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Recent advances in computational models of signal propagation and routing in the human brain have under-
scored the critical role of white matter structure. A complementary approach has utilized the framework of
network control theory to better understand how white matter constrains the manner in which a region or set of
regions can direct or control the activity of other regions. Despite the potential for both of these approaches to
enhance our understanding of the role of network structure in brain function, little work has sought to under-
stand the relations between them. Here, we seek to explicitly bridge computational models of communication
and principles of network control in a conceptual review of the current literature. By drawing comparisons
between communication and control models in terms of the level of abstraction, the dynamical complexity, the
dependence on network attributes, and the interplay of multiple spatiotemporal scales, we highlight the conver-
gence of and distinctions between the two frameworks. Based on the understanding of the intertwined nature of
communication and control in human brain networks, this work provides an integrative perspective for the field
and outlines exciting directions for future work.

Highlights
• Mathematical models of signal processing and trans-

mission have co-evolved with experimental neuro-
science and have been instrumental in enhancing our
understanding of emergent ‘communication dynamics’.

• The framework of network control theory has increas-
ingly been applied to brain networks to characterize
their response to exogeneous or endogeneous stimuli,
and to inform the design of intervention strategies to
bring desired changes in behaviour.

• In this review, we compare the two theoretical ap-
proaches in the context of brain networks along the lines
of (i) the level of abstraction, (ii) the nature and com-
plexity of models, (iii) the dependence of communica-
tion and control measures on network attributes, and
(iv) the interplay of different spatiotemporal scales in
each.

• We discuss outstanding challenges and propose future
directions of research that may benefit from combining
the two frameworks in the areas of system identifica-
tion, neuronal decoding, and building biophysically re-
alistic control models.

I. INTRODUCTION

The propagation and transformation of signals among neu-
ronal units that interact via structural connections can lead to

emergent communication patterns at multiple spatial and tem-
poral scales. Collectively referred to as ‘communication dy-
namics’, such patterns reflect and support the computations
necessary for cognition [1, 2]. Communication dynamics con-
sist of two elements: (i) the dynamics that signals are sub-
jected to, and (ii) the propagation or spread of signals from
one neural unit to another. Whereas the former is determined
by the biophysical processes that act on the signals, the lat-
ter is dictated by the structural connectivity of brain networks.
Mathematical models of communication incorporate one or
both of these elements to formalize the study of how function
arises from structure. Such models have been instrumental in
advancing our mechanistic understanding of observed neural
dynamics in brain networks [1–10].

Building upon the descriptive models of neural dynamics,
greater insight can be obtained if one can perturb the sys-
tem and accurately predict how the system will respond [3].
The step from description to perturbation can be formalized
by drawing on both historical and more recent advances in
the field of control theory. As a particularly well-developed
subfield, the theory of linear systems offers first principles of
system analysis and design, both to ensure stability and to in-
form control [11]. In recent years, this theory has been ap-
plied to the human brain and to non-human neural circuits to
ask how inter-regional connectivity can be utilized to navi-
gate the system’s state space [12–15], to explain the mecha-
nisms of endogenous control processes (such as cognitive con-
trol) [16, 17], and to design exogenous intervention strategies
(such as stimulation) [18, 19]. Applicable across spatial and
temporal scales of inquiry [20], the approach has proven use-
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ful for probing the functional implications of structural varia-
tion in development [21], heritability [22], psychiatric disor-
ders [23, 24], neurological conditions [25], neuromodulatory
systems [26] and detection of state transitions [27, 28]. Fur-
ther research in the area of application of network control the-
ory to brain networks can inform neuromodulation strategies
[24, 29] and stimulation therapies [30].

Theoretical frameworks for communication and control
share several common features. In communication mod-
els, the observed neural activity is strongly influenced by
the topology of structural connections between brain regions
[1, 3]. In control models, the energy injected through exoge-
nous control signals is also constrained to flow along the same
structural connections. Thus, the metrics used to characterize
communication and control both show strong dependence on
the topology of structural brain networks. Interwoven with
the topology, the dynamics of signal propagation in both the
control and communication models involve some level of ab-
straction of the underlying processes, and dictate the behav-
ior of the system’s states. Despite these practical similari-
ties, communication and control models differ appreciably in
their goals [Fig. 1]. Whereas communication models primar-
ily seek to explain the patterns of neural signaling that can
arise at rest or in response to stimuli, control theory primarily
seeks principles whereby inputs can be designed to elicit de-
sired patterns of neural signaling, under certain assumptions
of system dynamics. In other words, at a conceptual level,
communication models seek to understand the state transi-
tions that arise from a given set of inputs (including the ab-
sence of inputs), whereas control models seek to design the
inputs to achieve desirable state transitions.

While relatively simple similarities and dissimilarities are
apparent between the two approaches, the optimal integration
of communication and control models requires more than a
superficial comparison. Here, we provide a careful investi-
gation of relevant distinctions and a description of common
ground. We aim to find the points of convergence between the
two frameworks, identify outstanding challenges, and outline
exciting research problems at their interface. The remainder
of this review is structured as follows. First, we briefly re-
view the fundamentals of communication models and network
control theory in Sections II and III, respectively. In both sec-
tions, we order our discussion of models from simpler to more
complex, and we place particular emphasis on each model’s
spatiotemporal scale. Section IV is devoted to a comparison
between the two approaches in terms of (i) the level of ab-
straction, (ii) the complexity of the dynamics and observed
behavior, (iii) the dependence on network attributes and, (iv)
the interplay of multiple spatiotemporal scales. In Section V,
we discuss future areas of research that could combine ele-
ments from the two avenues alongside outstanding challenges.
Finally, we conclude by summarizing and elucidating the use-
fulness of combining the two approaches and the implications
of such work for understanding brain and behavior.

II. COMMUNICATION MODELS

In a network representation of the brain, neuronal units are
represented as nodes, while inter-unit connections are repre-
sented as edges. Such connections can be structural, in which
case they are estimated from diffusion imaging [31], or can
be functional, in which case they are estimated by statistical
similarities in activity from functional neuroimaging. When
the state of node j at a given time t is influenced by the state
of node i at previous time points, a communication channel
is said to exist between the two nodes, with node i being the
sender and node j being the receiver [Fig. 2(a)]. The set of all
communication channels forms the substrate for communica-
tion processes. A given communication process can be mul-
tiscale in nature: communication between individual units of
the network typically leads to the emergence of global patterns
of communication thought to play important roles in compu-
tation and cognition [1].

In brain networks, the state of a given node can influence
the state of another node precisely because the two are con-
nected by a structural or effective link. This structural con-
straint on potential causal relations results in patterns of ac-
tivity reflecting communication among units. Such activity
can be measured by techniques such as functional magnetic
resonance imaging (fMRI), electroencephalography (EEG),
magnetoencephalography (MEG), and electrocorticography
(ECoG), among others [32]. In light of the complexity of
observed activity patterns and in response to questions regard-
ing their generative mechanisms, investigators have developed
mathematical models of neuronal communication. Such mod-
els allow for inferring, relating, and predicting the depen-
dence of measured communication dynamics on the topology
of brain networks.

Communication models can be roughly classified into three
types: dynamical, topological, and information theoretic.
Dynamical models of communication are generative, and
seek to capture the biophysical mechanisms that transform
signals and transmit them along structural connections.
Topological models of communication propose network
attributes, such as measures of path and walk structure, to
explain observed activity patterns. Information theoretic
models of communication define statistical measures to
quantify the interdependence of nodal activity, the direction
of communication, and the causal relations between nodes.
Several excellent reviews describe these three model types
in great detail [1, 3, 33–35]. Thus here we instead provide a
rather brief description of the associated approaches and mea-
sures, particularly focusing on aspects that will be relevant
to our later comparisons with the framework of control theory.

A. Dynamic models and measures

Dynamical models of communication aim to capture the
biophysical mechanisms underlying signal propagation be-
tween communicating neuronal units in brain networks. Such
models can be defined at various levels of complexity, rang-
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Communication models

Energy

Control models

FIG. 1 The goals of communication and control models share an inverse relationship. The propagation of an initial stimulus is dictated
by the underlying structural connections of the brain network and results in the observed communication dynamics. Stimuli can be external
(e.g. transcranial direct current stimulation, sensory stimuli, behavioral therapy, drugs) or internal (e.g. endogenous brain activity, cognitive

control strategies). The primary goal of communication models is to capture the evolution of communication dynamics using dynamical
models, and to characterize the process of signal propagation using graph-theoretic and statistical measures. In contrast, a fundamental aim in
the framework of control theory is to determine the control strategies that would navigate the system from a given initial state to the desired

final state. Control signals (shown by the red lightning bolt) move a controllable system along trajectories (shown as a red dotted curve on the
state-plane) that connect the initial and final states. Here, the cost of the trajectory is determined by the energetics of the state transition. We

show example trajectories T1 and T2 on an example energy landscape.

ing from relatively simple linear diffusion models to highly
non-linear ones. Dynamical models also differ in terms of the
spatiotemporal scales of phenomena that they seek to explain.
The choice of explanatory scale impacts the precise communi-
cation dynamics that the model produces, as well as the scale
of collective dynamics that can emerge.

