ) , and all t ≥ 0.

Proof. For t ≥ 0, let L(t) =
∫ σ(t)

t
eb(τ−t)w(φ(τ))2dτ .

One can see that L̇(t) = −w(φ(t))2− bL(t), t ≥ 0. Define
V (t) = x(t)TPx(t) + 4|PB|2

λmin(Q)L(t). Therefore, using (30),

V̇ (t) = −x(t)TQx(t) + 2x(t)TPBw(φ(t))− 4|PB|2b
λmin(Q)

L(t)

+ 2x(t)TPBKe(φ(t))− 4|PB|2

λmin(Q)
w(φ(t))2

≤ −2− θ
4

λmin(Q)|x(t)|2 − 4|PB|2b
λmin(Q)

L(t) ≤ −µV (t),
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where µ = min
{ (2−θ)λmin(Q)

4λmax(P ) , b
}

= (2−θ)λmin(Q)
4λmax(P ) if b

is chosen sufficiently large. Hence, by the Comparison
Principle [Khalil, 2002, Lemma 3.4], we have V (t) ≤
e−µtV (0), t ≥ 0. Let W (t) = |x(t)|2 +

∫ t
φ(t)

u(τ)2dτ .
From [Bekiaris-Liberis and Krstic, 2013, Eq. (6-99)-(6-
100)], c1W (t) ≤ V (t) ≤ c2W (t), for some c1, c2 > 0 and
all t ≥ 0. Hence, the result follows with C = c2/c1.
From Theorem 5.1, the convergence rate µ depends both
on the ratio λmin(Q)

λmax(P ) and the parameter θ. The former
can be increased by placing the eigenvalues of A+BK at
larger negative values, though large eigenvalues result in
noise amplification. Decreasing θ, however, comes at the
cost of faster control updates, a trade-off we study next.
5.2 Optimizing the Sampling-Convergence Trade-off
Here, we analyze the trade-off between sampling fre-
quency and convergence speed. In general, it is clear from
the Lyapunov analysis of Section 4 that more updates
(intuitively corresponding to smaller θ) hasten the decay
of V (t) and help convergence. Let δ be the time that it
takes for the solution of (23) to go from 0 to 1

2Lγ−1ρ/θLK
.

As shown in Section 4.3, the inter-event times are lower
bounded by δ, so it can be used to bound the sampling
cost of implementing the controller. Let

a = M2LfLK , c = M2Lf (1 + LK), R =
1

2Lγ−1ρ/θLK
,

where Lf =
√

2(|A| + |B|), LK = |K|, and Lγ−1ρ/θ =
2|PB|

λmin(Q)
√
θ
. Then, the solution of (23) with initial condi-

tion r(0) = 0 is r(t) = ceat−cect
aect−ceat , so solving r(δ) = R for

δ gives δ =
ln c+Ra

c+Rc

a−c . The objective is to maximize δ and
µ by tuning the optimization variables θ and Q. For sim-
plicity, let θ = ν2 and Q = qIn where ν, q > 0. Then,

δ(ν) =
1

a− c
ln
c+ ν

|P1B||K|a

c+ ν
|P1B||K|c

, µ(ν) =
2− ν2

4λmax(P1)
,

where P1 = q−1P is the solution of the Lyapunov equa-
tion (A + BK)TP1 + P1(A + BK) = −In. Figure 2(a)
depicts δ and µ as functions of ν and illustrates the
sampling-convergence trade-off.
To balance these two objectives, we define the aggregate
objective function as a convex combination of δ and µ,

J(ν) = λδ(ν) + (1− λ)µ(ν),

where λ ∈ [0, 1] determines the relative importance of
convergence rate and sampling. The function J is strongly
convex and its unique maximizer is the positive real so-
lution of c3ν3 + c2ν

2 + c1ν+ c0 = 0, where c3 = a(1−λ),
c2 = (a + c)|P1B||K|(1 − λ), c1 = c|P1B|2|K|2(1 − λ),
and c0 = −2λmax(P1)|P1B||K|λ. Figure 2(b) plots this
maximizer for different values of λ, further illustrating
the sampling-convergence trade-off.

