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Abstract

It is typically assumed that large networks of neurons exhibit a large repertoire of nonlinear

behaviours. Here we challenge this assumption by leveraging mathematical models derived

from measurements of local field potentials via intracranial electroencephalography and of

whole-brain blood-oxygen-level-dependent brain activity via functional magnetic resonance

imaging. We used state-of-the-art linear and nonlinear families of models to describe spon-

taneous resting-state activity of 700 participants in the Human Connectome Project and 122

participants in the Restoring Active Memory project. We found that linear autoregressive

models provide the best fit across both data types and three performance metrics: predictive

power, computational complexity and the extent of the residual dynamics unexplained by

the model. To explain this observation, we show that microscopic nonlinear dynamics can

be counteracted or masked by four factors associated with macroscopic dynamics: averag-

ing over space and over time, which are inherent to aggregated macroscopic brain activity,

and observation noise and limited data samples, which stem from technological limitations.

We therefore argue that easier-to-interpret linear models can faithfully describe macroscopic

brain dynamics during resting-state conditions.

One-sentence editorial summary (to appear right below the title of your Article on the journal’s website):

Linear mathematical models derived from measurements of local field potentials and of whole-

brain blood-oxygen-level-dependent neural activity predict resting-state neural dynamics at

least as accurately as nonlinear models.

Throughout the recent history of neuroscience,

computational models have been developed and used

ubiquitously in order to decompose the complex

neural mechanisms underlying cognition and behav-

ior.1–5 A dilemma that is inherent to computational

modeling, but particularly challenging in computa-

tional neuroscience, is the trade-off between (cross-

validated) accuracy and simplicity. Both finely de-

tailed models6 and broadly simplified ones7,8 have

their respective proponents. One of the many facets

of this trade-off pertains to the use of linear versus

nonlinear models. Nonlinearity of dynamics is in-
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evitable at the (micro) scale of individual neurons9

and their components,10 and has been demonstrated,

though less comprehensively, at the (meso) scale of

neuronal populations.11 Further supported by the-

oretical derivations12 and motivated by the much

larger repertoire of behaviors of nonlinear systems

(including chaos, multi-stability, and meta-stability),

an assumption has thus formed13–16 that accurate

models of neurodynamics at the macroscale (i.e., of

brain regions) must inevitably be nonlinear.

This assumption begs the question of whether non-

linear models will in fact perform better than linear

ones in accounting for the dynamics of neuroimaging

and neurophysiological data. Specifically, can non-

linear models explain neuroimaging or neurophysio-

logical data more accurately than linear ones? This

pragmatic modeling question, importantly, is differ-

ent from the general question of whether any signs

of “nonlinearity” can be found in neuroimaging time

series17–19 (see Discussion).

Few investigations20–22 have indeed sought to an-

swer the former question directly by comparing the

“fit” of linear and nonlinear models to neurophysio-

logical (electroencephalography, EEG, and intracra-

nial electroencephalography, iEEG) time series. How-

ever, even these few works are limited in that each

provides a single comparison between a linear and

a nonlinear family of models (linear autoregressive

(AR) vs. nonlinear manifold-based model in,20 linear

finite impulse response vs. nonlinear Volterra series

model in,21 and linear state space vs. nonlinear AR

with radial basis function nonlinearities in22), which

need not be the best representatives of linear and non-

linear models in general. While the compared linear

and nonlinear models were found to be as predictive

of EEG data in20 and iEEG data in,22 the results were

mixed in.21 Using scalp EEG data from patients with

epilepsy, this paper finds mostly linear dynamics well

within and outside of seizures, and mostly nonlinear

dynamics (though varying across patients) in the pe-

riods around seizure onsets and offsets. While limited

in their scope, these works beg for a deep and rigor-

ous data-driven investigation into the nonlinearity of

macroscopic brain dynamics, as pursued herein.