The general form of a deterministic dynamical model at an
arbitrary scale is given by [33],

dx
dt

= f (x,A,u,βββ ) . (1)

Here, x encodes the state variables that are used to describe
the state of the network, A encodes the underlying connec-
tivity matrix, and u encodes the input variables. The func-
tional form of f is set by the requirements (i.e., the expected

utility) of the model. For example, at the level of individual
neurons communicating via synaptic connections, the conser-
vation law for electric charges (together with model fitting for
the gating variables) determines the functional form of f in
the Hodgkin-Huxley model [36, 37]. Similarly, at the scale
of neuronal ensembles, other biophysical mechanisms such as
the interactions between excitatory and inhibitory populations
dictate f in the Wilson-Cowan model [38]. Finally, βββ encodes
other parameters of the model, independent of the connectiv-
ity strength A. The βββ parameters can be phenomenological,
thereby allowing for an exploration of the whole phase space
of possible behaviors; alternatively, the βββ parameters can be
determined from experiments in more data-driven models. In
some limiting cases, it may also be possible to derive βββ pa-
rameters in a given model at a particular spatiotemporal scale
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(b)(a)

Sender node Receiver node

Topological models Information-theoretic models

Diffusion/ Flow based 
measures 
(e.g. 
communicability, 
mean first-passage
time)

Causal measures 
(e.g.
Granger Causality)

Dynamical models

Discrete time dynamics

Continuous time dynamics

Path-based measures Statistical correlations in

 time-series 

FIG. 2 Models and measures of communication. (a) A communication event from sender node i to receiver node j causes dependencies in
the activity x j(t) of the j-th node on the activity xi(t) of the i-th node. (b) The three classes of mathematical approaches to understanding

emergent communication dynamics, as well as potential areas of overlap. Topological models (caerulean) primarily construct measures based
on paths or walks (red edges) between communicating nodes. Dynamical models (mauve) can be cast into differential equations (for

continuous time dynamics) or difference equations (for discrete time dynamics) that capture dynamic processes governing the propagation of
information at a given spatiotemporal scale. Information theoretic models (artichoke) propose measures to compute the degree to which x j(t)

statistically (and sometimes causally) depends upon xi(t).

from complementary models at a finer scale via the procedure
of coarse-graining [33].

Fundamentally, dynamical models seek to capture commu-
nication of the sort where one unit causes a change in the ac-
tivity of another unit or shares statistical features with another
unit. There is, however, little consensus on precisely how to
measure these causal or statistical relations. One of the most
common measures is Granger causality [39], which estimates
the statistical relation of unit xi to unit x j by the amount of
predictive power that the “past” time series {xi(τ),τ < t} of
xi has in predicting x j(t). While this prediction need not be
linear, Granger causality has been historically measured via
linear autoregression [40, 41]; see [42] for a review in relation
to brain networks.

The use of temporal precedence and lead-lag relationships
is also a basis for alternative definitions of causality. In [43],
for instance, the authors propose the phase-slope index, which
measures the direction of causal influence between two time
series based on the lead-lag relationship between the two sig-
nals in the frequency domain. Notably, this relationship can be
used to measure the causal effect between neural masses cou-
pled according to the structural connectome [44]. Because not
all states of a complex system can often be measured, several
studies have opted to first reconstruct (equivalent) state tra-
jectories via time delay embedding [45, 46] before measuring
predictive causal effects [47, 48]. Finally, given the capacity

to perturb the states or even parameters of the network (either
experimentally or in simulations), one can observe the subse-
quent changes in other network states that occur, and thereby
discover and measure causal effects [49, 50].

B. Topological models and measures

The potential for communication between two brain re-
gions, each represented as a network node, is dictated by the
paths that connect them. It has been thought that long routes
demand high metabolic costs and sustain marked delays in
signal propagation [51]. Thus, the presence and nature of
shortest paths through a network are commonly used to infer
the efficiency of communication between two regions [1]. If
the shortest path length between node i and node j is denoted
by d(i, j) [52] then the global efficiency through a network
is defined as the mean of the inverse shortest path lengths
εi j =

1
d(i, j) [52, 53]. Although measures based on shortest

paths have been widely used, their relevance to the true sys-
tem has been called into question for three reasons. First,
systems that route information exclusively through shortest
paths are vulnerable to targeted attack of the associated edges
[1]; yet, one might have expected brains to have evolved to
circumvent this vulnerability, for example by also using non-
shortest paths for routing. Second, a sole reliance on shortest-
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path routing implies that brain networks have non-optimally
invested a large cost in building alternative routes which es-
sentially are not used for communication. Third, the ability to
route a signal by the shortest path appears to require the sig-
nal or brain regions to have biologically implausible knowl-
edge of the global network structure. These reasons have
motivated the development of alternative measures, such as
the number of parallel paths or edge-disjoint paths between
two regions [1]; systems using such diverse routing strategies
can attain greater resilience of communication processes [54].
The resilience of inter-regional communication in brain net-
works is a particularly desired feature since fragile networks
have been found to be associated with neurological disorders
such as epilepsy [55–57].

The assumption of information flow through all paths avail-
able between two regions leads to the notion of communi-
cability. By denoting the adjacency matrix A, we can de-
fine the communicability between node i and node j as the
weighted sum of all walks starting at node i and ending at
node j [58, 59]:

G ji =
∞

Σ
k=0

ck(Ak) ji , (2)

where Ak denotes the k−th power of A, and ck are appro-
priately selected coefficients that both ensure that the series
is convergent and assign smaller weights to longer paths. If
the entries of A are all nonnegative (which is the context in
which communicability is mainly used), then G ji is also real
and non-negative. Out of several choices that can be made,
a particularly insightful one is ck = 1

k! . The resulting com-
municability, also known as the exponential communicability
G ji = (eA) ji, allows for interesting analogies to be drawn with
the thermal Green’s function and correlations in physical sys-
tems [58, 59]. Additionally, since (Ak) ji directly encodes the
weighted paths of length k from node i to node j, one can
conveniently study the path length dependence of communi-
cation. Exponential communicability is also similar to the
impulse response of the system, a familiar notion in control
theory which we further explore in Section IV.

Another flow-based measure of communication efficiency
is the mean first-passage time, which quantifies the distance
between two nodes when information is propagated by diffu-
sion. Similar to the global efficiency, the diffusion efficiency
is the average of the inverse of the mean first-passage time be-
tween all pairs of network nodes. Interestingly, systems that
evolve under competing constraints for diffusion efficiency
and routing efficiency can display a diverse range of network
topologies [1]. Note that these global measures of commu-
nication efficiency only provide an upper bound on the as-
sumed communicative capacity of the network; in networks
with significant community or modular structures, other archi-
tectural attributes such as the existence and inter-connectivity
of highly connected hubs are determinants of the integrative
capacity of a network which global measures of communica-
tion efficiency fail to capture accurately [5].

Network attributes that determine an efficient propagation
of externally induced or intrinsic signals may inform genera-

tive models of brain networks both in health and disease [60].
Moreover, such attributes can inform the choice of control in-
puts targeted to guide brain state transitions; we discuss this
convergence in Section IV. Further, quantifying communica-
tion channel capacity calls for the use of information theory,
which we turn to now.

C. Information theoretic models and measures

Information theory and statistical mechanics have been
used to define several measures of information transfer such
as transfer entropy and Granger causality. Such measures
are built upon the fact that the process of signal propagation
through brain networks results in collective time-dependent
activity patterns of brain regions which can be measured as
time-series. Entropic measures of communication aim to find
statistical dependencies between such time-series to infer the
amount and direction of information transfer. The processes
underlying the observed time-series are typically assumed to
be Markovian, and measures of statistical dependence are cal-
culated in a manner that reflects causal dependence. For this
reason, the causal measures of communication proposed in the
information theoretic approach share similarities with those
used in dynamical causal inference [61].

A central quantity in information theory is the Shannon en-
tropy, which measures the uncertainty in a discrete random
variable I that follows the distribution p(i) and is given by
H(I) = −Σ

i
p(i) log(p(i)). One measure of statistical inter-

dependency between two random variables I and J is their
mutual information, MIJ = Σp(i, j) log(p(i, j))

log p(i),log p( j) , where p(i, j)
is their joint distribution and p(i) and p( j) are its marginals.
Since mutual information is symmetric, it fails to capture
the direction of information flow between two processes (se-
quences of random variables) [62].

To address this limitation, the measure of transfer entropy
was proposed to capture the directionality of information ex-
change [62]. Transfer entropy takes into account the transition
probability between different states, which can be the result
of a stochastic dynamic process (similar to Eq. (1) but with a
stochastic u) and obtained from the time series of activities of
brain regions through imaging techniques. To measure the di-
rection of information transfer between processes I and J, the
notion of mutual information is generalized to the mutual in-
formation rate. The transfer entropy between processes I and
J is given by [62]:

TJ→I = Σp(in+1, i
(k)
n , j(l)n ) log

p(in+1|i(k)n , j(l)n )

p(in+1|i(k)n )
, (3)

where processes I and J are assumed to be stationary Markov
processes of order k and l, respectively. The quantity i(k)n ( j(l)n )
denotes the state of process I(J) at time n while p((in+1|i(k)n )
denotes the transition probability to state in+1 at time n+ 1,
given knowledge of the previous k states. The quantity
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p(in+1|i(k)n , j(l)n ) is the same as p(in+1|i(k)n ) if the process J does
not influence the process I.

