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Abstract
Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large 
interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit 
a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our 
approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression 
Index (PSI)—an ECT seizure quality index—and whole-brain modal and average controllability, NCT metrics based on white-matter 
brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an 
association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 
depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data 
predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, 
our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. 
In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain 
network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated 
by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized 
ECT interventions rooted in control theory.

Keywords: network control theory, diffusion tensor imaging, electroconvulsive therapy, major depressive disorder, postictal 
suppression index

Significance Statement

Electroconvulsive Therapy (ECT) is the most effective treatment for treatment-resistant major depressive disorder (MDD), but not all 
patients respond to this treatment. Here, we employ control theory—an approach originally developed to investigate the control of 
dynamical systems in engineered processes and machines—and apply it to patients’ individual structural brain networks. We 
show that the effective suppression of an ECT-induced seizure depends on brain network control properties and that differences 
in these control metrics explain differential clinical responses in MDD patients. Therefore, brain images before the start of the treat
ment could aid in the prediction of treatment response and help explain the underlying mechanisms of this effective but poorly 
understood treatment.
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Introduction
Electroconvulsive therapy (ECT) is the most effective treatment 
for severe and therapy-resistant depression (1–3). As therapeutic 

response varies widely, however, numerous studies have sought 
to explain individual ECT response from indexes, rating scales, 
or symptom clusters prior to intervention, among others (4–7). 
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More recently, although limited to small patient samples, more 
machine learning models based on neuroimaging data have re
kindled hopes for a theranostic biomarker (8–11). These efforts, al
though useful to identify potential predictive factors of ECT 
response, however, cannot directly add to a theoretical frame
work capable of explaining ECT response because of their purely 
data-driven and predictive nature.

Generally, during ECT an electric charge is applied to the brain 
to induce a generalized tonic–clonic seizure characterized by high 
amplitudes and polyspike waves as well as high amplitudes with 
slow waves in the electroencephalogram (EEG). This is followed 
by the termination phase during which postictal suppression— 
i.e. a period of lower spectral amplitude and a general flattening 
of the EEG—occurs (12). Empirically, postictal suppression has re
peatedly been linked to treatment response: A plethora of studies 
for more than three decades has found a positive association be
tween stronger postictal suppression and better response to ECT 
(12–23). Recognizing this, ECT devices today provide a measure 
of postictal suppression which is routinely used in clinical prac
tice to assess treatment quality and estimate future therapeutic 
response. This postictal suppression index (PSI) is quantified by 
the ratio of EEG signal power during the termination phase and 
the tonic–clonic seizure and subtracting it from 1 (see Eq. 1 in 
Methods).

While empirically well-founded and routinely used in the clin
ic, a theoretical framework explaining why ECT patients vary with 
regard to seizure quality indices such as PSI is, however, missing. 
Consequently, PSI is of limited theranostic utility as it can only be 
measured during ECT—i.e. after the beginning of the intervention 
—and thus cannot serve as a predictive marker in therapeutic 
planning. In contrast, identifying the interindividual differences 
underlying the observed variance in PSI would allow us to derive 
a predictive marker for ECT response suitable for therapeutic 
planning.

To enable the theoretically driven construction of a theranostic 
biomarker, we conceptualize ECT as an attempt to drive the brain 
into a specific state (i.e. seizure) by influencing large-scale, dy
namic network state transitions in the brain. Building on 
Control Theory as the study and practice of controlling dynamical 
systems (24), we can then view the electric charge applied during 
ECT as a control input designed to guide the system towards a spe
cific state—i.e. a seizure—characterized by the high amplitude 
EEG oscillations typical for tonic–clonic seizures.

Next, we aim to relate this control-theoretic perspective to net
work neuroscience: Specifically, recent progress in Network 
Control Theory (NCT) has enabled the quantification of the influ
ence a brain region (or “node” from a network perspective) has on 
the dynamic transitions between brain states (i.e. the multivariate 
pattern of neural activity across the whole brain) (25, 26). In other 
words, from a theoretical perspective, a brain region with higher 
controllability, if stimulated, ought to have a greater effect on 
brain dynamics than a region with lower controllability. In this 
context, controllability of a brain region is an important metric 
that links stimulation (e.g. ECT), the brain state after stimulation 
(i.e. a seizure), and the brain’s structural connectivity properties 
(27, 28). Importantly, controllability is an abstract concept that 
can be operationalized in different ways: Most commonly, con
trollability is captured by two key metrics: On the one hand, modal 
controllability represents the ability of brain regions to especially 
affect the trajectory of fast decaying neural dynamics i.e. those 
brain activities that last only a very short amount of time (29). 
On the other hand, average controllability measures the ability of 
a system to generally spread and amplify intervention effects 