In the second part of the paper, we seek to answer

the question of why nonlinear models do not provide

more accurate predictions than linear ones despite

the fact that neurodynamics are inevitably nonlin-

ear at the microscale. Specifically, we numerically

demonstrate, using a simple sigmoidal nonlinearity,

that four properties of macroscopic brain dynam-

ics can fundamentally counteract or seemingly mask

nonlinear dynamics present at the microscale: aver-

aging over the activity of large populations of neurons

to obtain a single macroscopic time series (averag-

ing over space), natural low pass-filtering properties

of brain processes (averaging over time), observation

noise, and limited data samples. While the effects of

observation noise and limited data samples are tech-

nology dependent but otherwise independent from

the form of nonlinearity, the effects of spatiotempo-

ral averaging are fundamental to macroscopic neural

dynamics, and may depend on the functional form of

the microscale nonlinearity. We thus also verify and

demonstrate the effects of spatiotemporal averaging

using a data-driven and biophysically grounded spik-

ing neuron model.23 Together, our results provide

important evidence that linear models can be as de-

scriptive as nonlinear ones at the macroscale, as well

as a methodology based on system identification the-

ory to quantitatively define a “best” model of whole

brain dynamics given a set of specified costs.

Results

System identification and data-driven compu-

tational modeling. Among the diverse categories

of computational models used in neuroscience, we fo-

cus on ordinary differential equation (ODE) models

of the general form

ẋ(t) = f(x(t)) + e1(t), x(0) = x0 (1a)

y(t) = h(x(t)) + e2(t) (1b)

where y(t) is an n-dimensional time series of recorded

brain activity, in this case via resting state fMRI

(rsfMRI) or iEEG (rsiEEG), x(t) is anm-dimensional

time series of “internal” brain states, f and h are gen-

erally nonlinear vector fields, and e1(t) and e2(t) are

time series of process and measurement noise with ar-

bitrary statistics (Fig. 1a-b). It is possible, although

not necessary, that m = n. As with any differen-

tial equation, the description would not be complete

without the initial condition x(0) = x0, determining

the state of the brain at the initial recording time

t = 0. Note that no external input u(t) is considered

due to the resting state condition of the experiments.

Also, given that we can only sample y(t) in discrete
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time, we implement equation (1) by approximating

the derivative ẋ(t) as a first difference x(t)−x(t− 1)

(see Methods).

The model in equation (1) is “linear” if the func-

tions f and h are linear functions, i.e., matrix op-

erations of the form f(x) = Ax and h(x) = Cx

where Am×m and Cn×m are constant (or even time-

varying, but state-independent) matrices. Through-

out the field of computational neuroscience, numer-

ous models of the form in equation (1) or its dis-

cretization (see Methods) are constructed and used,

each with different functional forms and noise statis-

tics.6,7, 9, 12,15,22,24 The critical but fairly over-

looked quest of system identification25 is then to find

the “best” model, among all the available options,

against experimental data. This comparison, indeed,

depends on one’s measure of a model’s goodness of

fit.

A natural choice, referred to as the prediction error

(PE) approach, is based on how well a given model

can predict the future of the measured time series

from its current and past values (Fig. 1c). Note

that this prediction is precisely what an ODE such as

equation (1a) defines: it models the change ẋ(t), and

thus the immediate future, of the system’s state (and

therefore output) from its current state x(t). Since

the state x(t) is not directly available, it should in

turn be estimated from the current and past measure-

ments of the output y(t). Therefore, the PE approach

in its simplest form seeks to minimize, within any

given parametric or non-parametric family of mod-

els, the magnitude of the one-step ahead PE

ε(t) = y(t)− ŷ(t|t− 1) (2)

where ŷ(t|t − 1) is the Bayes-optimal, minimum

variance estimate of y(t) given all of the history

{y(0), . . . ,y(t − 1)} of y up to time t − 1 (Ref.25)

(Fig. 1c). Notably, the PE approach focuses on the

prediction accuracy of the time series itself, rather

than the prediction accuracy of functional connec-

tivity (Fig. 1d) or other statistics of the time se-

ries (cf. Discussion and Supplementary Fig. 1).

This approach can also be easily extended to multi-

step ahead predictions, cf.25 and Supplementary

Figs. 20,21.