Similar to Granger causality, transfer entropy has been
extensively used to compute the statistical interdependence
of dynamic processes and to infer the directionality of infor-
mation exchange. Later studies have sought to combine these
two measures into a single framework by defining the multi-
information. This approach takes into account the statistical
structure of the whole system and of each subsystem, as well
as the structure of the interdependence between them [63].
Such methods complement the topological and dynamical
models to provide a unique perspective on communication,
by quantifying information content and transformation.

D. Communication models across spatiotemporal scales

Whether considering models that are dynamical, topologi-
cal, or information theoretic, we must choose the identity of
the neural unit that is performing the communication. Indi-
vidual neurons form basic units of computation in the brain,
which communicate with other neurons via synapses. One
particularly common model of communication at this cellu-
lar scale is the Hodgkin-Huxley model, which identifies the
membrane potential as the state variable whose evolution is
determined by the conservation law for electric charge [37].
Simplifications and dimensional reductions of the Hodgkin-
Huxley model have led to related models such as the Fitzhugh-
Nagumo model, which is particularly useful for studying the
resulting phase space [36, 64]. Further simplifications of the
neuronal states to binary variables have facilitated detailed ac-
counts of network-based interactions such as those provided
by the Hopfield model [3, 36]. Collectively, despite all captur-
ing the state of an individual neuron, these models differ from
one another in the biophysical realism of the chosen state vari-
ables: the on/off states in the Hopfield model are arguably less
realistic than the membrane potential state in the Hodgkin-
Huxley model.

When considering a large population of neurons, a set of
simplified dynamics can be derived from those of a single
neuron using the formalism and tools from statistical mechan-
ics [33, 34, 36]. The approximations prescribed by the laws
of statistical mechanics – such as, for example, the diffusion
approximation in the limit of uncorrelated spikes in neuronal
ensembles – have led to the Fokker-Planck equations for the
probability distribution of neuronal activities. From the evo-
lution of such probability distributions, one can derive the dy-
namics of the moments, such as the mean firing rate and vari-
ance [33, 34]. Several models of neuronal ensembles exist that
exhibit rich collective behavior such as synchrony [65, 66], os-
cillations [67, 68], waves [69, 70], and avalanches [71], each
supporting different modes of communication. In the limit
where the variance of neuronal activity over the ensemble can
be assumed to be constant (e.g., in the case of strong coher-
ence), the Fokker-Planck equation leads to neural mass mod-
els [33]. Relatedly, the Wilson-Cowan model is a mean-field
model for interacting excitatory and inhibitory populations of

neurons [38], and has significantly influenced the subsequent
development of theoretical models for brain regions [72, 73].
At scales larger than that of neuronal ensembles, brain dy-
namics can be modelled by coupling neural masses, Wilson-
Cowan oscillators, or Kuramato oscillators according to the
topology of structural connectivity [33, 65, 69, 70, 74]. Col-
lectively, these models provide a powerful way to theoretically
and computationally generate the large scale temporal patterns
of brain activity which can be explained by the theory of dy-
namical systems.

When changing models to different spatiotemporal scales,
we must also change how we think about communication.
While communication might involve induced spiking at the
neuronal scale, it may also involve phase lags at the popu-
lation scale. Dynamical systems theory provides a powerful
and flexible framework to determine the emergent behavior in
dynamic models of communication. As we saw in Eq. (1),
the evolution of the system is represented by a trajectory in
the phase space constructed from the system’s state variables.
A critical notion from this theory has been that of attractors,
namely, stable patterns in this phase space to which phase tra-
jectories converge. The range of emergent behavior exhibited
by the dynamical system such as steady states, oscillations,
and chaos, is thus determined by the nature of its attractors
which can be stable fixed points, limit cycles, quasi-periodic,
or chaotic. Oscillations, synchronization, and spiral or travel-
ling wave solutions that result from dynamical models match
with the patterns observed in brain networks, and have been
proposed as the mechanisms contributing to cross-regional
communication in brain [70, 75–78].

The class of communication models that generate oscilla-
tory solutions holds an important place in models of brain
dynamics [79]. Numerous classes of nonlinear models at
both the micro- and macro-scale exhibit oscillatory solutions,
and they can be broadly classified into periodic (limit cycle),
quasi-periodic (tori), and chaotic [33]. Synchronization in the
activity of spiking neurons is an emergent feature of neural
systems that appears to be particularly important for a variety
of cognitive functions [80]. This fact has motivated efforts
to model brain regions as interacting oscillatory units, whose
dynamics are described by, for example, the Kuramoto model
for phase oscillators. In its original form, the equation for the
phase variable θi(t) of the i−th Kuramoto oscillator is given
by [81, 82]

θ̇i(t) = ωi +
n

∑
j=1

Ai j sin(θ j(t)−θi(t)), (4)

where ωi denotes the natural frequency of oscillator i,
which depends upon its local dynamics and parameters, and
Ai j denotes the net connection strength of oscillator j to
oscillator i. Phase oscillators generally and the Kuramoto
model specifically have been widely used to model neuronal
dynamics [79]. The representation of each oscillator by its
phase (which critically depends upon the weak coupling
assumption [83]) makes it particularly tractable to study
synchronization phenomena [84–86]. Generalized variants of
the Kuramoto model have also been proposed and studied in
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the context of neuronal networks [87].

III. CONTROL MODELS

While the study of communication in the neural systems has
developed hand-in-hand with our understanding of the brain,
the study of control dynamics in (and upon) the brain is rather
young and still in early stages of development. In this section
we review some of the basic elements of control theory that
will allow us in later sections to elucidate the relationships
between communication and control in brain networks.

A. The theory of linear systems

The simplicity and tractability of linear time-invariant (LTI)
models have sparked significant interest in the application of
linear control theory to neuroscience [11, 13]. LTI systems
are most commonly studied in state space, and their simplest
form is finite dimensional, deterministic, without delays, and
without instantaneous effects of the input on the output. Such
a continuous-time LTI system is described by the algebraic-
differential equation

d
dt

x(t) = Ax(t)+Bu(t) (5a)

y(t) = Cx(t). (5b)

Here, Eq. (5a) is a special case of Eq. (1) (with the input ma-
trix B corresponding to βββ ), while the output vector y now al-
lows for a distinction between the internal, latent state vari-
ables x and the external signals that can be measured, say,
via neuroimaging. Each element Ci j of the matrix C thus de-
scribes the loading of the i-th measured signal on the activity
level of the j-th brain region. Note that the number of states,
inputs, and outputs need not be the same, in which case B and
C are not square matrices.

At the macroscale where linear models are most widely
used, the state vector x often contains as many elements as
the number of brain (sub)regions of interest with each ele-
ment xi(t) representing the activity level of the correspond-
ing region at time t, for example corresponding to the mean
firing rate or local field potential. The elements of the vec-
tor u are often more abstract and can model either internal
or external sources. An example of an internal source would
be a cognitive control signal from frontal cortex, whereas
an example of an external source would be neurostimulation
[16, 17, 56, 57, 88]. While a formal link between these in-
ternal or external sources and the model vector u is currently
lacking, it is standard to let

∫ T
0 |u(t)|2dt represent the net en-

ergy. The matrix B is often binary, with one nonzero entry
per column, and encodes the spatial distribution of the input
channels to brain regions.

Owing to the tractability of LTI systems, the state response
of an LTI system (i.e. x(t)) to a given stimulus u(t) can be
analytically obtained as:

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Bu(τ)dτ. (6)

In this expression, the matrix exponential eAt has a special sig-
nificance. If x(0) = 0, and if ui(t) is an impulse (i.e., a Dirac
delta function) for some i, and if the remaining input channels
are kept at zero, then Eq. (6) simplifies to the system’s impulse
response

x(t) = eAtbi , (7)

where bi is the i-th column of B. Clearly, the impulse response
has close ties to the communicability property of the network
introduced in Section II B. We discuss this relation further in
Section IV, where we directly compare communication and
control.

B. Controllability and observability in principle

One of the most successful applications of linear control
theory to neuroscience lies in the evaluation of controllability.
If the input-state dynamics (Eq. (5a)) is controllable, it is pos-
sible to design a control signal u(t), t ≥ 0 such that x(0) = x0
and x(T ) = x f for any initial state x0, final state x f , and con-
trol horizon T > 0. In other words, a (continuous-time LTI)
system is controllable if it can be controlled from any initial
state to any final state in a given amount of time; notice that
controllability is independent of the system’s output. Using
standard control-theoretic tools, it can be shown that the sys-
tem Eq. (5a) is controllable if and only if the controllability
matrix C =

[
B AB · · · An−1B

]
has full rank n, where n de-

notes the dimension of the state [11].
The notion of full-state controllability discussed above can

at times be a strong requirement, particularly as the size of
the network (and therefore the dimension of the state space)
grows. If it happens that a system is not full-state control-
lable, the control input u(t) can still be designed to steer the
state in certain directions, despite the fact that not every state
transition is achievable. In fact, we can precisely determine
the directions in which the state can and cannot be steered
using the input u(t). The former, called the controllable sub-
space, is given by the range space of the controllability matrix
C : all directions that can be written as a linear combination
of the columns of C . It can be shown that the state can be
arbitrarily steered within the controllable subspace, similar to
a full-state controllable system [89, §6.4]. Recall, however,
that the rank of C is necessarily less than n for an uncon-
trollable system, and so is the dimension of the controllable
subspace. If this rank is r < n, we then have an n− r dimen-
sional subspace, called the uncontrollable subspace, which is
orthogonal to the controllable one. In contrast to our full con-
trol over the controllable subspace, the evolution of the system
is completely autonomous and independent of u(t) in the un-
controllable subspace [11].

