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Abstract— Understanding the dynamics resulting from large-
scale populations of systems poses one of the greatest challenges
ahead of modern science. While it is often expected that
the emerging dynamics from such populations compound in
complexity, we here show that, on the contrary, the aggregation
of complex individual dynamics can in fact lead to simpler
behavior overall. In particular, mounting empirical evidence
from neuroscience and beyond has pointed out the linearity
of macroscopic dynamics that result from the interaction
of large populations of microscopic subsystems, despite the
highly nonlinear dynamics possessed by the individual sub-
systems. Rigorous analyses and theoretical grounds for such
observations, however, have remained lacking. In this paper,
we develop a general theoretical framework showing that
the average dynamics of a broad family of populations of
nonlinear stochastic subsystems converge to linear time-varying
(LTV) dynamics transiently and to linear time-invariant (LTI)
dynamics in steady state. Simulations are provided to illustrate
this effect in populations of static (feedforward) nonlinear maps
as well as a wide range of nonlinear systems exhibiting bistable,
limit cycle, and chaotic dynamics.

I. INTRODUCTION

A critical aspect in the study of large-scale systems, from
engineered systems such as the traffic and power networks to
natural phenomena exhibited by social, neural, or epidemic
dynamics, is the spatial scale of analysis [1]–[6]. While com-
plex and potentially nonlinear dynamics are often exhibited
by individual (microscopic) subsystems in each case, greater
interest often exists in the characterization of the overall
(macroscopic) dynamics of large-scale populations [7]–[12].
Nonlinear analyses, however, often scale poorly to large-
scale systems, thus motivating the use of linear models as
local linearizations around nominal equilibria or merely as
approximations in favor of tractability. In this work, we
contribute to this broad body of research by rigorously
showing that under certain assumptions, linear models pro-
vide an accurate description of the average dynamics of
a population of homogeneous stochastic subsystems, even
when the subsystem dynamics are nonlinear and/or non-
Gaussian.

Literature review. The present work is particularly mo-
tivated by our prior work [13] on the dynamic modeling
of macroscopic brain networks, even though our theoretical
analyses herein are broad and applicable to a wide range of
nonlinear systems. Therein, we provided empirical evidence
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based on real and simulated data that the aggregate dynamics
of large-scale populations of neurons appear to be most
accurately described by a stochastic linear model even though
the nonlinearity of the dynamics of each individual neuron
is both theoretically and empirically established [14], [15].
Similar observations of linearity have also emerged in recent
works on large-scale biological [16]–[19] and artificial [20]–
[22] neural networks. For example, in modeling large-scale
brain dynamics resulting from electrical stimulation [16]
as well as those that are relevant for a subject’s motor
behavior [17], nonlinear models have failed to perform better
than linear ones, thus questioning the presence and/or extent
of nonlinearity in the dynamics of large-scale brain networks.
Similarly, nonlinear models are found to be no more accurate
than linear ones for age or sex prediction from structural or
functional brain scans [18] while [19] found direct linear
relationships between visual stimuli and macroscopic brain
recordings, further pointing to a potential lack of nonlin-
earity in data acquired from large-scale brain networks.
On the other hand, in artificial neural networks (ANNs)
with nonlinear activation functions, the linearity of gradient
descent dynamics with respect to network parameters has
been shown in [20], [21] when the network width is increased
to infinity. Similar results on the asymptotic linearity of
ANNs with respect to their parameters have also been shown
previously in [22], [23]. Motivated by this body of mounting
evidence, we here provide rigorous proofs for the linearity
of aggregate activity of large-scale populations of both static
(feedforward) and dynamic (recurrent) nonlinear subsystems.

The emergence of linear dynamics from a population of
nonlinear subsystems is also similar to stochastic lineariza-
tion, a.k.a. quasilinearization [24]. In stochastic linearization,
however, a nonlinear mapping y = f(x) is approximated
by ŷ = E[ ∂y∂x ]x, whereas the asymptotically linear dynam-
ics described in this work provide an exact (stochastic)
characterization of the aggregate dynamics of large-scale
populations. Finally, our proposed framework relies on tools
from probability theory [25], [26] including, in particular,
the multivariate Central Limit Theorem (CLT), as well as
tools from stochastic differential equations and the theory of
continuous-space Markov Chains [27], [28].

