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Abstract— Application of low pass filters (LPFs) to remove
noise components is a widely used methodology for processing
signals acquired from diverse systems. LPFs are also intrinsic
components of many natural and man-made systems, both
intended and epiphenomenal, from electromechanical systems
to traffic networks and the brain. Across all cases, the effects
of LPFs are often studied in a pure filtering sense, such as
temporal smoothing and removing high-pass noise components,
causing delays and phase distortions, or limiting bandwidths.
In this work, we instead show that low-pass filtering and the
temporal averaging that underlies it can also have a major
and fundamental impact on the linearity of the dynamics.
We show using rigorous analysis that across a wide range
of stochastic nonlinear systems, temporal averaging dampens
nonlinearities and leads to more and more linear dynamics
with stronger temporal averaging (lower LPF cutoff frequency),
leading asymptotically to a completely linear system as the
width of the window over which temporal averaging occurs
tends to infinity (LPF cutoff frequency tends to zero). Our
results have major implications in a wide range of application
areas, including the study of the nervous system whereby LPFs
are biologically and algorithmically abundant and a growing
body of empirical evidence has found linear models as capable
as nonlinear ones in describing neuronal time series.

I. INTRODUCTION

A critical aspect in data-driven analysis of systems and
control is the behavior of the signals obtained from the
system. While it is expected that signals acquired from com-
plex nonlinear systems behave nonlinearly and are as such
best described using nonlinear models, increasing empirical
evidence has found linear models to equally well or even
better describe data collected from fundamentally nonlinear
systems [1]-[8]. The potential implications of such linearity
are indeed major, from simplifying model development and
control design to enhancing mechanistic understanding of
the system’s behavior. In this work, we provide fundamental
theoretical support for the role that low-pass filtering and
temporal averaging, whether due to inherent system char-
acteristics or preprocessing steps after signal acquisition,
can have linearizing effect on the dynamical content of
behavioral system measurements.

Literature review. Filtering techniques or components are
integral to the functioning of many engineered systems [9]—
[16]. In data-driven systems and control, for example, filters
are used ubiquitously to preprocess input-output data, where
pre-filtering using low pass (LPF) or band pass filters (BPF)
is the most commonly adopted strategy [17]. Aside from the
fact that LPFs are widely used as part of the preprocessing
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step, there are also numerous inherent LPFs that exists
within various natural networks and systems [11]-[13], [15],
[18]. In brain networks, for example, neural dynamics are
frequently observed or even defined through the signals
that are low-pass filtered versions of micro- and meso-scale
variables. Among these, the most notable signal is perhaps
the blood-oxygen-level-dependent (BOLD) signal captured
by functional magnetic resonance imaging (MRI), which can
be viewed as an observation of neural activity through the
brain’s hemodynamic response function (HRF). The latter
has a strong low-pass filtering effect, among others, with
a cutoff frequency of the order 0.1Hz compared to the up
to 200Hz bandwidth of neuronal activity. Also, the field
potentials detected by various forms of intra- and extra-
cranial electroencephalography (EEG) are for the most part
simply aggregates (averages) of neuronal post-synaptic cur-
rents [11]. The latter are in turn low-pass filtered observations
of neurons’ spiking activity through synaptic transmission
and neuronal membranes’ resistive-capacitive circuits. A
similar finding has been reported in [12], in which it has been
shown that information transfer in neural systems occurs by
filtering through integrator dynamics alongside uncorrelated
intrinsic noise, which results in a low-pass filter overall. A
further example of an inherent low pass filtering effect in
the brain comes from [13] where the thalamus was shown to
behave as a low pass filter. This study used a computational
approach, based on a simplified, yet biologically reasonable
model, and suggested that the thalamus functions as a low-
pass filter in order to stabilize sensory representations.

The present study is further motivated by our previous
work [1] on the dynamic modeling of brain networks.
Therein, we provided empirical evidence using real neu-
roimaging and neurophysiological time series for an unex-
pected observation that linear models may indeed provide
more accurate prediction of brain recordings compared to
various nonlinear models. To support this observation, we
showed therein using simulations that averaging, both spa-
tial and temporal, may indeed linearize the dynamics of
strongly nonlinear systems. These results were nevertheless
only based on simulations of one specific neuronal model,
hence only supporting a conjecture on the linearizing effect
of spatiotemporal averaging and providing motivation for
further rigorous analysis.