Dual to the notion of controllability is that of observabil-
ity, which has been explored to a lesser degree in the context
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Control energy

(b)

(a)
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Linear Time Invariant dynamics

FIG. 3 Control theory applied to brain networks. Control theory seeks to determine and quantify the controllability and observability
properties of a given system. A system is controllable when a control input u(t) is guaranteed to exist to navigate the system from a given

initial state to a desired final state in a specified span of time. (a) We begin by encoding a brain network in the adjacency matrix denoted by A.
Then, control signals u(t) act on the network via the input matrix B, leading to the evolution of the system’s state to a desired final state

according to some dynamics. The most common dynamics studied in this context is a linear time invariant dynamics. Whether the system can
be navigated between two arbitrary states in a given time period is determined by a full-rank condition on the controllability matrix. (b) The

control energy landscape dictates the availability and difficulty of transitions between distinct system states. For a controllable system, several
trajectories can exist which connect the initial and final states. An optimum trajectory is then determined using the notion of optimal control.
(c) The eigenvalues of the inverse Gramian matrix quantify the ease of moving the system along eigen-directions that span the state-space and

form an N− ellipsoid whose surface reflects the control energy to make unit changes in the state of the system along the corresponding
eigen-direction. Here we show an ellipsoid constructed from the maximum, the minimum, and an intermediate eigenvalue of the Gramian for

an example regular graph with N = 400 nodes and degree l = 40. The initial state has been taken to be at the origin, and the final state is a
random vector of length N with unit norm. Commonly used metrics of controllability such as the average controllability, can be constructed

from the eigenvalues of the Gramian.

of brain networks. Whereas an output can be directly com-
puted when the input and initial state are specified (Eq. (5)),
the converse is not necessarily true; it is not always possible
to solve for the state from input-output measurements. The
property that characterizes and quantifies the possibility of de-
termining the state from input-output measurements is termed
observability, and can be understood as the possibility to in-
vert the state-to-output map (Eq. (5b)), albeit over time. In-
terestingly, the input signal u(t) and matrix B are irrelevant
for observability. Moreover, the system Eq. (5) is observable
if and only if its dual system dx(t)/dt = AT x(t)+CT u(t) is
controllable (here, the superscript T denotes the transpose).
This duality allows us to, for instance, easily determine the

observability of Eq. (5) by checking whether the observabil-
ity matrix O =

[
CT AT CT · · · (AT )n−1CT

]T has full rank.
The notion of observability may be particularly relevant to the
measurement of neural systems, and we discuss this topic fur-
ther in Sections IV and V.

C. Controllability in practice

Once a system is determined to be controllable in princi-
ple, the next natural question is how to design a control signal
u(t) that can move the system between two states. Although
the existence of at least one such signal is guaranteed by con-
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trollability, this control signal and the resulting system trajec-
tory may not be unique; for instance, an arbitrary intermediate
point can be reached in T/2 time and then the final state can
be reached in the remaining time (both due to controllability).
This non-uniqueness of control strategies leads to the problem
of optimal control; that is, designing the best control signals
that achieve a desired state transition, according to some cri-
terion of optimality. The simplest and most commonly used
criterion is the control energy defined as

∫ T

0
‖u(t)‖2dt =

∫ T

0

m

∑
j=1

u j(t)2dt , (8)

where ‖ · ‖ denotes the Euclidean norm. The corresponding
control signal that minimizes (8) is thus referred to as the mini-
mum energy control. Owing to the tractability of LTI systems,
this control signal and its total energy can be found analyti-
cally [90].

While certainly useful, the minimum energy criterion
(Eq. (8)) has a number of limitations. In particular, the en-
ergy of all the control channels are weighted equally. Further,
the state is allowed to become arbitrarily large between the
initial and final times. These limitations have motivated the
more general linear-quadratic regulator (LQR) criterion

∫ T

0

(
m

∑
j=1

R ju j(t)2 +
n

∑
i=1

Qixi(t)2

)
dt

=
∫ T

0

[
u(t)T Ru(t)+x(t)T Qx(t)

]
dt ,

(9)

where R j and Qi are positive weights forming the diagonal en-
tries of the matrices R and Q, respectively, and T denotes the
transpose operator. Whereas the first term in Eq. (9) expresses
the cost of control as in Eq. (8), the second term introduces a
cost on the trajectory in state-space. This general form poses
a trade-off between the two costs, and is particularly relevant
in cases where some regions of state space are more preferred
than others. By selecting the entries of Q to be large relative
to R, for instance, the resulting control will ensure that the
state remains close to 0. The second term in Eq. (9) can fur-
ther be generalized to introduce a preferred trajectory in the
state-space by replacing x(t) by x(t)− x∗(t) where x∗(t) de-
notes the preferred trajectory. An analytical solution can also
be found for the control signals minimizing the above gener-
alized energy. Notably, the cost function Eq. (9) has recently
proven fruitful in the study of brain network architecture and
development [12, 21].

Another central quantity of interest in characterizing the
controllability properties of an LTI system is the Gramian ma-
trix which, for continuous-time dynamics, is given as

WT =
∫ T

0
eAtBBT eAT tdt. (10)

The invertibility of the Gramian matrix, equivalently to the
full-rank condition of the controllability matrix, ensures that
the system is controllable. Further, the eigen-directions

(eigenvectors) of the Gramian corresponding to its nonzero
(positive) eigenvalues form a basis of the state subspace that
is reachable by the system (Fig. 3(c)) [91, 92], even when the
Gramian is not invertible (note the relation with the control-
lable and uncontrollable subspaces discussed above). Intu-
itively then, the eigenvalues of the Gramian matrix quantify
the ease of moving the system along corresponding eigen-
directions. Various efforts have thus been made to condense
the n eigenvalues of the Gramian into a single, scalar control-
lability metric, such as the average controllability and control
energy (see below) [11–13, 93].

Using the controllability Gramian, it can in fact be shown
that the energy (8) of the mininum-energy control is given by
(assuming x(0) = 0 for simplicity)

E = xT
f W−1

T x f , (11)

where x f denotes the final state. The framework of minimum
energy control and controllability metrics have recently been
applied to brain networks, see, e.g. [12, 13, 16, 21]. This
framework further opens up interesting questions about its im-
plications for control and the response of brain networks to
stimuli; specifically, one might with to determine the physical
interpretation of controllability metrics in brain networks and
how they can inform optimal intervention strategies. We re-
visit this point while discussing the utility of communication
models in addressing some of these questions in Section IV-B.

D. Generalizations to time-varying and non-linear systems

Used most often due to its simplicity and analytical
tractability, the LTI model of system’s dynamics limits the
temporal behavior that can be exhibited by the system to the
following three types: exponential growth, exponential de-
cay, and sinusoidal oscillations. In contrast, the brain ex-
hibits a rich set of dynamics encompassing many other types
of behaviors. Numerical simulation studies have sought to
understand how such rich dynamics, occurring atop a com-
plex network, respond to perturbative signals such as stimula-
tion [94, 95]. Yet, to more formally bring control theoretic
models closer to such dynamics and associated responses,
the framework must be generalized to include non-linearity
and/or time-dependence. The first step in such a generaliza-
tion is the Linear Time-Varying (LTV) system

d
dt

x(t) = A(t)x(t)+B(t)u(t) (12a)

y(t) = C(t)x(t). (12b)

Notably, a generalization of the optimal control problem
(Eq. (9)) to LTV systems is fairly straightforward [90]. But,
unlike LTI systems (Eq. (6)), it is generically not possible to
solve for the state trajectory of an LTV system analytically.
However, if the state trajectory can be found for n linearly
independent initial states, then it can be found for any other
initial state due to the property of linearity. In this case, more-
over, many of the properties of LTI systems can be extended



10

to LTV systems [89], including the simple rank conditions of
controllability and observability [96].

Moving beyond the time-dependence addressed in LTV
systems, one can also consider the many nonlinearities present
in real-world systems. In fact, the second common generaliza-
tion of LTI systems (Eq. (5)) is to nonlinear control systems
which, in continuous time, have the general state-space repre-
sentation:

d
dt

x(t) = f (x(t),u(t), t) (13a)

y(t) = h(x(t), t). (13b)

The time-dependence in f and h may be either explicit or im-
plicit via the time-dependence of x and u, resulting in a time-
varying or time-invariant nonlinear system, respectively.

Before proceeding to truly nonlinear aspects of Eq. (13),
it is instructive to consider the relationship between these
dynamics and the linear models described above (Eqs. (5)
and (12)). Assume that for a given input signal u0(t), the so-
lution to Eq. (13) is given by x0(t) and y0(t). As long as the
input u(t) to the system remains close to u0(t) for all time,
then x(t) and y(t) also remain close to x0(t) and y(t), re-
spectively. Therefore, one can study the dynamics of small
perturbations δδδ x(t) = x(t)− x0(t), δδδ u(t) = u(t)−u0(t), and
δδδ y(t) = y(t)− y0(t) instead of the original state, input, and
output. Using a first order Taylor expansion, it can immedi-
ately be seen that these signals approximately satisfy

d
dt

δδδ x(t) = A(t)δδδ x(t)+B(t)δδδ u(t) (14a)

δδδ y(t) = C(t)δδδ x(t), (14b)

which is an LTV system of the form given in Eq. (12). In
these equations, A(t) = ∂ f (x0(t),u0(t),t)

∂x0(t)
, B(t) = ∂ f (x0(t),u0(t),t)

∂u0(t)
,

and C(t) = ∂h(x0(t),u0(t),t)
∂x0(t)

. Furthermore, A, B, and C are all
known matrices that solely depend on the nominal trajecto-
ries u0(t),x0(t),y0(t). It is then clear that if the nonlinear
system is time-invariant, and if u0(t) ≡ u0 is constant, and
if x0(t) ≡ x0 is a fixed point, then Eq. (14) will take the LTI
form (Eq. (5)). In either case, it is important to remember
that this linearization is a valid approximation only locally (in
the vicinity of the nominal system), and the original nonlin-
ear system must be studied whenever the system leaves this
vicinity.