Statement of contributions. In the present work, we pro-
pose a theoretical framework to explain the linearizing effects
of spatial averaging observed in many populations of nonlin-
ear dynamical subsystems. Our contributions in this regard
are threefold. Starting from static (feedforward) nonlinear
maps, our first contribution involves the characterization of



the convergence of the average input-output relationship of
large homogeneous populations of nonlinear subsystems to
a linear relationship as the size of the population grows.
Interestingly, we show that this asymptotic linearity holds
regardless of the functional form of the subsystems’ non-
linearity and their input distributions so long as their inputs
and outputs have finite first and second moments. Our second
contribution then involves the generalization of this result to
populations of dynamical systems. Here, we also show that
under mild assumptions on the dynamics of each subsystem,
the average population dynamics converge to a linear time-
varying (LTV) system as the size of the population grows.
In our extensive simulations, however, we often observe the
emergence of linear time-invariant (LTI) dynamics from such
large-scale populations. This motivated our third and final
contribution where we prove, under additional assumptions
on the subsystem dynamics, the convergence of the aggregate
population dynamics to an LTI system as both the size of
the population and time grow to infinity. Overall, our results
provide an important first step in the rigorous characteriza-
tion of a robust and pervasive phenomenon in large-scale
systems that can be of broad interest to the systems and
control community and beyond.

II. NOTATION

We use R and Z to denote the set of reals and integers,
respectively. 0n and 0m×n stand for the the n-vector of all
zeros and the m-by-n zero matrix. The subscripts are omitted
when clear from the context. When a vector y or matrix A
are block-partitioned, yi and Aij refer to the ith block of y
and (i, j)th block of A, respectively. ∥ · ∥ denotes the vector
l2-norm. For any t ∈ R, ⌊t⌋ = max{k ∈ Z|k ≤ t} and
⌈t⌉ = min{k ∈ Z|k ≥ t}.

Throughout this work, all probabilities are defined on mea-
surable spaces consisting of a Euclidean space (or a subset
thereof) and the associated Borel σ-algebra. Hence, when
clear from the context, the space over which each probability
is defined is omitted. E[·] and P{·} denote expectation and
probability, respectively. For two random vectors x ∈ Rn

and y ∈ Rm, Cov(x,y) ∈ Rn×m denotes the covariance
between them. If π is a probability distribution on Rn and
A ⊆ Rn, π(A) =

∫
A
dπ, i.e., the probability assigned to A

by π.

III. PROBLEM STATEMENT

As detailed in Section I, a mounting body of empirical
works have observed the linearity of macroscopic biological
and artificial neural dynamics despite the nonlinearity of
the constituting subsystems. Interestingly, this phenomenon
can be observed in the aggregate dynamics of a large
range of nonlinear systems exhibiting various distinctively
nonlinear phenomena such as bistability, limit cycles, and
chaos (Figure 1). In this work, we seek the development
of a general theoretical framework that can explain and
rigorously characterize this observed emergent linearity at
the macroscale.

Consider a homogeneous population of N dynamical sub-
systems each represented by the general nonlinear discrete-
time form

xi(t+ 1) = f(xi(t),wi(t)),

wi(t) ∼ pw, (1)
xi(0) ∼ p0, i = 1, . . . , N,

where xi(t) ∈ Rn represents the state of i-th dynamical
subsystem at time t, wi(t) ∈ Rm represents the noise at time
t with the time-invariant distribution pw, and p0 represents
the distribution of the initial state xi(0). Given how universal
the linearizing property of spatial averaging appears to be
based on our simulations (cf., e.g., Figure 1), we allow the
functional form of the nonlinearity f(·) and the distributions
of the initial conditions and noise inputs to be general, except
for a limited set of assumptions described later in Section IV-
B. In this context, we can formulate our problem of interest
as follows.

Problem 1. (Effects of spatial averaging on aggregate
dynamics of population of nonlinear dynamical systems).
Consider a homogenous population of discrete-time non-
linear dynamical systems described by (1). Describe the
resulting average dynamics of the population, namely, that
of the average state vector

x̄(t) =
1√
N

N∑
i=1

(xi(t)− E[xi(t)]), (2)

and show its asymptotic convergence to a linear system as
N →∞. □

In defining the average state vector in (2), it is essential to
mean-center each xi(t) before averaging in order to prevent
the drift of the expected value of x̄(t) to infinity while,
at the same time, scaling the average by 1√

N
(instead of

1
N ) to prevent the decay of the variance of x̄(t) to zero.
We should point out, however, that mean-centering and
normalization only matter from a technical perspective as
we study the asymptotic limit of N → ∞, while the effect
of spatial averaging is often significant and robust enough to
fully linearize aggregate population dynamics even for small
values of N , as shown in Figure 1.