(i.e. the electric charge used during ECT) and is thus indicative 
of a brain region’s average ability to induce a large number of dif
ferent neural patterns (for formal definitions of average and modal 
controllability measures see Methods section). Pertaining to brain 
dynamics, it has been shown that average controllability is high
est in those brain regions that have a higher number of structural 
connections (i.e. structural degree) and higher gray matter vol
ume while modal controllability is highest in those regions with 
a lower number of structural connections and lower gray matter 
volume (27). Fueled by evidence that (1) the human brain is in 
principle controllable (27) (i.e. external stimulation of the brain 
can indeed change brain dynamics in a meaningful and arbitrarily 
complex way), (2) control-theoretic constructs are directly linked 
to biological mechanisms in the brain (30), and (3) controllability is 
associated with cognition (28, 31), numerous studies have empir
ically investigated the two metrics in mental disorders (32–34). 
Focusing specifically on Major Depressive Disorder (MDD), Hahn 
et al. recently showed in a large sample of patients that whole- 
brain average and modal controllability (i.e. mean average and 
modal controllability across the brain) is related to genetic, indi
vidual, and familial risk in MDD patients (35).

In the current study, we formally derive from control theory 
that whole-brain modal and average controllability are mathem
atically related to amplitude of global brain response to control in
put (i.e. output signal power after a control input): As whole-brain 
average controllability is defined as the weighted sum of the so- 
called impulse response of each brain area, it is directly related 
to the cumulative power of the output response (i.e. the EEG signal 
power during the seizure). Likewise, whole-brain modal control
lability is linked to the observed brain dynamics after inducing en
ergy into the system. For a formal derivation of these properties, 
see online Supplementary material Methods section.

In other words, if we conceptualize the electric charge applied 
during ECT as a control input designed to induce a seizure, it fol
lows that whole-brain average and modal controllability derived 
from the structural connectome are expected to be related to 
EEG signal power after control input (i.e. during the induced seiz
ure). Specifically, higher whole-brain average and lower modal 
controllability ought to be related to higher output signal power 
during the tonic–clonic seizure (see Network Control Analysis 
in the Methods section for a more stringent argument). 
Importantly, as PSI is proportional to the ratio of signal power dur
ing the termination phase and the tonic–clonic seizure (see Eq. 1 in 
Methods), higher signal power during the tonic–clonic seizure 
phase should result in higher PSI.

In summary, we posit that lower whole-brain modal control
lability and higher whole-brain average controllability (both 
mathematically associated with higher output signal power dur
ing the tonic–clonic seizure as formally derived using the princi
ples of Control Theory) should lead to higher PSI values. As the 
positive relationship between PSI and therapeutic response is 
well documented, it follows that lower whole-brain modal con
trollability and higher whole-brain average controllability, re
spectively, should result in higher PSI and thus improved ECT 
response. Here, we empirically test this conjecture by assessing 
the relation between empirically observed PSI during ECT and 
whole-brain modal and average controllability derived from 
pre-ECT structural connectome data in N = 50 naturalistically re
cruited participants diagnosed with current MDD and treated 
with ECT (see Methods section for details). Next, we replicate 
the association between PSI and ECT response known from the lit
erature. Then, we test whether pre-ECT whole-brain modal and 
average controllability predict ECT response and assess whether 
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these effects are indeed mediated by PSI during ECT. Finally, we 
compare the predictive power of whole-brain modal and average 
controllability regarding therapeutic response to the performance 
of an extensive array of machine learning models based on struc
tural connectome data.

Results
To empirically test our hypotheses derived via the application of 
control theory to ECT, we conducted four analyses: First, we as
sessed the effect of the empirically observed whole-brain modal 
controllability (MC) and whole-brain average controllability (AC), 
respectively, on PSI during ECT. As hypothesized, MC is negatively 
associated with PSI (F(1,39) = 3.28, P = 0.039, partial η2 (ηp2) =  
0.077). Likewise, AC shows a trend-wise positive association with 
PSI (F(1,39) = 1.72, P = 0.098, ηp2 = 0.042).