Leaving the simplicity of linear systems significantly com-
plicates the controllability, observability, and optimal control
problems. Fortunately, if the linearization in Eq. (14) is con-
trollable (observable), then the nonlinear system is also lo-
cally controllable (observable) [97] (see the topic of lineariza-
tion validity discussed above). Notably, the converse is not
true; the linearization of a controllable (observable) nonlin-
ear system need not by controllable (observable). In such a
case, one can take advantage of advanced generalizations of
the linear rank condition for nonlinear systems [97], although
these tend to be too involved for practical use in large-scale
neuronal network models. Interestingly, obtaining optimality
conditions for the optimal control of nonlinear systems is not

significantly more difficult than that of linear systems. How-
ever, solving these optimality conditions (which can be done
analytically for linear systems with quadratic cost functions,
as mentioned above) leads to non-convex optimization prob-
lems that lend themselves to no more than numerical solu-
tions [90].

IV. MODELS OF CONTROL & COMMUNICATION:
AREAS OF DISTINCTION, POINTS OF CONVERGENCE

In this section, we build upon the descriptions of commu-
nication and control provided in Sections II & III by seeking
areas of distinction and points of convergence. We crystallize
our discussion around four main topic areas: abstraction ver-
sus biophysical realism, linear versus nonlinear models, de-
pendence on network attributes, and the interplay across dif-
ferent spatial or temporal scales. Our consideration of these
topics will motivate a discussion of the outstanding challenges
and directions for future research, which we provide in Sec-
tion V.

A. Abstraction vs. biophysical realism

Across scientific cultures and domains of inquiry, the re-
quirements of simplicity and tractability place strong con-
straints on the formulation of theoretical models. Depend-
ing on the behavior that the theory aims to capture, the mod-
els can capture detailed realistic elements of the system with
the inputs from experiments [98, 99], or the models can be
more phenomenological in nature with a pragmatic intent to
make predictions and guide experimental designs . An ex-
ample of a detailed realistic model in the context of neuronal
dynamics is the Hodgkin-Huxley model, which takes into ac-
count the experimental results from detailed measurements of
time-dependent voltage and membrane current[36]. A corre-
sponding example of a more phenomenological model is the
Hopfield model, which encodes neuronal states in binary vari-
ables.
Communication models. Communication models similarly
range from the biophysically realistic to the highly phe-
nomenological. Dynamical models informed by empirically
measured natural frequencies, empirically measured time de-
lays, and/or empirically measured strengths of structural con-
nections place a premium on biophysical realism [100–102].
In contrast, Kuramoto oscillator models for communication
through coherence can be viewed as less biophysically realis-
tic and more phenomenological [79]. Communication models
also capture the state of a system differently, whether by dis-
crete variables such as on/off states of units, or by continuous
variables such as the phases of oscillating units. The diver-
sity present in the current set of communication models allows
theoreticians to make contact with experimental neuroscience
at many levels [3, 6, 74? ].

Alongside this diversity, communication models also share
several common features. For instance, the state variables
chosen to describe the dynamics of the system are motivated
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by neuronal observations and thus represent the system’s bi-
ological, chemical, or physical states. The dynamics that
state variables follow are also typically motivated by our un-
derstanding of the underlying processes, or approximations
thereto. In building communication models, the experimen-
tal observations and intuition typically precede the mathemat-
ical formulation of the model, which in turn serves to gen-
erate predictions that help guide future experiments. A par-
ticularly good example of this experiment-led theory is the
Human Neocortical Neurosolver, whose core is a neocortical
circuit model that accounts for biophysical origins of electri-
cal currents generating MEG/EEG signals [103]. Having been
concurrently developed with experimental neuroscience, the-
oretical models of communication are intricately tied to cur-
rently available measurements.

The closeness to biophysical mechanisms is a feature that is
also typically shown in other types of communication models.
One might think that topological measures devoid of a dynam-
ical model tend to place a premium on phenomenology. But
in fact, the cost functions that brain networks optimize typi-
cally reflect metabolic costs, routing efficiency, diffusion ef-
ficiency, or geometrical constraints [1, 104–106]. Minimiza-
tion of metabolic costs has been shown to be a major factor
determining the organization of brain networks [104]. Fur-
ther, such constraints on metabolism also place limits on sig-
nal propagation and information processing.
Control models. Are these features of communication mod-
els shared by control models? Control models have their ori-
gin in Maxwell’s analysis of the centrifugal governor that sta-
bilized the velocity of windmills against disturbances caused
by the motions of internal components [107]. The field of
control theory was later further formalized for the stability of
motion in linearized systems [108]. Today, control theory is a
framework in engineering used to design systems and to de-
velop strategies to influence the state of a system in a desired
manner [13]. More recently, the framework of control theory
has been applied to neural systems in order to quantify how
controllable brain networks are, and to determine the optimal
strategies or regions that are best to exert control on other re-
gions [12, 13, 21]. Although initial efforts have proven quite
successful, control theory and more generally, the theory of
linear systems, has traditionally concerned itself with finding
the mathematical principles behind the design and control of
linear systems [11], and is applicable to a wide variety of prob-
lems in many disciplines of science and engineering. Because
the application of control theory to brain networks has been
a much more recent effort, identification of appropriate state
variables that are best posed to provide insights on control in
brain networks is a potential area of future research.

Applied to brain networks, control theoretical approaches
have mostly utilizes detailed knowledge of structural con-
nections while assuming the linear dynamics formulated in
Eq. 5a. This simplifying abstraction implies that the influence
of a system’s state at a given time propagates along the paths
of the structural network encoded in A of Eq.5a to affect the
system’s state at the next time point. The type of influence
studied here is most consistent with the diffusion-based prop-
agation of signals in communication models, and intuitively

leads to the expected close relationship between diffusion-
based communication measures and control metrics. Indeed
such a relationship exists between the impulse response (out-
lined in the previous section) and the network communica-
bility. We elaborate further on this relationship in the next
subsection.

Some metrics that are commonly used to characterize the
control properties of the brain are average controllability,
modal controllability, and boundary controllability. These sta-
tistical quantities can be calculated directly from the spectra
of the controllability Gramian WT and the adjacency matrix
A [93]. A related and important quantity of interest here is the
minimum control energy defined as Eq. 8 with u(t) denoting
the control signals. While this quadratic dependence of ‘en-
ergy’ on input signals is appropriate for a linearized descrip-
tion of the system around a steady state, its actual dependence
on the exogenous control signals must depend on several de-
tails such as the cost of generating control signals and the cost
of coupling them to the system. In this sense, the control en-
ergy is a relatively abstract concept whose interpretation has
yet to be linked to the physical costs of control in brain net-
works. This observation loops back to the fact that the devel-
opment of control theory models has been more as an abstract
mathematical framework which is then borrowed by several
fields and thereafter modified by context. We discuss possible
ways of reconciling the cost of control with actual biophysical
costs known from communication models in Section V.

B. Linear vs. non-linear models

In models of communication and dynamics, a reoccur-
ring motif is the propagation of signal along connections.
Graph measures such as small-worldness, global efficiency,
and communicability assume that strong and direct con-
nections between two neural units facilitate communication
[1, 58, 109]. While these measures capture an intuitive con-
cept and have been useful in predicting behavior, they them-
selves do not explicitly quantify the mechanism of commu-
nication or the form of the information. Dynamical mod-
els overcome the former limitation by quantitatively defining
the neural states of a system, and encoding the mechanism
of communication in the differential or difference equations
[33, 59]. However, they only partially address the latter limi-
tation, as it is unclear how a system might change its dynamics
to communicate different information.

There is, of course, no single spatial and temporal scale
at which neural systems encode information. At the level of
single neurons, neural spikes encode visual [110] and spatial
[111] features. At the level of neuronal populations in elec-
troencephalography, changes in oscillation power and syn-
chrony reflect cognitive and memory performance [112]. At
the level of the whole brain, abnormal spatio-temporal pat-
terns in functional magnetic resonance imaging reflect neuro-
logical dysfunction [113]. To accommodate this wide range
of spatial and temporal scales of representation, we put forth
control models as a rigorous yet flexible framework to study
how a neural system might modify its dynamics to communi-
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cate.

1. Linear models: level of pairwise nodal interactions

The most immediate relationship between dynamical mod-
els and information is through the system’s states. From this
perspective, the activity or state of a single neural unit is the
information to send, and communication occurs diffusively
when the states of other neural units change as a result. There
is an exact mathematical equivalence between communicabil-
ity using factorial weights in Eq. 2, and the impulse response
of a linear dynamical system in Eq. 7 through the matrix expo-
nential. Specifically, we realize that the matrix exponential in
the impulse response, eAt , can be written as communicability
with factorial weights, such that

eAt =
∞

∑
k=0

ckAk, where ck =
tk

k!
.