IV. MAIN RESULTS

In this section we present the main findings of our paper
with regards to Problem 1. To begin, we investigate in
Section IV-A a simplified version of Problem 1 including
only static and scalar nonlinear mappings. This simplified
setup, in addition to being of significant independent interest,
allows us to focus on the key ingredients that underlie the
linearizing effect of spatial averaging on dynamical systems
addressed in Section IV-B, without involving the additional
complexities that arise therein.



Fig. 1: Spatial averaging can linearize diverse families of nonlinear dynamical systems. (a) The linearizing effect of spatial averaging
on a population of dynamical subsystems with bistable dynamics. Each subsystem is given by xi(t+ 1) = 10xi(t)/(1 + x2

i (t)) +wi(t)
and the average state x̄(t) = 1/

√
N

∑N
i=1 xi(t) is plotted at times t and t+ 1 on the x and y axes, respectively. (b) Similar to (a) but

for subsystem dynamics exhibiting limit cycles. Each subsystem has planar dynamics described by xi1(t + 1) = xi2(t), xi2(t + 1) =
0.4xi1(t)+0.4xi2(t)+sin(0.2xi2(t))xi2(t)+wi(t). The average state x̄2(t) = 1/

√
N

∑N
i=1 xi2(t) is plotted at times t and t+1 on the x

and y axes, respectively. (c) Similar to (a,b) but for a population of subsystems exhibiting chaotic behavior (Duffling map). Each subsystem
has the form xi(t+1) = yi(t), yi(t+1) = −0.2xi(t)+2.75yi(t)−y3

i (t)+10−3/2wi(t). The average states x̄(t) = 1/
√
N

∑N
i=1 xi(t),

ȳ(t) = 1/
√
N

∑N
i=1 yi(t) and ȳ(t+1) are plotted on the x, y, and z axes, respectively. The noise wi(t) in all cases has a white standard

normal distribution. Despite the high degree of nonlinearity in the dynamics of individual subsystems in each case, the average dynamics
become linear for even small values of N .

A. Linearizing Effect of Averaging on Static Nonlinearities

At the core of Problem 1 is the effect of spatial averaging
on the vector field f : Rn×Rm → Rn. In fact, by taking the
average of both sides of (1), after appropriate mean-centering
and scaling, we have

x̄(t+ 1) =
1√
N

N∑
i=1

f(xi(t),wi(t))− E[f(xi(t),wi(t))]

and thus Problem 1 primarily concerns the relationship
between the average of f(xi,wi) and the averages of its
arguments xi and wi. As such, in this section we start
tackling Problem 1 by first showing how spatial averaging
can linearize static scalar nonlinear maps, and then tackle the
additional complexities that arise from the dynamic nature of
Problem 1 in Section IV-B.

Consider a sequence of N , independent and identically
distributed (i.i.d.) random variables x1, x2, . . . , xN and let

yi = f(xi), i = 1, 2, . . . , N (3)

where f : R→ R. Define the average variables

x̄ =
1√
N

N∑
i=1

(xi − µx), ȳ =
1√
N

N∑
i=1

(yi − µy) (4)

where µx, µy are the means of xi and yi, respectively.
Similar to the linearizing effects depicted in Figure 1,

extensive simulations with various distributions of xi and
nonlinear forms for f show that the relationship between x̄
and ȳ becomes asymptotically linear as N → ∞ (see, e.g.,
Figure 2).

As seen in Figure 2, the (linear) relationship between x̄
and ȳ is stochastic, even when the relationship between each
xi and yi is deterministic. Therefore, in order to prove that
this relationship becomes linear, one has to show that the
conditional expectation

E[ȳ|x̄ = ξ]

converges to a linear function of ξ as N →∞. A numerical
approximation of this value is also shown in Figure 2. Note
that the linearity of this conditional expectation is precisely
the linearity assumption of simple linear regression [29], and
can be shown for a broad class of nonlinear functions f and
distributions of x1, . . . , xN , as follows.