Second, we replicated the association between higher PSI and 
better ECT response known from the literature (F(1,39) = 7.28, 
P = 0.005, ηp2 = 0.157).

Third, we tested whether pre-ECT MC and AC predicted ECT 
response. In line with our hypotheses, we reveal that lower MC 
is indeed associated with stronger ECT response (F(1,44) = 8.15, 
P = 0.004, ηp2 = 0.156). Furthermore, as expected, AC is positively 
related to ECT response (F(1,44) = 3.62, P = 0.032, ηp2 = 0.076).

Fourth, we tested if the effects of MC and AC, respectively, on 
ECT response are indeed mediated by PSI. To this end, we 

employed a mediation analysis with MC and AC, respectively, as 
the predictor, PSI as the mediator, and ECT response as the out
come (Fig. 1D). We indeed observed a significant mediation (i.e. in
direct) effect for MC (ab = 184.80; P = 0.010) as well as for AC 
(ab = −47.94; P = 0.017). However, a significant direct effect (c′)— 
i.e. an association between MC with ECT response after controlling 
for PSI—remains (c′ = 706.26; P = 0.016); indicating a relation to 
ECT response above and beyond the PSI-mediated effect. In con
trast, the effect of AC on ECT response is fully mediated by PSI, 
i.e. it no longer reaches significance when controlling for PSI 
(c′ = −140.40; P = 0.080).

Finally, we descriptively compared the predictive power of MC 
and AC regarding ECT response to the performance of an exten
sive array of machine learning models based on structural con
nectome data. Specifically, we tested 35 combinations of data 
transformations (including Principal Component Analysis and 
univariate feature selection) and multivariate machine learning 
algorithms (including linear and non-linear Support Vector 
Machines, Random Forests, and linear Regression Models) in a 
nested cross-validation approach using Fractional Anisotropy, 
Mean Diffusivity, and Number of Streamlines derived from each 
patient’s structural connectome, respectively (see Methods for de
tails). We showed that MC (r2 = 9.24%) as well as AC (r2 = 7.76%), 
respectively, explain nominally more variance in treatment re
sponse than the best machine learning model for each modality 
(Fractional Anisotropy r2 = 0.74%; Mean Diffusivity r2 = 1.46%; 

Fig. 1. From Diffusion Tensor Imaging (DTI) data (A), we derived the structural connectivity matrix for each patient (B) and quantified modal and average 
controllability—i.e. the influence a brain region has on the dynamic transitions between brain states underlying cognition and behavior (illustrated in C). 
We then show that mean modal (MC) and average controllability (AC), respectively, are associated with therapeutic response to ECT treatment and that 
this effect is mediated by Postictal Suppression Index (PSI; D). MC and AC also predict therapeutic response in patients before ECT treatment as good or 
better than an extensive array of multivariate machine learning models based on Fractional Anisotropy, Mean Diffusivity, and Number of Streamlines 
derived from DTI (E).
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Number of Streamlines r2 = 0.99%; Fig. 1E). Also, controllability 
metrics outperformed a model combining age, gender, and symp
tom severity at baseline (r2 = 4.37%).

Discussion
In this work, we drew upon NCT to derive a mechanistic frame
work capable of predicting ECT response based on individual, 
pre-ECT white-matter architecture. This approach has two main 
strengths: First, unlike previous efforts in psychiatry, it allows 
us to derive testable predictions regarding individual therapeutic 
response from a well-established, quantitative theory, which can 
further inform mechanistic models of ECT response. Second, 
these theoretically derived predictions—which, unlike PSI, can 
be obtained before ECT and can thus be used for treatment plan
ning—are at least on par with state-of-the-art multivariate ma
chine learning approaches, hence opening a new paradigm to 
study ECT response. On a mathematical level, our approach es
sentially builds upon the notion of controllability which relates 
the geometrical properties of brain structural connectome to the 
functional role each brain region can play in steering the brain dy
namics. Conceptualizing ECT as an intervention to a networked 
system (i.e. the brain), we formulate a mathematical framework 
that relates structural brain networks to the PSI and thus clinical 
outcomes of ECT on depressive symptomatology.