6 Simulations
Here we illustrate the performance of our event-triggered
predictor-based design. Example 6.2 is a two-dimensional
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Fig. 2. Sampling-convergence trade-off for event-triggered
control of linear systems. (Left), values of the lower bound of
the inter-event times (δ) and exponential rate of convergence
(µ) for different values of the optimization parameter ν for
a 3rd-order unstable linear system with M2 = 1. (Right),
unique maximizer ν∗ of the objective function J(ν) for differ-
ent values of λ. As λ goes from 0 to 1, more weight is given
to the maximization of δ, which increases ν∗.

nonlinear system that satisfies all the hypotheses required
to ensure global asymptotic convergence of the closed-
loop system. Example 6.3 is a different two-dimensional
nonlinear system which, instead, does not but for which
we observe convergence in simulation. We start by dis-
cussing some numerical challenges that arise because of
the particular hybrid nature of our design, along with our
approach to tackle them.
Remark 6.1 (Numerical implementation of event-
triggered control law): The main challenge in the numer-
ical simulation of the proposed event-trigger law is the
computation of the prediction signal p(t) = x(σ(t)). To
this end, at least three methods can be used, as follows:
(i) Open-loop: One can solve ṗ(t) = σ̇(t)f(p(t), u(t)) di-
rectly starting from p(φ(0)) = x(0). The closed-loop sys-
tem takes the form of a hybrid system (see, e.g., [Goebel
et al., 2012] for an introduction to hybrid systems) with
flow map

ẋ(t) = f(x(t), u(φ(t))), (31a)
ṗ(t) = σ̇(t)f(p(t), u(t)), (31b)

ṗtk(t) = 0, (31c)
u(t) = K(ptk(t)), (31d)

jump map ptk((tk)+) = p((tk)+), jump set D ={
(x, p, ptk) | |ptk − p| = ρ−1(θγ(|p|))

2LK

}
, and flow set

C = R3n \D. Note that x and p do not change at jumps
(i.e., identity maps). Here, the values of p (resp. ptk and
u) of any hybrid solution are arbitrary in the interval
[0, φ(0)) (resp. [0, t0)). This formulation is computation-
ally efficient but, if the original system is unstable, it is
prone to numerical instabilities. The reason, suggesting
the name “open-loop”, is that the (p, ptk)-subsystem is
completely decoupled from the x-subsystem. Therefore,
as stated in Remark 4.6, if any mismatch occurs between
x(t) and p(φ(t)) due to numerical errors, the x-subsystem
tends to become unstable, and this is not “seen” by the
(p, ptk)-subsystem.
(ii) Semi-closed-loop: One can add a feedback path from
the x-subsystem to the (p, ptk) subsystem by computing
p directly from (24) every time a new state value arrives
(i.e., at every ψ−1(τ `)). This requires a numerical inte-
gration of f(p(s), u(s)) over the “history” of (p, u) from
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φ(τ ¯̀) to t. This method is more computationally expen-
sive but improves the numerical robustness. However,
since we are still integrating over the history of p, any
mismatch in the prediction takes more time to die out,
which may not be tolerable for an unstable system.
(iii) Closed-loop: To further increase robustness, one can
solve the differential form in (31b) rather than the in-
tegral form in (24) every time a new state value arrives
(i.e., at every ψ−1(τ `)) from φ(τ ¯̀) to t with “initial”
condition p(φ(τ ¯̀)) = x(τ ¯̀). This method is as computa-
tionally expensive as (ii) but is considerably more robust.
This is therefore the recommended method for the nu-
merical implementation of the proposed predictor-based
controller and used below in Examples 6.2 and 6.3. •
Example 6.2 (Compliant Nonlinear System): Consider
the 2-dimensional system given by

f(x, u) =

[
x1 + x2

tanh(x1) + x2 + u

]
, φ(t) = t− (t− 5)2 + 2

2(t− 5)2 + 2
,

τ ` = `∆τ , ` ≥ 0, ψ(t) = t−Dψ,

where ∆τ and Dψ are constants. This system satisfies
Assumption 3.1 with the feedback law K(x) = −6x1 −
5x2 − tanh(x1), S(x) = xTPx, and

Lf =

√
2
√

17 + 10

2
, LK =

√
74, (M1,m2) = 1± 3

√
3

16
,

M0 = 1, γ(r) =
λmin(Q)