Theorem IV.1. (Linearizing effect of averaging on i.i.d.
data). Consider N i.i.d. random variables x1, x2, . . . , xN

and their nonlinear maps y1, y2, . . . , yN as defined in (3).
Assume that the distribution of xi and the nonlinear map
f(·) are such that xi and yi have finite mean and variance.
Then the relationship between the average variables ȳ and



Fig. 2: Spatial averaging of a static nonlinearity. The panels show the linearizing effect of spatial averaging for an example static
scalar map of the form yi = ⌊x3

i − xi⌋ with xi ∼ U [−3, 3]. Each panel illustrates 105 samples of the average variables x̄ and ȳ, each
averaged over a varying number N of subsystems. Each panel also demonstrates a sample estimate of E[ȳ|x̄ = x0] (orange line) which
becomes increasingly linear even for small values of N . The conditional expectations of the form E[ȳ|x̄ = x0] are approximated by a
Gaussian-weighted sample average of yi where each yi is weighted based on the distance between the corresponding xi and x0.

x̄ as defined in (4) is asymptotically linear, i.e.,

E[ȳ|x̄ = ξ]→ σxy

σ2
x

ξ

as N →∞, where σxy is the covariance between xi and yi
and σ2

x is the variance of xi. □

The proof of Theorem IV.1 is a special case of the
proof of Theorem IV.2 and therefore omitted. This result is,
however, of far-reaching independent interest as it proves a
fundamental and general relationship between averaging and
linearity, akin to (and based on) the fundamental relationship
between averaging and normality established by the CLT. In
the next section, we build on the core idea of Theorem IV.1
and address the additional challenges that arise from the
dynamic nature of Problem 1.

B. Linearizing Effect of Averaging on Nonlinear Dynamics

In this section, we discuss the main problem outlined in
Problem 1. Throughout this section, we make the following
assumptions on the population dynamics in (1).

Assumption 1. (Standing assumptions).
(A1) The function f(.) is bounded, i.e.,

||f(x,w)|| ≤M <∞, ∀x ∈ Rn,w ∈ Rm.

(A2) The noise input is zero mean, white, and finite-
variance, so for all i,

E[wi(t)] = 0, ∀t,
E[wi(t)wi(τ)

T ] = 0, ∀t ̸= τ,

||E[wi(t)wi(t)
T ]|| ≤ C <∞, ∀t.

(A3) The state xi(t) at time t is independent of the noise
wi(t) at the same time t, i.e., for all ξ, ζ, t, and i,

P{xi(t) ≤ ξ,wi(t) ≤ ζ} = P{xi(t) ≤ ξ}P{wi(t) ≤ ζ}.

(A4) The initial conditions xi(0) and noise inputs wi(t) are
independent among the subsystems, i.e.,

P{xi(0) ≤ ξi,wi(t) ≤ ζi,xj(0) ≤ ξj ,wj(t) ≤ ζj}
= P{xi(0) ≤ ξi}P{wi(t) ≤ ζi}P{xj(0) ≤ ξj}

P{wj(t) ≤ ζj},

for all i ̸= j, t, and ξi, ξj , ζi, ζj . □

A number of remarks about the foregoing assumptions
are in order. First, note that (A1) is satisfied by models
of most, if not all, real-world systems due to the inherent
boundedness of any states that represent a physical quantity.
For models with unbounded vector fields but uniformly
bounded trajectories (often used to describe the dynamics
of real-world systems in certain “working” regions of their
state space), f can be augmented with sufficiently large
saturations fi ← max{min{fi,M},−M} to satisfy (A1)
without affecting the effective subsystem dynamics. Since f
is otherwise arbitrary, (A2) is also not restrictive in practice
since the color (internal dynamics) or non-zero mean of any
noise input can be absorbed into f . Given the whiteness
of wi(t), (A3) is mild as well since it takes at least one
time step before the information in wi(t) reflects in the
state xi(t+ 1). Our strongest assumption is (A4) which, in
turn, does not allow for correlations between the states of
the subsystems, as would be the case, e.g., for networked
systems. This assumption is nevertheless needed only from
a technical perspective and its relaxation will be pursued in
future extensions of this work to subsystems with correlated
activity.

With the stated assumptions above, we are ready to char-
acterize the asymptotic aggregate dynamics of the population
of dynamical systems in (1), as follows.