This realization provides an explicit link between connectiv-
ity, dynamics, and communication [59]. From the perspective
of connectivity, the element in the i-th row and j-th column of
the matrix exponential, [eA]i j is the total strength of connec-
tions from node j to node i through paths of all lengths. From
a dynamic perspective, [eAt ]i j is the change in the activity of
node i after t time units as a direct result of node j having
unit activity. Hence, the matrix exponential explicitly links a
structural path-based feature to causal changes in activity un-
der linear dynamics.

2. Linear models: level of network-wide interactions

Increasingly, the field is realizing that the activity of neu-
ral systems is inherently distributed at both the neuronal
[114, 115] and areal [116] levels. Hence, information is not
represented as the activity of a single neural unit, but the pat-
tern of activity, or state, of many neural units. As a result,
we must broaden our concept of communication as the trans-
fer of the system of neural units from an initial state x(0) to a
final state x(t). This perspective introduces a rich interplay be-
tween the underlying structural features of inter-unit interac-
tions, and the dynamics supported by the structure to achieve
a desired state transition.

A crucial question in this distributed perspective of com-
munication is the following: Given that a subset of neural
units are responsible for communication, what are the possible
states that can be reached? For example, it seems extremely
difficult for a single neuron in the human brain to transition
the whole brain to any desired state. This exact question has a
clear and exact answer in the theory of dynamical systems and
control through the controllability matrix. Specifically, given
a subset of neural units K called the control set that are respon-
sible for communication (either of their current state or the ex-
ternal stimuli applied to them) to the rest of the network, the
space of possible state transitions is given by weighted sums

of the columns of the controllability matrix, i.e., the control-
lable subspace (cf. Section III B). Many studies in control the-
ory are therefore directly relevant for communication, such as
determining whether or not a particular control set can transi-
tion the system to any state given the underlying connectivity
[117], or whether reducing the controllable subspace by re-
moving neurons reduces the range of motion in-vivo [14].

3. Linear models: accounting for biophysical costs

While determining the theoretical ability of performing a
state transition is important, the neural units responsible for
control may have to exert a biophysically infeasible amount
of effort to perform the transition. Such a constraint is known
to be present in many forms such as metabolic cost [104, 118],
and firing rate capacity [119]. These constraints are explicitly
taken into account in control theory through minimum energy
control, and by extension, optimal control. As detailed in Sec-
tion III C, the minimum energy control places a homogeneous
quadratic cost (control energy) on the amount of effort that
the controlling neural units must exert to perform a state tran-
sition (Eq. 8) while the general LQR optimal control addition-
ally includes the level of activity of the neural units as a cost
to penalize infeasibly large states (Eq. 9).

Within this framework of capturing distributed communica-
tion and biophysical constraints, there remains the outstanding
question of how structural connectivity contributes to commu-
nication. What features of connectivity enable a set of neural
units to better transition the system than another set of units?
To this end, many summary statistics have been put forth,
mostly in terms of the controllability Gramian (Eq. (10)) due
to its crucial role in determining the cost of control (Eq. (11)).
Among them are the trace of the inverse of the Gramian,
Tr(W−1

T ) which quantifies the average energy needed to reach
all states on the unit hypersphere (Fig. 3), and the square root
of the determinant of the Gramian

√
det(WT ) (or its loga-

rithm) which is proportional to the volume of states that can
be reached with unit input [120]. Other studies summarize the
contribution of connectivity from individual nodes [16, 121]
or multiple nodes [122, 123], leading to potential candidates
for new measures of communication.

4. Non-linear models: oscillators and phases

When faced with the task of studying complex communi-
cation dynamics in neural systems, it is evident that the rich-
ness of neural behavior extends beyond linear dynamics. In-
deed, a typical analysis of neural data involves studying the
power of the signals at various frequency bands for behav-
iors ranging from memory [112] to spatial representations
[111], underscoring the importance of nonlinear oscillations.
To capture these oscillations, the earliest models of Hodgkin
and Huxley [37], with subsequent simplifications of Izhike-
vich [124] and FitzHugh-Nagumo [64] neurons, as well as
population-averaged [38] systems, contain nonlinear interac-
tions that can generate oscillatory behavior. In such systems,
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how do we quantify information and communication? Fur-
ther, how would such a system change the flow of communi-
cation?

Some prior work has focused on lead-lag relationships be-
tween the signal phases [43, 44, 65], where the relation im-
plies that communication occurs by the leading unit transmit-
ting information to the lagging unit. A fundamental and ubiq-
uitous equation to model this type of system is the Kuramoto
equation (Eq. 4), where each neural unit has a phase θi(t) that
evolves forward in time according to the natural frequency ωi
and a sinusoidal coupling with the phases of the other units θ j,
weighted by the coupling strength Ai j [81, 82]. This model
has a vast theoretical and numerical foundation with myriad
applications in control systems [125].

Given an oscillator system with fixed parameters, how can
the system establish and alter its lead-lag relationships? In
the regime of frequency synchronization where the natural fre-
quencies are not identical, the oscillators converge to a com-
mon synchronization frequency ωsync. As a result, the rela-
tive phases with respect to this frequency remain fixed at θsync
[125], thereby establishing a lead-lag relationship. In this
regime, the nonlinear oscillator dynamics can be linearized
about ωsync, to generate a new set of dynamics

θ̇i ≈ ωi−
N

∑
j=1

Li jθ j,

where L is the network Laplacian matrix of the coupling ma-
trix A. In [126], the authors begin with an unstable general
oscillator network that is not synchronized (i.e., does not have
a true θsync, and perform state-feedback to stabilize an unsta-
ble set of phases θθθ

∗, thereby inducing frequency synchroniza-
tion with the corresponding lead-lag relationships. The core
concept behind this state-feedback is to designate a subset of
oscillators as “driven nodes,” and add an additional term that
modulates the phases of these oscillators according to

θ̇i = ωi +
N

∑
j=1

Ai j sin(θ j−θi)︸ ︷︷ ︸
natural dynamics

+Fi sin(θ ∗i −θi)︸ ︷︷ ︸
state−feedback

.

Subsequent work focuses on expanding the form of the con-
trol input [127], and modifications to the coupling strength to
a single node [128]. Hence, we observe that targeted modifi-
cation to the dynamics of subsets of oscillators can indeed set
their lead-lag relationships.

Generally, oscillator systems are not inherently phase os-
cillators. For example, the Wilson-Cowan [38], Izhikevich
[124], and FitzHugh-Nagumo [64] models are all oscillators
with two state variables coupled through a set of nonlinear
differential equations. The transformation of these state vari-
ables and equations into a phase oscillator form is the sub-
ject of weakly-coupled oscillator theory [125, 129]. In the
event that the oscillators are not weakly coupled, then con-
trolling the dynamics and phase relations begins to fall under
the purview of linear time-varying systems (Eq. 12) and non-
linear control [97, 130].

C. Dependence on network attributes

In network neuroscience, recent studies have begun to char-
acterize how network attributes influence communication and
control in neuronal and regional circuits. In neuronal circuits,
the spatiotemporal scale of communication has been studied
from the perspective of statistical mechanics in the context
of neuronal avalanches [71]. Such studies show that activity
propagates in a critical [131], or at least slightly subcritical
[132, 133], regime. In a critical regime, the network connec-
tions are tuned to optimally propagate information throughout
the network [71]. Studies of microcircuits also show more ex-
plicitly that certain network topologies can play precise roles
in communication. Hubs, which are neural units with many
connections, often serve to transmit information within the
network [? ]. Groups of such hubs are called rich-clubs
[134, 135], which have been observed in a wide range of or-
ganisms [136, 137], and they dominate information transmis-
sion and processing in networks [137].

Cortical network topologies have highly non-random fea-
tures [138], which may support more complex routing of com-
munication [54]. In studies of neuronal gating, one group of
neurons, such as the mediodorsal thalamus, can either facili-
tate or inhibit pathways of communication, such as that from
the hippocampus to the prefrontal cortex [139]. Such complex
routing of communication requires non-linear dynamics, such
as shunting inhibition [140]. Some models simulate inhibitory
dynamics on cortical network topologies to study how those
topologies may support the complex communication dynam-
ics that occur in visual processing, such as visual attention
[141, 142].

Points of convergence between communication and control
have been observed in regional brain networks. For example,
hubs are studied in functional covariance networks and struc-
tural networks. Structural hubs are thought to act as sinks
of early messaging accelerated by shortest-path structures and
sources of transmission to the rest of the brain [4]. The highly
connected hub’s connections may support both the average
controllability of the brain as well as the brain’s robustness
to lesions of a fraction of the connections [143]. An area of
distinction between control and communication in brain net-
works may depend on the hub topology. While communica-
tion may depend on the average controllability of hubs to steer
the brain to new activity patterns, the brain regions that steer
network dynamics to difficult-to-reach states tend to not be
hubs [16]. In determining the full set of nodes that can con-
fer full control of the network, hubs tend to not be in this set
of driver nodes [91]. A point of convergence between com-
munication and control is the consideration of how the brain
network broadcasts control signals. Whereas the high-degree
of hubs may efficiently broadcast integrated control signals
across the brain network in order to steer the brain to new pat-
terns of activity, the brain regions with lower degree may re-
ceive a greater rate of control signals which are then transmit-
ted to steer the brain to difficult-to-reach patterns of activity
[105].