In our recent work [19], we provided the first mathematical
proof of this conjecture in the case of spatial averaging.
However, our proof therein relies heavily on an assumption
of statistical independence across space, i.e., independence
between different subsystems whose activity is spatially
averaged. While feasible in the context of spatial averaging,
an assumption of independence cannot be made across time



as it would require the averaged time series (state trajectories
of the system under study) to be white, and hence devoid
of any dynamics. In this work, we therefore follow the
general methodology of [19] but extend it to averaging over
statistically correlated sequences, hence providing the first
mathematical proof for the linearizing effect of temporal
averaging.

Finally, our proposed framework relies on tools from
probability theory [20]-[23] including, in particular, the
central limit theorem, as well as concepts from the theory of
strong mixing sequences [24].

Statement of contributions. In this paper, we develop
a theoretical framework to explain the empirically observed
linearizing effects of temporal averaging in nonlinear dy-
namical systems. Our contributions to this end are three-
fold. First, we introduce a new notion of strong mixing
for sequences of random variables, to which we refer to
as exponential p-mixing. This notion provides a stronger
(more restrictive) version of the standard p-mixing from the
literature whereby an exponential decay rate is required for
the correlation coefficient between elements of the sequence
with increasing distance. Using extensive simulations, we
nevertheless demonstrate that state trajectories from a wide
range of nonlinear dynamical systems indeed seem to be all
exponentially p-mixing. In addition, we prove that unlike
standard p-mixing sequences for which the variance of their
cumulative sum may grow at any rate in the range O(1) to
O(N?), the variance of the cumulative sum of exponentially
p-mixing sequences grows at a rate of O(N), i.e., at the
same rate as independent and identically distributed (i.i.d)
sequences. Building on this result, our second contribution
then consists of proving a central limit theorem (CLT)
for exponentially p-mixing sequences. As opposed to the
existing CLT for p-mixing sequences in the literature which
is only applicable to stationary sequences, our proposed CLT
applies to any exponentially p-mixing sequence, whether
stationary or not, as long as the variables in the sequence
have a uniformly bounded variance. This proposed CLT
serves as the foundation of our final and main contribution,
where we prove that under very mild assumptions, the
dynamical system that results from the temporal averaging of
any stochastic nonlinear system converges to a linear time-
invariant (LTI) system in the asymptotic limit of infinite
averaging.

II. NOTATION

We use R and Z to denote the set of reals and inte-
gers, respectively. 0 denotes zero vectors and matrices of
appropriate size. When a vector y or matrix A are block-
partitioned, y; and A;; refer to the ith block of y and
(7, 4)th block of A, respectively. Throughout this work, all
probabilities are defined on measurable spaces consisting of a
Euclidean space (or a subset thereof) and the associated Borel
o-algebra. Hence, when clear from the context, the space
over which each probability is defined is omitted. E[-] and
P{-} denote expectation and probability, respectively. Var(¢)
denotes variance of random variable £. For two random
vectors x € R and y € R™, Cov(x,y) € R™*™ denotes

the covariance between them. For simplicity, Cov(x) =

Cov(x,x). For sequences of random variables, % and B
denote their convergence in distribution and probability, re-
spectively. Finally, for any ¢ € R, |t] = max{k € Z|k < t}.

III. PRELIMINARIES

Here we review basic notions and properties of of mixing
sequences that will be used in our ensuing discussion.

Mixing Sequences

For a stochastic process £(¢), the notion of mixing implies
that the statistical dependence between £(t1) and &(t2)
diminishes as |t; — t3| increases. In other words, mixing
conditions generalize the notion of a pairwise independent
(white) sequence to one in which nearby elements can be de-
pendent but their dependence decays as the distance between
them grows. Various alternative versions of mixing sequences
are then proposed, corresponding to different measures of
dependence which has to decay with distance. One of the
most practical and empirically verifiable versions is that of
p-mixing, as defined next.