Theorem IV.2. (Linearizing effect of spatial averaging on
population of dynamical systems). Consider the population
dynamics in (1) and assume that assumptions (A1)-(A4)
hold. Let

µx(t) = E[xi(t)]

Σxx(t) = Cov(xi(t),xi(t))

Σww(t) = Cov(wi(t),wi(t))

Σx+x(t) = Cov(xi(t+ 1),xi(t))

Σx+w(t) = Cov(xi(t+ 1),wi(t))

and define the average population variables

x̄(t) =
1√
N

N∑
i=1

(xi(t)− µx(t)),

w̄(t) =
1√
N

N∑
i=1

wi(t).



Then the relationship between x̄(t + 1), x̄(t) and w̄(t)
becomes asymptotically linear as N → ∞, i.e., for any
ξ ∈ Rn,ω ∈ Rm,

E
[
x̄(t+ 1)

∣∣∣∣ [ x̄(t)w̄(t)

]
=

[
ξ
ω

] ]
→ A(t)ξ +B(t)ω (5)

as N →∞, where

A(t) = Σx+x(t)Σxx(t)
−1

B(t) = Σx+w(t)Σww(t)
−1. (6)

Proof. First, we show that the average population states and
noises jointly approach normality. Then, we show that the
mean of the population average state, when conditioned on
the past state and noise, approaches a linear function thereof.

To prove joint normality, let

zi(t) =
[
xi(t+ 1)T xi(t)

T wi(t)
T
]T

which has the mean and covariance

µz(t) =
[
µx(t+ 1)T µx(t)

T 0T
m

]T
,

Σzz(t) =

Σxx(t+ 1) Σx+x(t) Σx+w(t)
Σx+x(t)

T Σxx(t) 0n×m

Σx+w(t)
T 0m×n Σww(t)

 .

Both of ∥µz(t)∥ and ∥Σzz(t)∥ are uniformly bounded by
Assumptions (A1) and (A2). Therefore, by the multivariate
CLT [25, Thm 3.9.6], the population average of zi(t), i.e.,

z̄(t) =
1√
N

N∑
i=1

(zi(t)− µz(t))

=
[
x̄(t+ 1)T x̄(t)T w̄(t)T

]T
converges in distribution to the multivariate normal
distribution N (0,Σzz(t)) as N →∞ for each t. Therefore,
any integral with respect to this sequence of distributions,
such as the conditional expectation in (5) [25, Ex. 5.1.4],
will also converge to the same integral with respect to the
limit distribution N (0,Σzz(t)) [30].

Therefore, for any t, let z∗(t) ∼ N (0,Σzz(t)) and
partition it as

z∗(t) =

[
z∗1(t)
z∗2(t)

]

where z∗1(t) ∈ Rn and z∗2(t) ∈ Rn+m. The covariance

matrix Σzz(t) can also be partitioned accordingly, i.e.,

Σzz(t) =

 Σxx(t+ 1) Σx+x(t) Σx+w(t)
Σx+x(t)

T Σxx(t) 0
Σx+w(t)

T 0 Σww(t)


≜

[
Σ11(t) Σ12(t)
Σ21(t) Σ22(t)

]
Then, the conditional distribution of z∗1 given z∗2 also has a
multivariate normal distribution [26] with mean

E
[
z∗1(t)

∣∣∣∣z∗2(t) = [
ξ
ω

] ]
= Σ12(t)Σ22(t)

−1

[
ξ
ω

]
= A(t)ξ +B(t)ω,

completing the proof.

As with the subtle distinction between nonlinear and linear
time-varying (LTV) systems in general, it is important to note
that the matrices A(t) and B(t) in Theorem IV.2 depend
on the distribution of xi(t) but not on xi(t) themselves. In
other words, for any choice of model in (1) (i.e., for any
choice of f(·), pw, and p0), the matrices A(t) and B(t) can
be pre-computed for all t ≥ 0 and would be the same for
all realizations of (the noise and therefore) xi(t). As such,
the asymptotic dynamics in (5) are indeed linear, hence the
significance of the theorem.

Example IV.3. (LTV vs. Nonlinear system). Consider dy-
namics of a system

y(t+ 1) = a(t)y(t), y(0) ∼ N (e, 1)

and three cases, as follows.

(i) a(t) = e2
t

. Here the system is clearly LTV.

(ii) a(t) = ey(t). Here the system is clearly nonlinear.

(iii) a(t) = E[y(t)]. Although the system here may look
nonlinear, the coefficient E[y(t)] can pre-computed for all
t ≥ 0 given the distribution of y(0). It is straightforward to
see that a(t) = e2

t

, making the system in (iii) equivalent to
that of (i) and similarly LTV. □

Interestingly, if the dynamics in (1) satisfy additional
assumptions, the average population dynamics tend not only
to a linear system but further to an LTI one.