The task of system identification does not end once

the parameters of a given family of models are fit to

the (training) data. The critical next step is to assess

the quality of the fit, particularly to data withheld

a
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



ẋ(t) = f(x(t)) + e1(t), x(t0) = x0

y(t) = h(x(t)) + e2(t)

b
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


y1(t)
y2(t)
...

yn(t)


 =




c d

Fig. 1 | Prediction error method for system iden-

tification. (a) The general category of computational

models M studied in this work, represented by an ODE

describing the resting state evolution of internal states

x(t) and an output model that maps internal states to

fMRI/iEEG time series y(t), as shown for fMRI in panel

(b). A total of nfMRI = 116 regions are used throughout

(see Methods) for fMRI, while 13 ≤ niEEG ≤ 175 chan-

nels are used for each iEEG patient. (c) A schematic

representation of the prediction error system identifica-

tion framework used in this work. At each time t, all

of {y(0), . . . ,y(t− 1)} is used to predict y(t), simultane-

ously across all channels, which is denoted for simplicity

by ŷ(t|t − 1). ȳi denotes the temporal average of yi(t)

for each channel i. This estimate should not be confused

with estimates of functional connectivity (FC). (d) FC

measures the covariation between pairs of channels or,

equivalently, how well each yi(t) (y1(t) in the figure) can

be predicted from each other yj(t) (y2(t) in the figure),

at the same time t.
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during the training (cross-validation). In the PE ap-

proach, the two most widely used measures are the

variance and the whiteness of the PE (Ref.25), where

the former is often measured by

R2
i = 1−

∑
t εi(t)

2

∑
t(yi(t)− ȳi)2

(3)

and the latter is often assessed via a χ2 test of white-

ness (see Methods), for each channel i = 1, . . . , n.

In equation (3), ε(t) is the same one-step-ahead pre-

diction error in equation (2), and ȳi is the temporal

average of yi(t) (often equal to zero due to mean cen-

tering) and corresponds to a constant predictor which

always predicts y(t) equal to its average ȳ. There-

fore, it is clear that R2
i is always less than or equal

to 1 but can be negative. A value of R2
i = 1 indicates

a perfect model (for channel/region i), R2
i = 0 indi-

cates a model as good as the constant predictor, and

R2
i < 0 indicates a model worse than the constant

predictor.

Linear models provide maximum prediction

accuracy with minimum computational com-

plexity. In this work, we fit and compare several

families of linear and nonlinear models, as described

below (see Methods for details). We fit each family of

models to the data for each participant, thereby find-

ing the optimal model at the global or local level (if

the corresponding optimization algorithm is convex

or non-convex, respectively). We then compare the

resulting best models in each family in terms of their

cross-validated fit to held-out data of the same par-

ticipant (see Methods). The most important ground

for comparison is the accuracy of their fit, measured

by R2
i according to equation (3).

First, consider the results for the fMRI data

(Fig. 2a-b). While we describe the results obtained

using a relatively coarse parcellation here, similar

results also hold for finely-parcellated and unpar-

cellated data (cf. Supplementary Figs. 12-14).

Overall, linear models that directly fit the BOLD

time series without (de)convolving with an hemody-

namic response function (HRF), either with dense

or sparse effective connectivity, and with or without

higher-order auto-regressive lags, achieve the high-

est R2. Among nonlinear models, the manifold-based

locally-linear model achieves a comparable R2. Yet,

upon closer inspection of this model, we observe that

its window size (which is chosen optimally, see Meth-

ods and Supplementary Fig. 7) is very large, ef-

fectively making it a globally-linear model. The lack

of nonlinearity becomes even clearer when examin-

ing the pairwise models. Here, we see that a simple

linear model performs as well as the minimum mean

squared error (MMSE) model, or even slightly bet-

ter (Fig. 2b, right panel) due to the numerical er-

rors of distribution estimation. We thus infer that

the former achieves the highest prediction accuracy

achievable by any generally nonlinear model, albeit

for pairwise prediction.

The second ground for comparison is the white-

ness of model residuals, also in held-out data, which

indicates that all the dynamics in the data are cap-

tured by the model and have not leaked into the

residuals (Fig. 2c-d). Here, linear models also score

higher than nonlinear models, with autoregressive

(AR) models clearly outperforming others. How-

ever, it is noteworthy that the null hypothesis of

whiteness is rejected for the residuals of all methods

(Q/Qthr > 1), suggesting the presence of unexplained

variance left by all models. Generally, the number of

lags and sparsity patterns have little effect on the

prediction accuracy of linear AR models for rsfMRI

data, a positive but weak effect on the whiteness of

the residual, and a negative effect on the computa-

tional complexity (Supplementary Fig. 2). Simi-

lar to the comparison of R2 values, the only nonlin-

ear model whose whiteness of residuals is comparable

to the linear ones is the manifold-based locally-linear

model which, as explained above, is effectively linear

at the global scale. Also as before, the pairwise linear

models achieve a degree of whiteness that is almost

identical to the pairwise MMSE estimator, ensuring

their optimality among all linear and nonlinear pair-

wise predictors.