To strike a balance between efficiency, robustness, and di-
verse dynamics, brain networks may have evolved towards op-
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timizing brain network structures supporting and constraining
the propagation of information. Brain networks reach a com-
promise between routing and diffusion of information com-
pared to random networks optimized for either routing or dif-
fusion [1]. Brain networks also appear optimized for control-
lability and diverse dynamics compared to random networks
[21]. To understand how the brain can circumvent trade-offs
between objectives like efficiency, robustness, and diverse dy-
namics, future studies could further investigate the network
properties of the spectrum of random networks optimized to-
ward these objectives. Existing studies focus on the trade-off
between two objectives, such as network structure support-
ing information routing or diffusion, or average versus modal
controllability. However, multi-objective optimization allows
for further investigation of Pareto-optimal brain network evo-
lution towards an arbitrarily large set of objective functions
[144, 145].

The convergence between communication and control
exists largely via the network topologies with which they
are related. Given the importance of ‘rich-club hubs’ and
similar topological attributes in integration and processing
of information, it is natural to ask if similar properties also
contribute to controllability or observability properties in
brain networks. More specifically, given a region in the
brain network with specific topological properties such as
high degree, betweenness centrality, closeness centrality, or
location between different modules, what is the relationship
between its role in information integration or processing and
its role in controllability and observability? The tri-faceted
interface of communication, control, and network topology
holds great possibilities for future work, and some recent
efforts have begun to relate the three [146].

D. Interplay of multiple spatiotemporal scales

Most complex systems exhibit phenomena at one spa-
tiotemporal scale that depend upon phenomena occurring at
another spatiotemporal scale. This interplay of scales is ev-
ident, for example, in the hierarchical energy cascade from
lower modes (larger length scales) to higher modes (smaller
length scales) in turbulent fluids [147], multiscaled models
of morphogenesis [148–150], and multiscaled models of can-
cer [151]. A convenient way to study such an interplay is to
transform the variables of mathematical models to their cor-
responding Fourier conjugate variables. This approach serves
to map the larger length scales to Fourier modes of smaller
wave-lengths, and to map the longer time-scales to smaller
frequency bands. In most complex systems, current research
efforts seek a quantitative understanding of the interwoven na-
ture of different spatiotemporal scales, which in turn can lead
to an understanding of the system’s emergent behavior.
Communication models. As one of the most complex sys-
tems, the brain naturally exhibits a rich cross-talk between
different spatiotemporal scales. A key example of interplay
among spatial scales is provided by recent evidence that ac-
tivity propagates in a slightly subcritical regime, in which ac-

tivity “reverberates” within smaller groups of neurons while
still maintaining communication across those groups [133].
That cross-talk is structurally facilitated by topological fea-
tures characteristic of each spatial scale: from neurons to neu-
ronal ensembles to regions to circuits and systems [6, 98, 136].
A key example of interplay among temporal scales is cross
frequency coupling [152], which first builds upon the ob-
servation that the brain exhibits oscillations in different fre-
quency bands thought to support information integration in
cognitive processes from attention to learning and memory
[68, 79, 153–156]. Cross frequency coupling can occur be-
tween region i in one frequency band and region j in another
frequency band, and be measure statistically [157]. The phe-
nomenon is thought to play a role in integrating information
across multiple spatiotemporal scales [158]. For example, di-
rectional coupling between hippocampal γ oscillations and the
neocortical α/β oscillations occurs in the context of episodic
memory [159]. Interestingly, anomalies of oscillatory activ-
ity and cross frequency coupling can serve as biomarkers of
neuropsychiatric disease [160].

While cross-scale interactions exist, most biophysical mod-
els have been developed to address the dynamics evident at a
single scale. Despite that specific goal, such models can also
sometimes be used to better understand the relations between
scales. For example, the notable complexity present at small
scales often gives way to simplifying assumptions in some
limits. That mathematical characteristic allows for coarse
grained models to be derived at the next larger spatiotemporal
scale [33, 34]. Key examples of such coarse-graining include
(i) the derivation of the Fokker-Planck equations for neuronal
ensembles in the limit where the firing activity of individual
neurons are independent processes, and (ii) the derivation of
neural mass models in the limit of strong coherence in neu-
ronal ensembles. The procedure of coarse-graining is thus
one theoretical tool that helps to bridge mathematical mod-
els of the system at different spatial scales, in at least some
simplifying limits.

Communication models also allow for an interplay between
different length scales by two other mechanisms: (i) the inclu-
sion of non-linearities, which allow for coupling between dif-
ferent modes, and (ii) the presence of global constraints. Re-
garding the former mechanism, a linearized description of dy-
namics can typically be transformed into the ‘normal’ modes
of the system (i.e., the eigenvalues of the A matrix in Eq. (5)),
and this description does not allow for the inter-mode cou-
pling that would otherwise be permissible in a nonlinear com-
munication model. As an example of such nonlinear mod-
els, neural mass models and Wilson-Cowan oscillators can
exhibit cross frequency coupling via the mechanism of phase-
amplitude coupling [161–163], where the amplitude of high-
frequency oscillations are dependent on the phase of slowly-
varying oscillations. Regarding the latter mechanism, inter-
regional communication is constrained by the global design
of brain networks which have evolved under constraints on
transmission speed, spatial packing, metabolic cost, and com-
munication efficiency [104, 105].
Control models. Are control models – like communication
models – conducive to a careful study of the rich interplay of
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multiple spatiotemporal scales in neural systems? This ques-
tion may be particularly relevant when control signals can
only be injected at a given scale while the desired changes
in brain activity lie at an altogether different scale. One way
to interlink local and global scales in control models is to use
global constraints, just as we discussed in the context of com-
munication models. The application of control theory to a
given system often requires finding control signals that mini-
mize the overall cost of control and/or that constrain the sys-
tem to follow an optimum trajectory. Both of these goals can
be recast in terms of optimization problems where a suitable
cost function is minimized (see Section III). In this sense, the
global constraints dictate the control properties of the system.

Given that linear models produce a limited number of be-
haviors in solution-space and do not allow for coupling be-
tween different modes (as discussed above and in Section III),
the application of nonlinear control theory is highly warranted
to bring an interesting interplay between different scales.
Here, the theory of singular perturbations [130] provides a
natural and powerful tool to formally characterize the rela-
tionship between temporal scales in a multiple-timescale sys-
tem [164]. This theory formalizes the intuition that with re-
spect to a subsystem at a ‘medium’ (or reference) temporal
scale, the activity of subsystems at slower temporal scales is
approximately constant while the activity of those at faster
timescales can be approximated by their attractors (hence ne-
glecting fast transients), and is particularly relevant for brain
networks whereby timescale hierarchies have been robustly
observed, both in vivo [165] and using computational model-
ing [166]. Such extended control models thus form a natural
approach toward a careful evaluation of cross-scale interac-
tions.

Another concrete way in which multiple scales can be in-
corporated into control models – while retaining simple lin-
earized dynamics – is to build the complexity of the system
into the network representation of the brain itself. The for-
malism of multilayered networks allows for the complexity of
interacting spatiotemporal scales to be built into the structure
where the layer identification (and the definition of interlayer
and intralayer edges) can be based upon the inherent scales
of the system. One concrete example of this architecture is a
two-layer network in which each layer shares the same nodes
(brain regions) but represents different types of connections.
One such two-layer network could have nodes representing
brain regions, edges in one layer representing slowly-varying
structural connections, and edges in the second layer repre-
senting functional connectivity with faster dynamics. More-
over, different frequency bands can be explicitly identified as
separate layers in a multiplex representation of brain networks
[167], allowing for a careful investigation of cross-frequency
coupling. It would be of great interest in future to combine
such a multilayer representation with the simple LTI dynamics
in control models to better understand how control signals can
drive desired (multiscale) dynamics. The inbuilt complexity
of structure can thus partially compensate for the requirement
of dynamical complexity, and thereby increase the validity of
LTI dynamics when applied to brain networks.

V. OUTSTANDING CHALLENGES & FUTURE
DIRECTIONS

Having discussed several areas of distinction and points of
convergence, in this section we turn to a discussion of out-
standing challenges and directions for future research. We fo-
cus our discussion around three primary topic areas: observ-
ability and information representation, system identification
and causal inference, and biophysical constraints. We will
close in Section VI with a brief conclusion.

A. Observability and information representation

In the theory of linear systems, observability is a notion
that is dual to controllability and is considered on an equal
footing [11] (cf. Section III B). Interestingly, however, this
equality has not been reflected in the use of these notions to
study neural systems. The controllability properties of brain
networks have comprised a large focus of the field, whereas
the concept of observability has not been applied to brain net-
works to an equivalent extent. The focus on the former over
the latter is likely due in large part to historical influences over
the processes of science, and not to any lack of utility of ob-
servability as an investigative notion. Indeed, observability
may be crucial in experiments where the state variables differ
from the variables that are being measured. A canonical ex-
ample is situations where the state variables correspond to the
average firing rates of different neuronal populations whereas
the outputs being measured are behavioral responses. More
precisely, specific stimuli (control signals) can be represented
to have a more direct effect on neuronal activity patterns (state
variables) which, in turn, produce behavioral responses such
as eye movements (output variables) after undergoing cogni-
tive processes in brain. In this example, observability refers
to the ability of a system model to allow its underlying state
(neuronal activity) to be uniquely determined based on the
observation of samples of its output variables (behavioral re-
sponses) and an appropriate estimation method. Along similar
direction, optimal control based methods have been applied to
detect the clinical and behavioral states and their transitions
[27, 28].