Assumption 2. (Lipschitzness). To prove the convergence
of the solutions of (1) to stationarity, we need to make
additional assumptions, including the following.

(A5) The function f(·) is globally Lipschitz in x, i.e., for
any w ∈ Rm there exists L(w) ≥ 0 such that

∥f(x1,w)− f(x2,w)∥ ≤ L(w)∥x1 − x2∥, (7)

for all x1,x2 ∈ Rn. □



Assumption (A5), while being restrictive on the space
of all functions, becomes mild when considering only
bounded functions as required by assumption (A1). Any
nonlinear polynomial, e.g., is not globally Lipschitz but
becomes so when augmented with a saturation as in
max{min{fi,M},−M} suggested earlier. Indeed, bounded
functions exist that are not globally Lipschitz, such as
cos(x2), but they are often contrived examples with little
use in the modeling of real-world systems.

The next result builds on Assumptions (A1)-(A5), as well
as Assumptions (A6)-(A7) stated therein, to prove that all
solutions of (1) converge to a stationary process.

Theorem IV.4. (Steady-state convergence to stationarity).
Consider the population dynamics in (1) and assume that
assumptions (A1)-(A5) hold. Then, all subsystems have a
stationary solution

x∗(t) ∼ p∗, t ≥ 0.

Further, all xi(t) converge to x∗(t) in distribution as t→∞
if

(A6) the initial distribution p0 is such that p0(A) = 0 for
any set A where p∗(A) = 0;

(A7) for any set A with p∗(A) > 0, the noise distribution
pw is such that for all x ∈ Rn, there exists a non-zero
probability that f(x,w) ∈ A.

Proof. Throughout the proof, we drop the index i since it is
arbitrary and all subsystems have the same dynamics (so x(t)
in the following is still n-dimensional, not a concatenation
of all xi(t)).

To prove the existence of a stationary solution, we will
follow the exposition in [27, Thm 2.4] for continuous-time
systems. Since the solution to (1) is fully determined by its
initial condition and noise (input) process, it is sufficient to
prove that

P{x(t) ∈ A0,w(t+ s1) ∈ A1, . . . ,w(t+ sm) ∈ Am}
= P{x0 ∈ A0,w(s1) ∈ A1, . . . ,w(sm) ∈ Am}

for all t, m, s1, . . . , sm, and Borel sets A0, A1, . . . , Am,
where x(t) is the solution starting from x(0) = x0. Consider
an arbitrary initial distribution p̄0 and let x̄(t) be the solution
of (1) starting from x̄0 ∼ p̄0. Let τk be a discrete random
variable uniformly distributed in [0, k] independent of w(t)
and x̄0 and define

x(k)(t) = x̄(t+ τk), x
(k)
0 = x̄(τk), (8a)

w(k)(t) = w(t+ τk). (8b)

By the total probability law [31, Ch. 2],

P{x(k)(t)∈A0,w
(k)(s1)∈A1, . . . ,w

(k)(sm)∈Am}= (9)

1

k

k∑
s=0

P{x̄(t+s)∈A0,w(s1+s)∈A1, . . . ,w(sm+s)∈Am}.

In particular, for all k and t,

P{∥x(k)
0 ∥ > R} = 1

k

k∑
s=0

P{∥x̄(s)∥ > R} = 0, ∀R > M,

P{∥w(k)(t)∥>R}= 1

k

k∑
s=0

P{∥w(s)∥>R} → 0 as R→∞,

where we used Assumption (A1) in the former. These,
together with the stationarity (due to whiteness) of w(t)

ensure that the sequence of random processes (x(k)
0 ,w(k)(t))

satisfy the conditions of Lemma A.1. Let (x̃(nk)
0 , w̃(nk)(t))

and (x̃0, w̃(t)) be the subsequence and limit process pro-
vided by Lemma A.1. By the stationarity of w(t), (8b), and
Lemma A.1, w(t) and w̃(t) have the same distribution. Let
x̂
(nk)
0 and x∗

0 be random variables in the original probability
space that have the same joint distribution with w(t) as the
joint distribution of x̃(nk)

0 , x̃0, and w̃(t). They can always be
constructed, e.g., by inverse transform sampling [32]. Define
x̂(nk)(t) and x∗(t) to be the solutions of (1) with the initial
conditions x

(nk)
0 and x∗

0, respectively. From (7),

∥x̂(nk)(t)− x∗(t)∥ < Πt−1
τ=0L(w(τ))∥x̂(nk)

0 − x∗
0∥.