Specifically, we first derive that lower whole-brain modal con
trollability and higher whole-brain average controllability are 
mathematically associated with higher output signal power dur
ing the tonic–clonic seizure if we conceptualize the electric charge 
applied during ECT as the control input to a noise-free, time- 
invariant linear system commonly used in NCT and the seizure 
as its output. Based on the calculation of PSI as routinely done 
in the clinical context, we can then directly deduce that—all other 
things being equal—PSI should increase for patients with lower 
MC and higher AC, respectively. Drawing on previous evidence 
showing a positive association between PSI and ECT response, 
we then hypothesize higher ECT response for patients with lower 
MC and higher AC, respectively. All three effects predicted by our 
approach for MC—i.e. the associations between 1. MC and PSI, 2. 
PSI and ECT response, and 3. MC and ECT response—as well as 
the mediation effect of PSI, were empirically found in the theoret
ically expected directions. For AC, results were also in the 
expected direction, but effects were smaller (ηp2 of 0.068 and 
0.076) and in case of the association of AC and PSI only marginally 
significant. These findings support the notion that ECT response— 
at least in part—can be understood analogous to physical dynam
ical systems within the formal framework of NCT viewing the 
electric charge applied during ECT as the control input and the 
ECT-induced seizure as the control output.

Importantly, a comparison with state-of-the-art machine 
learning approaches showed that a simple linear predictive model 
using only the single AC or MC value, respectively, for each patient 
is at least as good a predictor of therapeutic response as an exten
sive array of 35 machine learning pipelines based on the multi
variate patterns of Fractional Anisotropy, Mean Diffusivity, and 
Number of Streamlines derived from each patient’s structural 
connectome. In the same vein, we know from epidemiological 
data that disease severity before treatment, age, and sex are pre
dictors of ECT response. Interestingly, if we use this information in 
a multivariate model using our dataset, the model can only ex
plain around 4% of variance. In contrast, the controllability 
metrics can explain 8–9% of the variance, which demonstrates 
the substantial role that these metrics could play in future 

development of formal ECT response prediction models in clinical 
practice. Generally, this shows that our theoretically derived met
rics are comparable or better predictors of treatment response 
than an extensive array of state-of-the-art multivariate machine 
learning approaches or demographic information known to be as
sociated with ECT response—thus encouraging further research 
for theranostic markers in this direction.

More generally, connecting NCT and ECT opens the door to
wards a quantitative understanding of ECT response. Providing 
a quantitative answer to the question of what changes in the 
brain after a specified stimulation event is not only crucial for 
ECT response prediction, but also—with NCT—provides a rich 
theoretical framework with which we can hope to optimize 
ECT application itself. For example, our results are conceptually 
related to successful attempts to predict stimulation outcome in 
the context of electrical brain stimulation (36). While demon
strating that variation in response to treatment can be explained 
by controllability differences, our approach, however, relies ex
clusively on whole-brain controllability metrics—not local con
trollability of certain brain regions. While we think this is 
particularly reasonable in the context of ECT, which induces a 
generalized seizure across the entire brain, future studies ought 
to extend the idea to include localized control. This is particular
ly interesting as NCT provides a straightforward way to calculate 
which brain regions should be targeted in which order to effi
ciently reach a specific state (be it a seizure or other states) em
ploying more localized interventions such as Transcranial 
Magnetic Stimulation. Whether targeting regions identified by 
this so-called control-node analysis (37) leads to stronger re
sponse can be directly tested in future intervention studies. 
Importantly, this view also entails that therapeutic interventions 
should be custom-tailored to the patient’s individual structural 
connectome topology which might thus serve as a promising ap
proach to patient stratification.

In addition to the prediction of ECT response, a control- 
theoretic framework might help to understand several phenom
ena associated with ECT. For example, inducing seizures becomes 
increasingly difficult with age which might be explained by the 
fact that synchronizability—i.e. the ability of the constituents of 
a dynamical system to show coherent activity—develops in a 
way as to favor seizure suppression over the lifespan (38). Also, 
the same study shows that strong modal controllers were dispro
portionately located in cognitive control systems, including both 
the frontoparietal and cingulo-opercular systems. This might en
tail that the efficacy of ECT and its adverse effects regarding cog
nitive deficits maybe linked at the level of white-matter network 
architecture.

Several limitations should be noted. First, calculation of 
average and modal controllability relies on the simplified noise- 
free linear discrete-time and time-invariant network model em
ployed in virtually all work on brain NCT (27, 39, 40). Given the 
brain’s clearly non-linear dynamics, this is justified as (1) non- 
linear behavior may be accurately approximated by linear be
havior (41, 42) and (2) the controllability of linear and non-linear 
systems is related such that a controllable linearized system is 
locally controllable in the non-linear case (see also (27) for de
tails). If a more complex non-linear model could improve the re
sults presented here should be tested in future studies.