Definition III.1. (p-mixing sequence [25]). Consider a
sequence of random variables &1,&s,... in a probability
space (2, F,P) and define

p(n) = Sup p(o—(fh e 7£j)70-(€j+na v agoo))a (1)
J

where o(&1, ... ,&;) is the smallest o-algebra of ) generated

by the variables &1, ... ,§&;, similarly for 0(&in, ..., ¢x)
and for any two o-fields A and B,
C

p(A’ B) = su | Ov(y7 Z)| (2)

P Var(y)!/2Var(z)1/2

where the supremum is taken over all pairs of squared-
integrable random variables y and z such that y is A-
measurable and z is B-measurable. The sequence &1,&s, . ..
is then p-mixing if

p(n) =0 as n— oo. O

Clearly, i.i.d sequences are special cases of mixing se-
quences. Thus, many properties of i.i.d sequences, such as
the laws of large numbers [26], [27] and CLT [22], [28]
continue to apply to mixing sequences as long as the decay
of dependence is sufficiently rapid. Of particular relevance
here is the following CLT for p-mixing sequences.

Proposition IIL.2. (CLT for stationary p-mixing se-
quences [22, Thm B]). Consider a stationary p-mixing se-
quence &1,&s, ... each having zero mean and finite variance.
Define the cumulative sum and cumulative variance

N
Sn=> &, o3 = Var(Sy) 3)
i=1
and assume that
E[gz] = 07 Var({l) < o0, VZ, (4)
1
sup  — E[(Smin — Sm)?] < o0 &)

M>0,N>1 0N



Then

SN 4 A0,1) as N oo, O (6)
oN

In Section V, we extend this result to strongly p-mixing
sequences relaxing the need for stationarity.

IV. PROBLEM STATEMENT

Consider the general discrete-time stochastic nonlinear
system

x(t+1) = f(x(t),w(t)), t>0
w(t) ~ Puw, @)
x(0) ~ po,

where x(t) € R™ represents the state of the dynamical
system at time ¢, w(t) € R™ represents a stationary noise
process (not necessarily white or Gaussian) with the distribu-
tion p,,, and pg represents the distribution of the initial state
x(0). Throughout this work, we make the following standing
assumptions about (7).

Assumption 1. (Standing assumptions).

(A1) The noise has finite variance, i.e., for all © and t
Var(w;(t)) < &2, < oo.

(A2) The solution of (7) has a finite variance, i.e., for all 1
and t

Var(z;(t)) < 62, < oc.
(A3) The sequence of random vectors
z(t) = [x(t+ 1T x)T w(t)T]

is a regular exponentially p-mixing sequence (cf. Def-
initions V.1 and V.3). O

Tot>0 @8

Assumptions (Al) and (A2) are satisfied by most, if
not all, models of real-world systems due to the inherent
boundedness of their noise and state trajectories. The main
assumption of our work is therefore (A3), which we discuss
in details in Section V and Appendix A.

We are now ready to formulate our problem of interest.

Problem 1. (Effects of temporal averaging on aggregate
dynamics of a nonlinear dynamical system). Consider a
dynamical system in (7) and assume that Assumption 1
holds. Define the mean-centered and low-pass filtered state
trajectory

1 t+T—1
x(t) = 7= 2 (x(7) — E[x(7))). )

Show that the dynamics of X(t) converges to a linear system
as T — oo. ]

Notice that the signal x(¢) is the result of applying a linear
filter with impulse response (assuming for simplicity that T’
is odd)

t—(T—l)/Q)

rect( - (10)

9(t) = %

07 107 107 100 100 0 102 10 1ot
w (rad/s) T

Fig. 1: The frequency response (left) and cutoff frequency (right)

of the rectangular low-pass filter in (10). The horizontal line in the

left panel shows the 3dB threshold.

to the mean-centered signal x(t) — E[x(t)], where
rect(n/T) = 1 if |n| < T/2 and rect(n/T) = 0 otherwise.
This filter has the low-pass frequency response [29]

G(ejw) — LSIH(TM/2) efjw(Tfl)/Z
VT sin(w/2)

the amplitude and cutoff frequency of which are shown in
Figure 1. Also note that for simplicity of notation, we have
taken a forward average in (9) which makes the filter in (10)
non-causal. However, everything that follows would still hold
if x(t) is defined over (—oo,00) and X(t) is defined using
a backwards (causal) average over 7 = t — T + 1,...,t.
Finally, we highlight that our choice of a rectangular LPF
low-pass filter is only for analytical tractability while, based
on our extensive simulations, we expect all LPFs to impose
the linearization effect noted in Problem 1 (cf., e.g., the
effects of a Gaussian LPF in our prior work [1]).