Therefore, by Lemma A.1, x̂(nk)(t) → x∗(t) in probability
for every t. Now, let h(.) be any bounded continuous
function. Then from [27, Thm 2.2], we can write,

E[h(x∗(t),w(t+ s1), . . . ,w(t+ sm))]

(a)
= lim

k→∞
E[h(x̂(nk)(t),w(t+ s1), . . . ,w(t+ sm))]

(b)
= lim

k→∞
E[h(x(nk)(t),w(nk)(t+ s1), . . . ,w

(nk)(t+ sm))]

(c)
= lim

k→∞

1

nk

nk∑
u=0

E[h(x̄(t+u),w(t+s1+u), . . . ,w(t+sm+u))]

(d)
= lim

k→∞

1

nk

nk∑
s=0

E[h(x̄(s),w(s+ s1), . . . ,w(s+ sm))]

(e)
= lim

k→∞
E[h(x(nk)

0 ,w(nk)(s1), . . . ,w
(nk)(sm))]

(f)
= lim

k→∞
E[h(x̃(nk)

0 ,w(nk)(s1), . . . ,w
(nk)(sm))]

(g)
= E[h(x̃0,w(s1), . . . ,w(sm))]

(h)
= E[h(x∗

0,w(s1), . . . ,w(sm))], (10)

where (a) follows from the fact that x̂(nk)(t) → x∗(t) in
probability, (b) follows from the stationarity of w(t), (c, e)
follow from the law of total expectation [25], (d) follows
from a change of variables s = t+u and the facts that nk →
∞ as k → ∞ while h(.) and t are bounded, (f, g) follow
from Lemma A.1, and (h) follows from the construction of
x∗
0. The claim of the theorem then follows from (10) and the

fact that h is an arbitrary bounded continuous function [33].
To prove the convergence of all x(t) to x∗(t) under (A6)

and (A7), note that (1) defines a continuous-state Markov
chain. Let P denote its transition kernel [28]. By (A7),
there is a non-zero probability that the state moves from



an arbitrary state to any A with p∗(A) > 0 in an ar-
bitrary number of steps, ensuring that P is strongly p∗-
irreducible [28]. Therefore, according to [28, Theorem 1],
there exists U ⊆ Rn such that p∗(Rn \ U) = 0 and for
any initial distribution on U , x(t) → x∗(t) in distribution.
By (A6), p0 defines a distribution on U , hence the claim of
the theorem.

A note is warranted on the assumptions (A6) and (A7). Let
R ⊂ Rn be the (bounded) range of f . Given the continuous
nature of xi(t) and the often continuous distribution of noise
in real-world systems, it is expected for p∗ to also have a
continuous distribution and therefore a density function on
R where p∗(A) = 0 if and only if A has Lebesgue measure
zero. If so, then any continuous initial distribution p0 with a
density function on R satisfies (A6). Also, assumption (A7)
would then only require the possibility of transitioning from
any x to a set A of positive Lebesgue measure with positive
probability. This can be satisfied by various forms of f and
distributions pw, including systems with additive noise of the
form f(x,w) = f1(f2(x) +w) and noise distributions that
have a sufficiently large support over Rm.

Combining the linearity of Theorem IV.2 and the station-
arity of Theorem IV.4 ensures the convergence of the average
population dynamics to an LTI system, as formalized next.

Theorem IV.5. (LTI average population dynamics).
Consider the population dynamics (1) and assume that
assumptions (A1)-(A7) hold. Then,

E
[
x̄(t+ 1)

∣∣∣∣ [ x̄(t)w̄(t)

]
=

[
υ0

ζ0

] ]
→ Aυ0 +Bζ0

as N, t→∞, where

A = lim
t→∞

A(t), B = lim
t→∞

B(t), (11)

and A(t) and B(t) are defined in (6).

Proof. The result follows primarily from Theorems IV.2
and IV.4. All that remains to be proven is that the limits
in (11) exist. For this, it is sufficient to show that Σx+x(t),
Σx+w(t), Σxx(t), and Σww(t) all converge as t → ∞.
The latter holds trivially as w(t) is i.i.d. across time. From
Theorem IV.4, we have that the sequence of distributions of
x(t) converges to p∗ as t → ∞. Hence, any integral with
respect to this sequence of distributions, including Σxx(t),
also converges to the same integral with respect to p∗ [30].