Third and finally, we can compare the models by

considering the total time that it takes for their learn-

ing and prediction (Fig. 2e). When comparing the

most efficient linear and nonlinear models, we find

that linear models take at least one order of magni-

tude less time to fit than nonlinear models, as ex-

pected. However, linear methods can also be ex-

tremely complex to learn; linear models with states

at the neural level (‘Linear w/ HRF’) require the

most time to learn due to their high flexibility. No-

tably, this additional complexity of the ‘Linear w/

HRF’ or nonlinear methods is not counterbalanced by

any benefits in their accuracy or whiteness of residu-
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a
Brain-wise Pairwise

b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

e f

Fig. 2 | Linear vs. nonlinear models of rsfMRI activity. (a) The distribution of cross-validated regional R2
i ,

combined across all 116 regions and 700 participants, for linear (green) and nonlinear (yellow) models. The gray box

corresponds to the zero model used as a baseline (see Methods for an explanation of each model). Negative values

of R2 indicate that models have a worse prediction performance than a constant predictor which always predicts the

next value of a signal to be equal to the signal’s mean. Note the higher accuracy of the best linear model (‘VAR-3

(sparse)’) compared to all nonlinear ones. (b) The p-value of one-sided Wilcoxon signed rank test performed between

all pairs of brain-wise distributions (left) and all pairs of pairwise distributions (right) of R2 in panel (a). Warm

(cold) colors indicate that the distribution labelled on the row has significantly larger (smaller) samples than the

distribution labelled on the column. Gray hatches indicate non-significant differences at an α = 0.05 with BH-FDR

correction for multiple comparisons. (c, d) Similar to panels (a, b) but for the statistic Q of the multivariate test of

whiteness relative to its rejection threshold Qthr (cf. Methods). Smaller Q/Qthr indicates whiter (better) residuals,

with Q/Qthr ≤ 1 required for the null hypothesis of whiteness not to be rejected. (e, f) Similar to panels (a, b)

except for the time that it took for the learning and out of sample prediction of each model to run, per participant

per cross validation (see Methods). In all box plots, the center line, box limits, and whiskers represent the median,

upper and lower quartiles, and the smallest and largest samples, respectively. VAR = vector autoregressive, HRF

= hemodynamic response function, NMM = neural mass model, DNN = deep neural network, MLP = multi-layer

perceptron, CNN = convolutional neural network, LSTM = long short-term memory, IIR = infinite impulse response,

FIR = finite impulse response, MMSE = minimum mean squared error.
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als, making the simplest linear models the preferred

choice across all measures.

Next, we perform the same comparisons between

linear and nonlinear models, but now on the basis

of their fit to resting state iEEG field potential dy-

namics (Fig. 3). Similar to rsfMRI data, linear AR

models provide the best fit to the data, in terms

of both the magnitude and whiteness of their cross-

validated prediction error. These models also have

lower computational complexity than nonlinear ones,

with about an order of magnitude (or higher) advan-

tage in computation time.

Alongside these similarities between the rsfMRI

and rsiEEG data, two major distinctions are notable.

First, the R2 values are generally much higher for

iEEG, as evidenced by the R2 distributions of the

zero model between the two cases. This difference

is due to the fact that the iEEG time series has a

much higher sampling rate and is therefore smoother.

As a result, even predicting each sample equal to its

previous sample (i.e., the zero model) has a median

accuracy of more than 97% (see Supplementary

Figs. 17-19 for a more detailed assessment of the ef-

fects of sampling rate on models’ R2). This fact only

highlights the importance of the zero model; without

it, the R2 of all models might have seemed satisfacto-

rily high. In comparison to the zero model, however,

it becomes clear that a simple 1-lag linear model, for

example, has in fact a very low predictive power.