As discussed at length in Section III, the observability of
state variables depends on the mapping between state vari-
ables and output variables encoded and determined by a state-
to-output mapping (i.e., the matrix C in Eq. (5)). In this re-
gard, the determination of state variables from measured out-
put variables is a problem that, in spirit, bears resemblance to
the well-studied problems of neural encoding and decoding of
information. While the process of neural encoding involves
representing the information about stimuli in the spiking pat-
terns of neurons, the process of neural decoding is the inverse
problem of determining the information contained in those
spiking patterns to infer the stimuli [168]. Detailed statisti-
cal methods and computational approaches have been devel-
oped to address these problems [169]. The field of neuronal
encoding and decoding stands at the interface of statistics,
neuroscience, and computer science, but has not previously
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FIG. 4 Intersection of control theory, communication models and system identification. (a) Exogenous input applied to brain networks
leads to the evolution of brain states (represented by vector x(t)) according to a specified dynamics (see Section III). Given the observed
vector y(t), the observability of brain states is determined by the invertibility of the state-to-output map (denoted by the matrix C ). (b)

System identification has been proposed as a key step in the application of network control theory to understand cognitive control and other
cognitive processes. The key steps of the system identification process can be further integrated with the insights from communication

models, thus guiding future research on the formulation of theoretical frameworks to understand cognition.

been strongly linked to control theoretic models. Neverthe-
less, such a link seems intuitively fruitful, as the problem of
determining state variables from a measured output and the
problem of determining stimuli from the measured spiking

activity of neurons are conceptually quite similar to one an-
other [170].

In the field of control theory, analogous problems are
generally referred to under the umbrella of state estimation
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and filtering. For example, the Kalman filter in its simplest
form consists of a recursive procedure to compute an optimal
estimate of the state given the observations of inputs and
outputs of a linear dynamical system affected by normally
distributed noise [11]. The conceptual similarity between
neuronal decoding and the notion of observability promises
to open an interface between control models and the field of
neuronal coding. For example, it will be interesting to ask if
the tools and approaches from the well-established field of
neuronal decoding can be adapted to the framework of control
theory and inform us about the observability of internal states
of the brain. Framing and addressing such questions will
be instrumental in providing insights to the nature of brain
states and the dynamics of transitions between them. This
intersection is also a potential area to integrate control and
communication models, with the goal of generating observed
spiking patterns given a set of stimuli. Such an effort
could provide a mechanistic understanding of the nature of
information propagated during various cognitive tasks, and of
precisely how signals are transformed in that process.

B. System identification and causal inference

Network control theory promises to be an exciting ground
to study and understand intrinsic human capacities such as
cognitive control [13, 16, 17, 88, 171]. Cognitive control
refers to the ability of the brain to influence its behavior in
order to perform specific tasks. Common manifestations of
cognitive control include monitoring the brain’s current state,
calculating the difference from the expected behavior for the
specific task at hand, and deploying and dynamically adjust-
ing itself according to the system’s performance [172]. While
cognitive control shares some common features with the the-
ory of network control, the outstanding problem in formaliz-
ing that relationship with greater biological plausibility falls
primarily within the realm of system identification [173] (Fig.
4).

System identification is a formal procedure which involves
determining appropriate models, variables, and parameters to
describe system observations. The key ingredients of a sys-
tem identification scheme are (a) the input-output data, (b) a
family of models, (c) an algorithm to estimate model parame-
ters, and (d) a method to assess models against the data [173].
A successful system identification scheme applied to a human
capacity like cognitive control can lead to a better identifica-
tion of state variables and controllers and help to bridge the
gap between cognitive processes and network control theory.
It is here, at the intersection of cognitive control and network
control theory, that communication models can again prove to
be relevant. Since communication models have investigated
state variables and dynamics that are typically relatively close
to the actual biophysical description of the system, system
identification can benefit from communication models in sup-
plying prior knowledge, assigning weights to plausible mod-
els, and setting the assessment criterion.

Closely associated with the problem of system identifica-

tion is the topic of causal inference, which seeks to produce
models that can predict the effects of external interventions on
a system [174]. Such an association stems from the fact that
dynamical models are intended to quantify how the system re-
acts to the application of external control inputs (i.e., interven-
tions). In particular, as discussed in Section III, a controllable
model implies the existence of a sequence of external inputs
that is able to drive the system to any desired state. There-
fore, appropriate control models are expected to express valid
causal relationships between the external inputs and their in-
fluence on the system state.

System identification methods have been traditionally
based on statistical inference methodologies that are con-
cerned with capturing statistical associations (i.e., correlations
and dependencies) over time which do not necessarily imply
cause-effect relationships [175]. Within that perspective, sys-
tem identification methods have been most successful in dis-
ciplinary areas where the fundamental mechanistic principles
across variables (and hence their causal structure) are known,
to a large extent, a priori (e.g., white and gray models. Conse-
quently, when considering complex systems such as the brain,
which are often associated with high-dimensional measure-
ments potentially affected by hidden variables, the limitations
of such methods become relevant, and the models thus pro-
duced may need to be further evaluated for their causal va-
lidity. In this respect, the intersection of causal inference and
(complex) system identification is likely to become a promis-
ing area of future research. For example, it will be interest-
ing to see how tools from system identification may evolve to
incorporate new methodologies from the theory of causal in-
ference, and how the resulting tools might generate additional
requirements for experimental design and data collection in
neuroscientific research.

C. Biophysical constraints

In network control models, it is unknown how mathemat-
ical control energy relates to measurements of biophysical
costs (also see Section IV). Although predictions of control
energy input have been experimentally supported by brain
stimulation paradigms [18, 19], the control energy costs of
the endogenous dynamics of brain activity are not straightfor-
wardly described by external inputs. According to brain net-
work communication models of metabolically efficient cod-
ing [105], an intuitive hypothesis is that the average size of
the control signals required to drive a brain network from an
initial state to a target state correlates with the regional rates
of metabolic expenditure.

Similar questions aiming to discover biophysical mecha-
nisms of cognitive control have been tackled by ongoing in-
vestigations of cognitive effort, limited cognitive resources,
motivation, and value-guided decision-making [176, 177].
However, there is limited evidence of metabolic cost opera-
tionalized as glucose consumption as a main contributor to
cognitive control. Rather, the dynamics of the dopamine
neurotransmitter, transporters, and receptors appear to be
crucial [178, 179]. Recent work in network control the-
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ory has provided converging evidence for a relationship be-
tween dopamine and control in cognition and psychopathol-
ogy [180]. The subcortical dopaminergic network and fron-
toparietal cortical network may support the computation and
communication of reward prediction errors in models of cost-
benefit decision-making, expected value of control, resource
rational analysis, and bounded optimality [179].

Cognitive control theories distinguish between the costs
and allocation of control [177]. Costs include behavioral
costs, opportunity costs, and intrinsic implementation costs.
Prevailing proposals of how the brain system allocates
control include depletion of a resource, demand on a limited
capacity, and interference by parallel goals and processes.
Control allocation is then defined as the expected value
of control combined with the intrinsic costs of cognitive
control. Broadly, a control process consists of monitoring
control inputs and changes, specifying how and where to
allocate control, and regulating the transmission of control
signals [181–183]. Notably, the implementation of how
the brain regulates the transmission of control signals and
accounts for the intrinsic costs of cognitive control require
further development, providing promising avenues to apply
mathematical models of brain network communication and
control. Existing control models of brain dynamics, for
instance, have mostly assumed noise-free dynamics (but
also see [184, 185]). Recent communication models can be
applied to model noisy control by defining how brain regions
balance communication fidelity and signal distortion in order
to efficiently transmit control input messages at an optimal
rate to receiver brain regions with a given fidelity [105]. Such
an approach may be particularly fruitful in ongoing efforts
seeking to better understand the relations between cognitive
function, network architecture, and brain age both in health
and disease [186, 187].

VI. CONCLUSION

The human brain is a complex dynamical system whose
functions include both communication and control. Un-
derstanding those functions requires careful experimental
paradigms and thoughtful theoretical constructs with associ-
ated computational models. In recent years, separate streams
of literature have been developed to formalize the study of
communication in brain networks, as well as to formalize the
study of control in brain networks. Although the two fields
have not yet been fully interdigitated, we posit that such an
integration is necessary to understand the system which pro-
duces both functions. To support future efforts at their in-
tersection, we briefly review canonical types of communica-
tion models (dynamical, topological, and information theo-
retic), as well as the formal mathematical framework of net-
work control (controllability, observability, linear system con-

trol, linear time-varying system control, and non-linear sys-
tem control). We then turn to a discussion of areas of dis-
tinction between the two approaches, as well as points of con-
vergence. That comparison motivates new directions in better
understanding the representation of information in neural sys-
tems, in using such models to make causal inferences, and in
experimentally probing the biophysical constraints on com-
munication and control. Our hope is that future studies of this
ilk will provide fundamental, theoretically grounded advances
in our understanding of the brain.
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