V. EXPONENTIAL p-MIXING

In this section we present the main notion of mixing for
sequences of random variables that will be the basis for our
main result in Section VI. In particular, we introduce the new
notion of exponentially p-mixing sequences and characterize
some of its key properties, including the growth rate of the
cumulative variance of, as well as a CLT for, exponentially
p-mixing sequences. These results will play a central role in
our proof of the linearizing effect of temporal averaging in
Theorem VI.1.

Definition V.1. (Exponentially p-mixing sequence). Con-
sider a sequence of random variables &1,&a, . .. and let p(n)
be defined as in (1). This sequence is exponentially p-mixing
if there exists constants C' > 0 and r € [0,1) such that

p(n) <Cr", Vn>1. (11

Accordingly, a sequence of random vectors zi,zs,--- €
RE is exponentially p-mixing if the sequences of random
variables 07z,,07z,, . .. are exponentially p-mixing for all
0 € R-. ]

Exponential p-mixing is a considerably stronger assump-
tion than the p-mixing itself, as is the case, e.g., with expo-
nential vs. asymptotic stability. However, we are yet to find
a bounded-variance stochastic nonlinear dynamical system
of the form (7) with practical relevance whose solutions
are not exponentially p-mixing. To express this observation
more formally, we present in Appendix A the results of our



simulations of three nonlinear systems with fundamentally
different behaviors (asymptotic stability, limit cycle, chaos)
and their respective estimates p(n). In all cases, we observe
an exponential decay in p(n), suggesting that Assumption 1
is indeed mild. In the remainder of this section, we will
characterize this new mixing definition before using it to
solve Problem 1 in Section VI.

As one may have noticed, a major difference between
Proposition II1.2 and the standard CLT for i.i.d. sequences is
the normalization by o in (6) vs. the standard normalization
by VN for i.i.d. sequences. This difference stems from the
fact that the growth rate of the cumulative variance (0'12\[) of
p-mixing sequences cannot be determined a priori, except for
a global upper bound of O(N?) applicable to all sequences of
random variables with or without mixing conditions (based
on a simple application of the Cauchy-Schwarz inequality
omitted here). In contrast, we next show that the cumulative
variance of exponentially p-mixing sequences satisfies the
same growth rate of O(NN) possessed by i.i.d. sequences.

Theorem V.2. (Growth rate of cumulative variance of
exponentially p-mixing sequences). Consider a zero-mean
exponentially p-mixing sequence &1,&, . ... Assume that

Var(¢;) < 62 < oo, Vi (12)

for some constant G. Then the cumulative variance o%; as

defined in (3) is O(N). O

Theorem V.2 shows that, unlike standard p-mixing se-
quences, the cumulative variance of an exponentially p-
mixing sequence cannot grow any faster than the cumulative
variance of an i.i.d. sequence. In other words, exponential
p-mixing ensures that the correlations between nearby ele-
ments decay fast enough so that the sum of their pairwise
covariances cannot dominate the sum of their variances.
Nevertheless, it is still possible for an exponentially p-mixing
sequence to have a o3, that grows slower than N. In other
words, the correlation between nearby elements can still
be sufficiently negative for them to cancel out individual
variances. However, this is an extremely rare event that we
have not observed in any dynamical systems with practical
relevance. In the following, we characterize the scope of this
possibility before assuming that it does not happen in (7).

Consider again an exponentially p-mixing sequence
&1,&, ... satisfying (12). For any ¢ > 1, the infinite series
Z;’;l Cov(¢;,&;) is absolutely convergent by the compari-
son test, the facts that |[Cov(¢;, &;)| < 32Crli=Il, and the
fact that

13)

oo )
Y grCliil = g2ot =T —1“ 1
j=1

For the simplicity of notation, let

o0
Ci 2> Cov(&i, &)
j=1

denote the convergence value of this series. We can then
present the following definition.