The second major distinction between the two

modalities is the amount of history and temporal de-

pendency within them. fMRI data is almost Marko-

vian, so that y(t − 1) contains almost all the infor-

mation available for the prediction of y(t). Little

information is also contained in y(t− 2), but almost

no information is contained in time points further in

the past (Fig. 2a). When considering iEEG data,

in contrast, increasing the number of autoregressive

lags up to about 100 still improves the R2, although

the exact optimal number of lags varies between data

segments. In this comparison, it is also important to

take into account the vast difference in the sampling

frequencies between the modalities, where 2 lags in

the fMRI dataset amounts to 1.44 seconds while 100

lags of the iEEG data sums to only 0.2 seconds. This

greater richness of iEEG dynamics from a model-

ing perspective is also responsible, at least in part,

for the markedly lower whiteness of residuals of all

model families with respect to fMRI (see Fig. 3c vs.

Fig. 2c). This greater richness of iEEG is also con-

sistent with, though not necessarily a direct conse-

quence of, the fact that iEEG data reflects neural

signals more directly than fMRI.

The linearizing effects of macroscopic neuro-

dynamics and neuroimaging explain the ob-

served linearity. The above results pose the nat-

ural question of why nonlinear models were not able

to capture the dynamics in rs-fMRI/rs-iEEG data be-

yond linear ones, even though microscopic neuronal

dynamics are fundamentally nonlinear. Here, we fo-

cus on four properties of macroscopic neurodynamics

and neuroimaging, and show that, in principle, they

either fundamentally counteract or apparently mask

nonlinearities. Due to its unique position in neural

modeling,11,12 we will use the sigmoidal nonlinear-

ity to illustrate these effects; we note, however, that

the effects are otherwise applicable to other forms of

nonlinearity.

The first property that can fundamentally coun-

teract microscopic nonlinearities is spatial averaging.

Imaging tools that are capable of measuring macro-

scopic brain dynamics detect a signal that reflects an

average over the activity of hundreds, thousands, or

even millions of neurons. This spatial averaging can

weaken, rather quickly, the nonlinear relationships in

the dynamics of individual units (neurons or small-

scale neuronal populations) as long as the units are

not perfectly correlated, and can completely nullify

nonlinearities when correlations decay with distance

(Fig. 4a-c). Note that this distance can be the phys-

ical distance between the units, as assumed here, or

in any relevant space such as that of neural codes and

stimulus preference. The key factor in the lineariz-

ing effect of spatial averaging is the decay of pairwise

correlations between neurons so that not all pairs of

neurons in a region are highly correlated (a state of

blanket global synchrony).

This linearizing effect of spatial averaging is similar

to, but different from, stochastic linearization (a.k.a.,

quasi-linearization).26 While the latter approximates

the relationship y = σ(x) using its expected slope

E[∂y/∂x], spatial averaging as discussed here can re-

sult in a relationship that is truly linear. Also, the

same effect can be observed when averaging other

forms of nonlinearity than the sigmoid. Extended

Data Fig. 2 shows the effect of spatial averaging on

spiking neurons evolving according to the Izhikevic

6



a b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

e f

Fig. 3 | Linear versus nonlinear models of rsiEEG activity. Panels and acronyms parallel those in Fig. 2. (a)

The distribution of cross-validated regional R2
i , combined across all electrodes (the number of which varies among

participants) and all the recording sessions of the 122 participants (sample size = 776484). Linear and nonlinear

methods are depicted by green and yellow boxes, respectively (see Methods for an explanation of each model). Unlike

data presented in Fig. 2, pairwise linear or pairwise MMSE models are not included due to the observation that

between-electrode connections decrease the cross-validated accuracy of the top model (cf. the 4th and 5th box plots).

In contrast, including scalar autoregressive lags is highly beneficial in iEEG, whereas it is not so in rsfMRI. Therefore,

the MMSE model here is scalar, conditioning on the past lags of each region itself. The lower whisker of the box plots

are trimmed to allow for better illustration of the interquartile ranges. (b) The p-value of the one-sided Wilcoxon

signed rank test performed between all pairs of distributions of R2 in panel (a). Warm (cold) colors indicate that the

distribution labelled on the row is significantly larger (smaller) than the distribution labelled on the column. Gray

hatches indicate non-significant differences evaluated at α = 0.05 with BH-FDR correction for multiple comparisons.