Second, we formalized our model by conceptualizing the seizure 
as the brain’s response to ECT. This is motivated by the observations 
that it is indeed the seizure that seems to be central to the clinical 
efficacy of ECT. For example, a multitude of evidence is accumulat
ing from the newly developed magnetic seizure therapy (43), 
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low-dose electrical shock therapy (44), and sham therapies that 
simulate (45). PSI is however, by definition, also related to the ictal 
EEG. How and if the inclusion of this period can improve the current 
methodology should be studied in future research.

Third, our estimation of controllability is based upon binary 
networks built from streamline counts of DTI tractography. 
This introduces two possibilities to improve the current study. 
On the one hand, DTI itself is limited in its ability to accurately 
quantify the structural connectome (for an introduction, see 
(46)). Currently, several novel approaches to controllability quan
tification are being explored including estimation from gray mat
ter (47) and resting-state functional dynamics (39). The inclusion 
of these methodologies to infer the brain networks embodying 
brain dynamics could in principle improve our model. For ex
ample, the connectivity networks could be derived based on a 
number of different methodologies including weighted graphs 
based on the number streamlines. Related, although a funda
mental concept in engineering studies, controllability remains 
an abstract concept in studying brain dynamics. Recent studies 
have shown that regional controllability is closely related to the 
and potentially operationalized by regional metabolic dynamics 
(30), gray matter volume (47), and the geometrical properties of 
structural connectome (27). Empirically comparing and theoret
ically reconciling results from these methods will be crucial for 
robust parameter estimation in NCT studies of the brain. In add
ition, longitudinal data from DTI, gray matter, and resting-state 
functional dynamics available from e.g. the Marburg–Münster 
Affective Disorders Cohort Study (MACS; (48)) will enable us to 
assess the (differential) reliability of these approaches. In com
bination with functional Magnetic Resonance Imaging, this 
also provides an opportunity to further characterize the relation
ship between network control and individual task-related activa
tion (49).

In summary, we derived and tested a control-theoretic frame
work capable of predicting ECT response based on individual 
brain network architecture. It makes testable, quantitative pre
dictions regarding individual therapeutic response, which are cor
roborated by strong empirical evidence. Our work might 
constitute a starting point for a comprehensive, quantitative the
ory of personalized ECT interventions rooted in control theory.

Methods
Sample
Fifty-three participants diagnosed with current MDD and treated 
with ECT participated in the present study. Patients were re
cruited naturalistically with treatment being assigned based on 
clinical decisions independent from study participation. All sub
jects were diagnosed with the Structured Clinical Interview for 
DSM-IV-TR (50) to confirm the psychiatric diagnosis. For medica
tion details and study inclusion and exclusion criteria, see online 
supplementary material. In the process of image quality control 
(see Methods section below), three subjects had to be excluded. 
Therefore, the final sample comprised of 50 subjects (29 female, 
21 male; mean age = 45.1 years, SD = 10.8). Note that results do 
not substantially change if these three subjects are not excluded. 
This study was approved by the ethics committee of the Medical 
Faculty of Muenster University and all subjects gave written in
formed consent prior to participation. They received financial 
compensation after study completion.

For MRI data acquisition and preprocessing, see online 
Supplementary material Methods.

Electroconvulsive therapy
Brief-pulse ECT was conducted three times a week using an inte
grated instrument (Thymatron IV; Somatics Inc; number of ses
sions: M = 13.0, SD = 4.34, range = 5–25). Energy dosage elevation 
was considered between ECT sessions if the primarily induced 
seizure activity lasted less than 25 s. For more details on ECT pro
cedure and parameters see online Supplementary material.

Recognizing the empirical link between PSI and ECT response, 
many ECT devices today provide a measure of postictal suppres
sion which is routinely used in clinical practice to assess seizure 
quality and estimate future therapeutic response. During ECT, 
the ictal outcome of PSI was measured and summarized by the 
Thymatron machines using five electrodes. These were placed 
on the right and left forehead, on the right and left mastoid, and 
on the patient’s nasion (ground electrode). The PSI is quantified 
by the ratio of signal power during the termination phase and 
power during the tonic–clonic seizure based on the EEG 
time-series and subtracting it from 1:

PSI = 1 −
Powertermination phase

Powertonic−clonic seizure

􏼒 􏼓

∝ Powertonic−clonic seizure (1) 

It follows that higher EEG signal power during the tonic–clonic 
seizure should result in higher PSI values.