Definition V.3. (Regular exponentially p-mixing sequence).
An exponentially p-mixing sequence satisfying (12) is called
regular if the limit

1 N
Ce=lim 2 G

exists and is nonzero. Likewise, an exponentially p-mixing
sequence of random vectors z,,zo,--- € R¥ satisfying
[Cov(z(t))|| < 62 < oo for all t is called regular if
072(1),072(2),... is regular for all € R*. O

(14)

While examples of bounded-variance exponentially p-
mixing sequences can be built which are not regular, they
are often highly contrived. For instance,

« a sequence of independent random variables &1,&o, . ..
with Var(§;) = 2 + cos(log(¢)) is an example whereby
the limit in (14) fails to exist!;

o a sequence of the form &1, —&1, &2, —&2, ... with inde-
pendent &;,&;,7 # j is an example whereby the limit
in (14) is zero.

Otherwise, notice that all the terms C’é are uniformly
bounded between +52C }f; from (13) and, thus, regularity
of {&;}i>1 only requires this uniformly bounded sequence
to have an infinite-horizon average and for the terms of that
average not to precisely cancel each other. This has been
the case for the state trajectories of all dynamical systems
of interest that we have examined, and can also be proved
in limited cases such as the state trajectories of dynamical
systems that converge to a stationary distribution and have
(a sufficiently strong noise input such that) r < 3.2

The following Corollary to Theorem V.2 makes its asser-
tion sharper when assuming regularity.

Corollary V4. (Growth rate of cumulative variance of
regular exponentially p-mixing sequences). Consider a reg-
ular zero-mean exponentially p-mixing sequence £1,&s, . ..
satisfying (12). Then the cumulative variance o3 as defined
in (3) satisfies
.o A
e s

(15)

While it may not have been obvious from (14), Corol-
lary V.4 implies in particular that C¢ > 0. Together with (13)
this ensures that C¢ satisfies the bounds

1+7r
1—7
Before proving the last and main result of this section, i.e.,

a CLT for regular exponentially p-mixing sequences, we need
a lemma as follows.

0<C*5§62C

Lemma V.5. (Invariance of regularity under (finite
shifts). Consider a regular exponentially p-mixing sequence

'Note that similar oscillatory examples with Var(€;) = 2 + cos(i) or
Var(&;) = 2+ (—1)* are nevertheless regular.

2In brief, this is due to the facts that in such a system CZ% converges to
a limit Cgo, which would then also be the value of the limit in (14), and
Cg° > 0 because 12_’; < 1 and hence the variance term in Cgo dominates
all the covariance terms.




&1,&, ... satisfying (12). Then, for any k < oo, (; =
§itk,t = 1,2,..., is also exponentially p-mixing and regular
with CC = Cﬁ. O

We are now ready to prove our CLT for regular exponen-
tially p-mixign sequences. Unlike Proposition II1.2, this CLT
holds for stationary and non-stationary sequences alike and
relies on the precise growth rate obtained in Corollary V.4
to scale the cumulative sum of the sequence and obtain the
variance of the limit normal distribution. We also no longer
need to assume (5) as it follows from the regularity of the
sequence.

Theorem V.6. (CLT for regular exponentially p-mixing
sequences). Consider a regular zero-mean exponentially p-

mixing sequence §1,82, ..., ... satisfying (12), and let Sy
and C¢ be as defined in (3) and (14), respectively. Then

S _

2N 4 N0,C¢) as N — . O

VN

Theorem V.6 will play a key role in the proof of the
linearizing effect of temporal averaging, as showed next.

VI. MAIN RESULT

In this section we present the main result of our paper
with regards to Problem 1, as follows.

Theorem VI.1. (Linearizing effect of temporal averaging).
Consider the nonlinear dynamics (7) and assume that As-
sumption 1 holds. Let X(t) be defined as in (9) and

t+T-1

1
V‘V(t)Zﬁ ; w(7r) — E[w(r)].

Then the relationship between X(t + 1), X(t) and W(t)
becomes asymptotically linear as T — oo, i.e., for any £ €
R™ and w € R™,