(c, d) Similar to panels (a, b) but for statistic Q of the multivariate test of whiteness relative to its rejection

threshold Qthr (cf. Methods). Smaller Q/Qthr indicates whiter (better) residuals, with Q/Qthr ≤ 1 required for the

null hypothesis of whiteness not to be rejected. (e, f) Similar to panels (a, b) but for the time that it took for

the learning and out-of-sample-prediction of each model. In all box plots, the center line, box limits, and whiskers

represent the median, upper and lower quartiles, and the smallest and largest samples, respectively.
7



model.23 This model has completely different non-

linearities than the sigmoid (polynomial and discon-

tinuous) and shows a robust nonlinear phenomenon

(limit cycle). Although more than a few (but still

no more than 100-104) neurons are required, spatial

averaging still dissolves the nonlinear aspects of the

dynamics, while mostly sparing the linear ones.

The second property capable of completely coun-

teracting microscale nonlinearities is temporal aver-

aging. Macroscopic neural dynamics are often ob-

served, or even defined, through signals that are low-

pass filtered versions of micro- and meso-scale vari-

ables. The most notable of these is perhaps the

BOLD signal captured by fMRI, which can be seen

as an observation of neural activity passed through

the low-pass filter of the HRF. Similarly, although

to a lesser extent, the local field potentials cap-

tured by iEEG most strongly reflect the aggregate

pyramidal post-synaptic currents,27 which are them-

selves low-pass filtered observations of spiking activ-

ity through synaptic transmission and neuronal mem-

branes’ resistive-capacitive circuit.28 The effect of

low-pass filtering, in essence, is temporal averaging,

which impacts nonlinearities in a manner that is sim-

ilar to that of spatial averaging (Fig. 4e-f). The par-

allel of spatial correlations here is the autocorrelation

function or its frequency-domain representation, the

power spectral density (PSD). Autocorrelation repre-

sents how the correlation between adjacent samples

of a signal decay with the temporal distance between

those samples. As expected, the smaller the band-

width of the signal (i.e., the faster their PSD decays

with frequency before low-pass filtering), the weaker

the linearizing effect of low-pass filtering. As a result,

stronger low-pass filtering would also be required to

completely nullify nonlinear relationships in signals

with narrower bandwidth (Fig. 4d). The lineariz-

ing effect of temporal averaging also holds for de-

terministic dynamics, albeit with the resulting linear

dynamics (post averaging) also being deterministic

(Extended Data Fig. 3).

A third property that can counteract or mask non-

linearities is noise. Although both process noise and

observation (scanner or electrode) noise may have lin-

earizing effects, here we focus only on the latter. As

with any neuroimaging time series, various sources of

observation noise can affect the fMRI/iEEG time se-

ries29,30 and, in turn, “blur” nonlinear relationships,

even if they exist between the underlying noise-free

BOLD/LFP time series (Fig. 4g-h). In fact, when

the power of noise reaches the power of the signal (sig-

nal to noise ration, SNR,∼ 1), it can completely mask

a nonlinear relationship in the absence of any spatial

or temporal averaging. In reality, however, the lin-

earizing effect of observation noise can combine with

spatiotemporal averaging, making the 2 ≲ SNR ≲
14 that we have in rsfMRI data (Supplementary

Fig. 4) potentially more than enough to mask any

remaining nonlinearities post-spatiotemporal averag-

ing. Ironically, the use of linear filtering to “clean

the data” is more likely to further linearize the dy-

namics of the time series due to temporal averaging

effects discussed above, instead of recovering nonlin-

earities lost due to noise (Supplementary Note 1).

Nonlinear post-processing steps, on the other hand,

may leave their own potentially nonlinear signatures

in the data, but such signatures should not be con-

fused with true nonlinear relationships in the origi-

nal BOLD/LFP signal. Further, although we let the

noise in Fig. 4g-h be independent of the signal, as

is typically the case for measurement noise, this lin-

earizing effect would still hold if the noise is linearly

dependent on the signal.