We used Thymatron system IV’s default settings to compute 
PSI. Specifically, signal power during the termination phase and 
the seizure, respectively, is computed as the mean power of three 
1.28 s long intervals with an EEG sampling rate of 200 Hz. To min
imize artifacts, 3.84 s around the tonic–clonic seizure endpoint are 
disregarded (F. Berninger, Somatics Inc. representative, personal 
e-mail communication with JR, 2017 December 15).

Choice of primary measure
In this work, we used ECT response as the primary outcome meas
ure. MDD symptoms at both time points were measured using the 
Hamilton Depression Rating Scale (HDRS) (51). ECT response was 
defined as the difference in MDD symptoms before and after ECT. 
Specifically, we subtracted pre-ECT scores from post-ECT scores 
so that improvement is indicated by more negative values. 
Despite concerns regarding its psychometric properties (52), the 
HDRS is one of the most widely used clinician-administered de
pression assessment scale and is routinely used in studies inves
tigating ECT response (8, 53).

Statistical and machine learning analyses
To empirically test our hypotheses, we conducted four analyses: 
First, we assessed the relation between empirically observed 
whole-brain modal (MC) and average controllability (AC), re
spectively, and PSI during ECT. To this end, we employed an 
ANCOVA approach with PSI as the dependent variable, MC and 
AC, respectively, as the independent variable. Second, to repli
cate the association between PSI and ECT response known 
from the literature, we employed an ANCOVA approach with 
ECT response as the dependent variable and PSI as the independ
ent variable. Third, we tested whether pre-ECT MC and AC 
predicted ECT response. Again, we employed an ANCOVA ap
proach with ECT response as the dependent variable and MC 
and AC, respectively, as the independent variable. Note that in 
all of these analyses, in addition to the F-value and the one-sided 
P-value, we provide ηp2 as a measure of effect size. All of these 
analyses were conducted using the Python statsmodels package 
(statsmodels.org).
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Fourth, we tested if this effect of MC and AC, respectively, on 
ECT response is indeed mediated by PSI during ECT. To this end, 
we employed a mediation analysis with MC and AC as the predict
or, PSI as the mediator, and ECT response as the outcome using 
the bias-correct, non-parametric, bootstrap-based mediation 
analysis implemented in the Python pingouin library (pingouin- 
stats.org). Significance of the indirect (mediation) effect was com
puted using the permutation test as outlined in Mac Kinnon (54) 
(Section 12.6) based on 10,000 permutations.

In all analyses, we included age, sex, and symptom severity be
fore ECT as covariates. To ensure that the effects observed are not 
driven by basic graph properties, we additionally included the 
number of present edges in all analyses. In analyses involving 
PSI as computed from EEG during ECT, we only used data from 
the first ECT session as numerous studies have shown that the 
structural connectome as measured with DTI underlying our con
trol analyses changes in response to previous ECT sessions (55). 
Note that PSI was available for 45 of the 50 patients. Thus, all ana
lyses involving PSI are based on N = 45, whereas all other analyses 
are based on N = 50.

Finally, we conducted an extensive array of machine learning 
analyses based on structural connectome data—namely 
Fractional Anisotropy, Mean Diffusivity, and Number of 
Streamlines—to predict ECT response. Using the PHOTON AI 
software (56), we trained and evaluated a total of 35 machine 
learning pipelines. Specifically, we tested pipelines including 
Principal Component Analysis and univariate feature selection 
(with 5 and 10% thresholds) with linear and non-linear Support 
Vector Machines, Random Forests as well as Linear Regression. 
Models were trained and evaluated in a nested leave-one-out 
cross-validation framework and performance reported as per
cent variance explained by Spearman rank correlation between 
true and predicted treatment response. The full code can be 
found in the online Supplementary Material. We compared this 
to a simple linear regression model also using leave-one-out 
cross-validation based solely on the single MC and AC value, re
spectively, without any further optimization or model selection. 
Note that formally testing performance differences for signifi
cance using e.g. 1,000 permutations would require fitting 
257,750,000 machine learning pipelines for the three structural 
connectome modalities alone and was thus not feasible given 
current hardware.

Supplementary material
Supplementary material is available at PNAS Nexus online.
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