E[i(tﬂ)’ [v’:‘,((’?)} - [EJH S AE+Bw as T — oo,

where A and B are constant time-invariant matrices. O

Note that the noise input to the resulting average system
is the average of the noise inputs w(t). Additionally, among
the many notable aspects of Theorem VI.1 is the time-
invariant nature of the average dynamics despite the lack
of any stationarity requirements on the nonlinear system (7).
This is in contrast to our earlier work [19] where the result
of spatially-averaged dynamics becomes linear time-varying,
unless additional stationarity assumptions are imposed. We
defer a comprehensive unification of the two linearizing
effect (spatial and temporal) to future work.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a theoretical framework for
understanding the linearity of temporally averaged dynamics
of stochastic nonlinear dynamical systems. This study was
inspired by the empirically-observed linearity of dynamics
in nonlinear systems subject to low-pass filtering and the
ubiquity of LPFs across natural and man-made systems,

our recent dual demonstration of the linearizing effects of
spatial averaging in large-scale populations of nonlinear
systems. We showed using extensive numerical simulations
that a wide range of nonlinear systems appear to exhibit
an exponential decay in the correlation coefficient of their
temporally-separated state variables, and as such extended
the standard definition of p-mixing to exponentially p-mixing
sequences. We then provided multiple characterizations of
such sequences, including the i.i.d.-like growth rate of their
cumulative variance and a corresponding central limit theo-
rem. Using the latter, we then proved that bounded nonlinear
systems with exponentially p-mixing solutions converge to
a linear time-invariant (LTI) system when passed through a
LPF with smaller and smaller cutoff frequency. Future work
will include the extension of our framework to networked
systems with correlated subsystems that explains linearity in
both spatially and temporally averaged dynamics.

APPENDIX A. NUMERICAL EVALUATION OF
EXPONENTIAL p-MIXING IN DYNAMICAL SYSTEMS

In this Appendix we provide numerical support for the
mildness of Assumption (A3). Consider three nonlinear
dynamical systems,

Syia(t+1) = 1132(;()15) +w(t), (16)
0 1 0
Sy ix(t+1)= [0.4 0.4+ sin(O.QIz(t))] x(t) + [w t)] ,

Sy x(t+1) = [—8.2 2.75 —1:03(15)} x(t) + [102971,(15)} '

System S; is bistable while S3 has a limit cycle and S3
(the Duffling map) is chaotic, each representing a structurally
distinct and purely nonlinear behavior.

For each system, we simulated its dynamics with i.i.d.
w(t) ~ N(0,1) for 0 < t < 999 and computed
{07z(t)}o<1<o99 using a random vector 6 with i.i.d. ele-
ments 6; ~ N(ug,03) where pg ~ U[0,10] and op ~
U[1,10] are themselves drawn from uniform distributions.
Then, for computational feasibility, we limit the number of
variables generating each o-algebra in 1 to 3, i.e., p(n) ~

p(0(£1,62,63),0(£3 45 E34n+15E34nt2)). Each of the ran-
dom variables y and z in (2) can then be any functions of

(€1,€2,&3) or (§34n5&34n+1,83+n+2). We approximate this
functional space basis expansions of the form

F(&1,6,8) = cijnTi(6) T (&) Th(&s),
idok
where ¢; ;1 ~ N(0,1) and T),(-) is the n’th Chebyshev basis
function given by

%((m V2 -1)"+ (z+ V22 -1)"), |z|>1

The absolute value of the correlation coefficient between
f(&1,82,83) and f(&34n,&34n+1,E34n+2) computed analo-
gously provides one approximation for p(n). For each 8 and
0 < n <997, we then repeat this process 106 times, and
repeat this entire process for 10 random values for 6.

T (2) = {cos(n arccos(x)), x| <1
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Fig. 2: Exponential p-mixing property of sampled dynamical systems.
10 estimates of p(n) for the systems S1 to Sz in (16).

Figure 2 shows the resulting approximations of p(n)
for each system. The horizontal line in each panel shows
the theoretical smallest value of the correlation coefficient
between any two random variables that can be accurately
detected using 10° samples. This threshold was computed
using standard power analysis [30] with standard bounds of
0.05 and 0.2 on type I and type II errors, respectively.

The semi-logarithmic panels of Figure 2 clearly show an
exponential decay in all estimates of p(n) for all the three
systems, until they reach the theoretical threshold imposed by
the finite, though as large as feasible using our computational
resources, number of samples 1068.
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