The fourth and final property that we will discuss is

the number of samples required for detecting nonlin-

ear relationships in large dimensions. Let us assume,

despite our discussion so far, that a perfect noise-free

nonlinear relationship exists between n-dimensional

fMRI or iEEG time series and a noise-free sensor

can capture it perfectly. When only N ∼ 1000 data

points are available, we find that the manifold-based

predictor – which was our most predictive nonlinear

method both for fMRI and iEEG – is still unable to

predict the nonlinear relationship better than a lin-

ear model in n ∼ 40 dimensions or higher (Fig. 4i-

j). This loss in the predictive power of this nonlinear

predictor with increasing dimensionality can be easily

seen from the fact that the smallest mesh, having two

points per dimension, requires an exponentially large

N = 2n data points. Indeed, incorporating structural

bias into the learning algorithm can arbitrarily re-

duce this sample complexity if the incorporated bias

is consistent with the underlying data31 (e.g., if one

looks for relationships of the form y = σ(x1+· · ·+xn)
in Fig. 4i-j). However, using predictors with struc-

tural bias can also be arbitrarily misleading if their

form of nonlinearity is not consistent with the given

data,32 which is one potential reason for the lower
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Fig. 4 | The linearizing properties of macroscopic brain dynamics and of neuroimaging measurements.

(a) The effect of spatial averaging. For each panel, Nave pairs of signals xi(t), t = 1, . . . , 2000 were randomly and

independently generated, yi(t) = tanh(xi(t)) was calculated, and their averages ⟨xi⟩ and ⟨yi⟩ were computed. The

quantities ⟨xi⟩ and ⟨yi⟩ possess a linear relationship as Nave ∼ 5 or higher. (b) The cross-validated R2 of the

optimal nonlinear (MMSE) and linear predictors for the ⟨xi⟩-⟨yi⟩ relationships in panel (a). (c) The effect of spatial

correlation on spatial averaging. Here, we assign (xi(t), yi(t)) pairs to spatial locations in a unit sphere (left) and make

each xi(t) and xj(t) correlated in a manner that depends on their spatial distance (middle). The difference between

nonlinear and linear R2 always decays with Nave and vanishes if the correlation decays, even slowly, with distance

(right). (d) The effect of temporal averaging. One pair of x(t), y(t) = tanh(x(t)) is generated, independently over

time, and passed through a Gaussian low-pass filter (LPF) with a cutoff frequency fcutoff that is normalized to the

Nyquist frequency; thus, fcutoff = 1 means no low-pass filtering. (e) Same as panel (b) but for the LPF{x}-LPF{y}
relationships in panel (d). (f) Similar to panel (c) but for temporal averaging. We varied the PSD decay rate of x(t)

(left) and then low-pass filtered x(t) and y(t) = tanh(x(t)) as in panel (d). The difference between the optimal linear

and nonlinear R2 eventually vanishes as fcutoff decreases, but it happens at smaller fcutoff for larger decay rates p.

(g) The effect of observation signal to noise ration (SNR). The quantities x(t) and y(t) = tanh(x(t)) are as in panel

(d) and their additive noises are generated independently. (h) Same as panel (e) but for the (x+ noise)-(y + noise)

relationships shown in panel (g). (i) The effect of dimensionality. The values x1(t), . . . , xn(t) are generated as in

panel (a) but here y(t) = tanh(x1(t) + · · ·+ xn(t)) generates a one-dimensional nonlinearity in n+1 dimensions. No

noise is included; no spatial or temporal averaging is applied. (j) Right: similar to panels (b, e, h) except that a

manifold-based (locally-linear) nonlinear predictor is used since the conditional density estimation required for MMSE

loses accuracy in high dimensions with fixed number of data points (see Methods). Left: the optimal window size of

the manifold-based predictor as a function of dimension n. As n increases, the locally-linear predictor automatically

chooses larger windows to be able to make reliable predictions, thereby effectively degrading to a globally linear

predictor (see also Supplementary Fig. 1). In all box plots, the center point, box limits, and whiskers represent

the median, upper and lower quartiles, and the smallest and largest samples, respectively. Error bars in panels (c, f,

j) represent one standard error of the mean. 9



performance of most nonlinear methods in Figs. 2,3.

This discussion also makes it clear that the inability

of our nonlinear system identification methods to out-

perform linear ones in Figs. 2,3 over the entire brain

is not a proof that no nonlinear method can possibly

do so. We can, nevertheless, be certain about this for

pairwise or scalar AR models (for fMRI and iEEG,

respectively) where the optimal MMSE predictor was

computable and performed as well as a linear one.

In conclusion, the process of averaging over space,

the process of averaging over time, the existence of

observation noise, and the acquisition of limited data

are each characteristic of macroscale brain dynamics

or neuroimaging measurements, and can transform

microscopically nonlinear dynamics into macroscop-

ically linear ones. In reality, their effects are likely

all combined, rendering the optimality of linear mod-

els in our comparisons not as unexpected as it might

originally seem. This linearity has major implications

for computational neuroscience, as we discuss next.