2
r2, ρ(r) =

2|PB|2

λmin(Q)
r2,

where P = PT > 0 is the solution of (A+Bk)TP+P (A+
Bk) = −Q for A = [1 1; 0 1], B = [0; 1], k = [−6 − 5],
and arbitrary Q = QT > 0 (we use Q = I). A sample
simulation result of this system is depicted in Figure 3(a).
It is to be noted that for this example, (19) simplifies
to |e(t)| ≤ ρ|p(t)| with ρ = 0.022, but the closed-loop
system remains stable when increasing ρ about until 0.8
(Figure 3(b)).
While Theorem 4.3 guarantees the global asymptotic sta-
bility of the continuous-time system, discretization accu-
racy/error plays an important role in its digital imple-
mentation. It is with this in mind that one should inter-
pret Figure 3(c), where depending on the discretization
scheme and the stepsize employed, the numerical approx-
imation errors in computing the prediction signal, cf. Re-
mark 6.1, make the evolution of the Lyapunov function
V not monotonically decreasing (whereas we know from
Theorem 4.3 that it is monotonically decreasing for the
continuous-time system). We see that, at least for this
example, the effect on the evolution of V is sensitive to
both the order of discretization and the stepsize (h), and
benefits more from decreasing the latter.
Stability is also critically dependent on the sensing sam-
pling rate 1/∆τ , as noted in Remark 4.6. We can also see
from Figure 3(c) that the decay of V clearly deteriorates
for large ∆τ (insufficient sampling) due to (in this exam-
ple only discretization) noise but can be made monotonic
for sufficiently small ∆τ . To visualize this effect on stabil-
ity more systematically, we varied ∆τ and Dψ and com-
puted |x(25)| as a measure of asymptotic stability. The

average result is depicted in Figure 3(d) for 10 random
initial conditions, showing that unlike our theoretical ex-
pectation, large ∆τ and/or Dψ result in instability even
in the absence of noise because of the numerical error that
degrades the estimation (27) over time (c.f. Remark 6.1).
Nevertheless, taking the delays and sampling into account
while designing the controller using the predictor-based
scheme (10) significantly increases the robustness of the
closed-loop system relative to a design that is oblivious to
delays and sampling. As shown in [Mazenc et al., 2013],
the asymptotic stability of the latter can only be guaran-
teed for this example without actuation delays and event-
triggering if ∆τ +Dψ ≤ 7.1×10−3 (given that, using the
notation therein, we have c1 = 25, c2 = 29/9, c3 = 772),
which is more than two orders of magnitude more conser-
vative than the empirical bound shown in Figure 3(d).
Finally, we have investigated the robustness of the closed-
loop system to external disturbances (which are not the-
oretically included in our analysis but inevitably exist
in practice). In an event-triggered system, disturbances
may lead to instability and/or Zeno behavior, cf. [Dolk
et al., 2017]. However, as shown in Figure 3(e-f), neither
instability nor Zeno behavior occurs when adding (any
strength of) the disturbance here, highlighting the prac-
tical relevance of the proposed event-triggered scheme. •
Example 6.3 (Non-compliant Nonlinear System):Here,
we consider an example that violates several of our as-
sumptions. Let

f(x, u) = (A+ ∆A)x+Bu+ Ex3
1, E = [0 1]T ,

t− φ(t) = D + a sin(t), τ ` = `∆τ , ψ(t) = t− 1− e−t

2
,

where A and B are as in Example 6.2. The nominal delay
D and nominal coefficient matrix A are known but their
perturbations a sin(t) and ∆A are not (the controller as-
sumes φ(t) = t − D and f(x, u) = Ax + Bu + Ex3

1).
We generate the elements of ∆A independently from
N (0, σ2

A). Furthermore, in our simulation, the actual time
that it takes for a sensor message x(τ `) to reach the con-
troller is not the nominal delay ψ−1(τ `) − τ ` but a ran-
dom variable Dψ

` , where

E[Dψ
` ] = ψ−1(τ `)− τ `, var(Dψ

` ) = σψ > 0.

