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Computational Modeling: Accuracy or Simplicity?

“ Truth ... is much too complicated to

allow anything but approximation ”

— von Neumann

Common points of tradeoff:

• Linear vs. nonlinear

• Small vs. large dimensional

• Deterministic vs. stochastic

• Stationary vs. time-varying

•
...
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Nonlinearity: Essential at Microscale

• Fundamental to the HH model

X Data-driven

X Functionally, nonlinearity is essential for

• Excitable behavior (spiking)

• Limit cycles (rhythmic spiking)

• Logical operations (and, or)

• Bistability

•
...

V̇m = gl(Vl − Vm) + gKn
4(VK − Vm) + gNam

3h(VNa − Vm) + I

ṅ =
0.01(10− Vm)

e1−Vm/10 − 1
(1− n) +

e−Vm/80

8
n

ṁ =
0.1(25− Vm)

e2.5−Vm/10 − 1
(1−m) + 4e−Vm/18m

ḣ = 0.07e−Vm/20(1− h) +
1

e3−Vm/10 + 1
h

A. L. Hodgkin & A. F. Huxley
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Nonlinearity: Present at Macroscale?

• Seemingly, a network

interconnection of billions of

nonlinear neurons only

explodes in complexity and

repertoire of nonlinear

behavior!

⇒ Resulting assumption:

accurate models of

macroscopic neurodynamics

must be nonlinear

• Is this true?
(Wilson & Cowan, 1972)

(Jansen & Rit, 1995)

(Kuramoto, 1984)
(Stefanescu-Jirsa, 2008)
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System Identification/Learning of Resting-State Dynamics

Generally-nonlinear ODE models are widespread in comp neuro:

M :

ẋ(t) = f(x(t)) + e1(t), x(t0) = x0

y(t) = h(x(t)) + e2(t)

• y(t): neuroimaging time series

• x(t): “internal” state vector (any dimension, could be = y(t))

• e1(t): process noise

• e2(t): scanner noise

y(t) =


y1(t)

y2(t)
...

yn(t)

 =



Problem: find the model that best fits the data!
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System Identification: Prediction Error Framework

• Philosophy: the better a model can

predict the future of time series from

its past (“initial conditions”), the more

accurate it is

• Simplest: one-step ahead prediction

(OSAP)

min
M

∑
i,t

[
ŷi(t|t− 1)− yi(t)

]2
• Model comparison:

1. R2
i = 1−

∑
t

[ŷi(t|t− 1)− yi(t)]2∑
t

[ȳi − yi(t)]2
≤ 1

2. Whiteness of residuals (χ2 test)

5/18



Whiteness of Residuals

• Prediction error (out of sample):

ε(t) = ŷ(t|t− 1)− y(t)

• Existence of “dynamics” in a signal ≡ non-white spectrum
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• Can be statistically verified via a χ2 test: the smaller the test statistic Q,

the better
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Linear Models
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Nonlinear Models
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Hyper-parameter Tuning via Stochastic Gradient Descent

• Simultaneous tuning of each model’s hyper-parameters via SGD, until reaching

steady state
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Comparison: Linear Models Are More Accurate (fMRI)

• R2
i = 1−

∑
t[ŷi(t|t− 1)− yi(t)]2∑

t[ȳi − yi(t)]2
≤ 1, for any brain region i

10/18



Comparison: Linear Models Are More Accurate (fMRI) – cont’d

• Same linear VAR-3 model gives the whitest residuals
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Comparison: Linear Models Are Faster (fMRI)

• Linear models are also faster (training + cross validation time)
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Same Story for iEEG

• Same holds true for iEEG

? Why?!
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Reasons for Linearity

1. Averaging across space

yi(t) = σ(xi(t)), i = 1, . . . , N

〈xi〉(t) =
1

N

∑N

i=1
xi(t), 〈yi〉(t) =

1

N

∑N

i=1
yi(t)

2. Averaging across time (low-pass filtering)
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Reasons for Linearity – cont’d

3. Observation noise

• SNR estimates for our fMRI dataset (upper bound)

4. Sample scarcity

? What we have is a combined effect of 1-4
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Replication on a Spiking Model

The Izhikevic model:

v̇i = 0.04v2i + 5vi + 140− ui + I, if vi ≥ 30mV :

vi ← c

ui ← ui + d
u̇i = a(bvi − ui)

1. Averaging across space

2. Averaging across time (low-pass filtering)
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Summary

X The critical role of scale in computational modeling of neural dynamics

X The brain is certainly nonlinear at microscale, but apparently linear at the

macroscale at rest

X Potential reasons for (apparent) linearity: spatial averaging, temporal averaging,

observation noise, dimensionality

? Expanding the families of nonlinear models

? Extension of identified models for control

? Extensions to include time delays

? Are linear models accurate enough?
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Outlook

Task
P

er
ce

p
ti

o
n

A
tt

en
ti

o
n

D
ec

is
io

n

M
ak

in
g

R
es

t

Scale of

Abstraction

Microscale

Mesoscale

Macroscale

Problem

Identification

Analysis

Control

18/18



Thank You!

Joint work with

• Prof. Danielle Bassett

• Prof. George Pappas

• Dr. Max Bertolero

• Dr. Jeni Stiso

• Dr. Lorenzo Caciagli

• Dr. Eli Cornblath

• Dr. Xiosong He

• Dr. Arun Mahadevan

and available at

Is the brain macroscopically linear? A system identification of resting state dynamics

E. Nozari, M. A. Bertolero, J. Stiso, L. Caciagli, E. J. Cornblath, X. He, A. S.

Mahadevan, G. J. Pappas, D. S. Bassett

bioRxiv