To prove the convergence of Σx+x(t) and Σx+w(t), the
same argument we used for Σxx(t) applies provided that we
can show the convergence of the joint distributions of (x(t+
1),x(t)) and (x(t+1),w(t)) to respective limits. Note that
(dropping the subindex i as in the proof of Theorem IV.4),

Fx+xw(ξ
+, ξ,ω, t) = P{x(t+ 1) ≤ ξ+,x(t) ≤ ξ,w(t) ≤ ω}

=

∫
Sξ+,ξ,ω

dpxw(t)

where

Sξ+,ξ,ω = {(x,w)|f(x,w) ≤ ξ+,x ≤ ξ,w ≤ ω}

is independent of t and pxw(t) is the joint distribution of
x(t) and w(t). By Assumption (A3), the latter is equal to
the product of the marginals px(t)pw(t), which converges
to a stationary distribution by Assumption (A2) and The-
orem IV.4. Therefore, the sequence of joint distributions
px+xw(t) and any integral with respect to it, including
Σx+x(t) and Σx+w(t), converge to a stationary limit as
t→∞.

V. CONCLUSIONS AND FUTURE WORK

In this work we provided a theoretical framework for
understanding the linearity of spatially averaged dynamics
of populations of dynamical subsystems, inspired by the ob-
served linearity of macroscopic biological and artificial neu-
ral dynamics. Our results apply to a broad range of nonlinear
dynamics and were presented separately for populations
of static (feedforward) and dynamic (recurrent) nonlinear
subsystems. In the latter, we further distinguished between
the transient and steady-state dynamics of the average state
variables and proved that they converge to an LTV and
LTI system, respectively. Despite their generality, our results
are still limited in their need for independence between the
individual subsystems, thus limiting the application of our
results to networked systems. Future work will therefore
focus on extending our framework to networked systems with
correlated and potentially heterogeneous subsystems as well
as data-driven validations of our results and their extensions
to the dual linearizing effect of temporal averaging (low pass
filtering) on nonlinear dynamics.
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APPENDIX A. AUXILIARY RESULTS

Lemma A.1. (Existence of sequence with weakly con-
vergent finite-dimensional distributions in different prob-
ability space). Consider a sequence of stochastic processes
v(k)(t), k ≥ 1, t ≥ 0 and assume that it is uniformly bounded
in probability, i.e.,

lim
R→∞

sup
t,k

P{∥v(k)(t)∥ > R} = 0.

Then, there exists a subsequence v(nk)(t) of this sequence
as well as a (sub)sequence of stochastic processes ṽ(nk)(t)
and a stochastic process ṽ(t) in a (potentially different)
probability space such that for all t, ṽ(nk)(t)

k→∞−→ ṽ(t)
in probability and, for all k, v(nk)(t) and ṽ(nk)(t) have the
same finite-dimensional joint distributions across time.

Proof. For all k, we extend the discrete-time stochastic
process v(k)(t) to a continuous-time process v

(k)
c (t) by

linear interpolation, i.e., for any t ∈ R, t ≥ 0,

v(k)
c (t) = v(k)(⌊t⌋) + v(k)(⌈t⌉)− v(k)(⌊t⌋)

⌈t⌉ − ⌊t⌋
(t− ⌊t⌋).

By construction, v(k)
c (t) is uniformly stochastically continu-

ous, i.e.,

sup
k,|s1−s2|<h

P{|v(k)
c (s1)− v(k)

c (s2)| > ϵ} → 0,

as h→ 0. Therefore, v(k)
c (t) satisfies the conditions of [27,

Thm 2.1, 2.2] and, as such, there exists a subsequence
v
(nk)
c (t) of it as well as a (sub)sequence of stochastic pro-

cesses ṽ(nk)
c (t) and a stochastic process ṽc(t) in a potentially

different probability space such that for all t, ṽ(nk)
c (t)

k→∞−→
ṽc(t) in probability and, for all k, v(nk)

c (t) and ṽ
(nk)
c (t) have

the same finite-dimensional joint distributions. The claim of
the theorem then follows from sampling ṽ

(nk)
c (t) and ṽc(t)

to obtain ṽ(nk)(t) and ṽ(t), respectively.