This serves to illustrate how the delay function ψ (and
similarly φ), though being continuous and deterministic
in our treatment, can be used to compensate for (in addi-
tion to physical sensor lag) computation and communica-
tion delays that are discrete and stochastic in nature 7 .
Moreover,K(x) = −6x1−5x2−x3

1 makes the closed-loop
system ISS but is not globally Lipschitz, and the zero-
input system exhibits finite escape time. The simulation
results of this example are illustrated in Figure 4. It can
be seen that although V is significantly non-monotonic,
the event-triggered controller is able to stabilize the sys-
tem. While a thorough investigation of the stability of

7 Since the triggering times τ ` are themselves random and
vary from execution to execution, the function ψ is defined
for all t even though only the discrete sequence {ψ−1(τ `)} is
relevant for each execution.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Simulation results for Example 6.2. Unless otherwise stated, we use x(0) = (1, 1), θ = 0.5, b = 10, ∆τ = 2, Dψ = 1, and
Euler discretization with h = 10−3. (a) Sample trajectories. The dotted portion of p(t) corresponds to the times [φ(0), ψ−1(0))
and is plotted only for illustration purposes (not used by the controller). (b) The event-frequency and average of |x(50)| over
100 random initial conditions as a function of ρ̄. (c) The effect of discretization and state sampling on stability. While stepsize
h and sampling rate 1/∆τ have a strong impact on stability (blue and red curves, resp.), the effect of discretization order is
less significant (green curve, 4th order Runge-Kutta). (d) Heat map of the average of |x(25)| over 10 random initial conditions
drawn from standard normal distribution. The red line shows an approximate border of stability. (e-f) Numerical verification
of the robustness of the event-triggered controller to additive disturbances: we augment (3) as ẋ = f(x, up) + d, where d is
zero-mean, white, and Gaussian. (e) The estimate of the ultimate bound of state (maxi=1,2 lim supt→∞ |xi(t)|) for varying
standard deviation of d. The value of the ultimate bound depends on sampling delay and frequency, but the state always remains
bounded for bounded disturbances and the best linear fit always has a slope ' 1, a behavior akin to globally input-to-state
stable linear systems. (f) The inter-event times {tk+1−tk}k≥0 for std(d) = 1. Unlike [Borgers and Heemels, 2014], the minimum
inter-event time is lower bounded by δ in Theorem 4.3 irrespective of the existence or strength of disturbance (as long as
∆τ > δ) due to the fact that sensing only occurs at discrete-time instances {τ `}, making the controller oblivious to disturbance
over each ∆τ period. This may in principle lead to instability (|x| → ∞) but we see from (e) that this is not the case.

the resulting stochastic dynamical system reaches far be-
yond our theoretical guarantees, this example suggests
that the proposed controller is robust to small violations
of its assumptions and is thus applicable to a wider class
of systems than those satisfying Assumption 3.1. •

7 Conclusions and Future Work
We have proposed a prediction-based event-triggered
control scheme for the stabilization of nonlinear systems
with sensing and actuation delays. Assuming known
time delay, globally-Lipschitz input-to-state stabiliz-
ability, and state feedback, we have shown that the
closed-loop system is globally asymptotically stable and
the inter-event times are uniformly lower bounded. We
have specialized our results for linear systems, providing
explicit expressions for our design and analysis steps,
and further studied the sampling-convergence trade-off

Fig. 4. Simulation of the non-compliant system in Exam-
ple 6.3. We have used x(0) = (1, 1), θ = 0.5, b = 10, a = 0.01,
D = 0.2, ∆τ = 1, µψ = 0.1, σψ = σA = 0.02, triggering
condition |e(t)| ≤ 0.5|p(t)|, and Euler discretization of the
continuous-time dynamics with h = 10−2.

10



characteristic of event-triggered strategies. Finally, we
have addressed the numerical challenges that arise in the
computation of predictor feedback and demonstrated
the effectiveness of our approach in simulation. Regard-
ing future work, we highlight the extension of our results
to systems with disturbances, unknown input delays, or
output feedback, the characterization of the robustness
properties resulting from incorporating the most recently
available state information, the relaxation of the global
Lipschitz requirement on the input-to-state stabilizer,
and the study of the effect on performance of the numer-
ical implementation of the event-triggered controller.
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