Discussion

Summary. In this work, we set out to test the hy-

pothesis that macroscopic neural dynamics are non-

linear, and using linear models for them results in an

inevitable loss of accuracy in exchange for simplic-

ity. We thus compared linear and nonlinear mod-

els in terms of how well they can predict rsfMRI

and rsiEEG data in a cross-validated prediction er-

ror (PE) system identification framework, where the

quality of each model’s fit was assessed by the vari-

ance and whiteness of its PE (residual). We found

that linear models, and AR models in particular,

achieve the lowest PE variance and highest PE white-

ness, outperforming neural mass models, deep neu-

ral networks, manifold-based models, and the opti-

mal MMSE predictors. In the case of fMRI data, we

further verified that the higher predictive power of

AR models holds not only in aggregate, but also in a

strong majority of individual regions across the brain

(Extended Data Fig. 4a). Interestingly, the spa-

tial (regional) distribution of the R2 of the best model

also shows significant differences across established

cortical functional networks, a remarkably lower pre-

dictability of subcortical regions relative to cortical

ones, and a close alignment between most methods

(all but ‘Linear w/ HRF’) (Extended Data Fig.

4b-d). This distinction in predictability highlights

significant differences in how spatio-temporally cor-

related the fMRI time series of different regions are,

while the mechanistic physiological and technological

reasons behind this distinction remains a warranted

avenue for future research.

To further understand the possible causes of the

optimality of linear models, we analyzed the effects

of common elements of macroscopic neural dynam-

ics: averaging over space and time, observation noise,

and limited data samples. We showed that they can

each counteract or mask the nonlinearities present at

smaller scales. These linearizing effects will add up

when combined, suggesting that linear models pro-

vide a useful choice for macroscopic neural dynamics

at rest; of course, in certain experimental conditions,

rigorous system identification methods might still un-

cover nonlinear dynamics in future studies.

The observed optimality of linear models for the

resting state is accompanied by both challenges and

opportunities. Having a linear model for neuroscience

investigations is computationally ideal, given the ex-

tent to which the behavior of linear systems and their

response to stimuli are mapped out. Nevertheless,

to what extent these linearly-interacting macroscopic

signals are informative of, and have a causal influ-

ence on, the underlying microscopic activity, remains

unclear and represents an invaluable area for future

investigation. Our observations also warrant the ex-

ploration and development of both linear and nonlin-

ear models of macroscopic neural dynamics beyond

those tested here and available in the literature.

Connections to Prior Literature. It is impor-

tant to distinguish the pragmatic, modeling question

that drove our analysis from the rather philosophical

question of whether any signs of “nonlinearity” can be

found in neuroimaging time series. The latter ques-

tion has been extensively investigated,17–19,33 and of-

ten uses determinism or chaos as a proxy for nonlin-

earity. To answer our distinct modeling question, we

used a system identification approach that allows for

a direct, side-by-side comparison of linear and nonlin-

ear models. In contrast, the aforementioned studies

often resort to indirect, surrogate-based comparisons

that rely on strong (and debated) assumptions about

the constructed surrogates.34 Also related to, but dif-

ferent from, our work are studies that seek to deter-

mine whether the end-to-end input-output mapping
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between stimuli and neuroimaging signals (EEG or

BOLD) (Ref.35,36) or between functional connectiv-

ity and individual phenotypes37,38 is (highly) nonlin-

ear. Our focus here, however, is on the nonlinearity of

the internal network dynamics of the brain. Finally,

past studies have also examined the performance of

linear models per se in fitting neuroimaging time se-

ries (e.g., Ref.39), but without a comparison to non-

linear models.

Our analysis of the linearizing effect of spatial cor-

relation is also related to the large body of work in-

vestigating the effect of spatial correlations on the

information content and decoding accuracy of neural

population codes (see, e.g., Ref.40). As expected, the

stronger the correlation between neurons, the weaker

the linearizing effects of spatial averaging. However,

nonlinearities can in principle have two opposing ef-

fects on the neural code. On the one hand, non-

linearities can substantially increase the computa-

tional complexity and expressivity of a neural net-

work, making correlations beneficial for the neuronal

encoding. On the other hand, if the expressivity is

too high, the decodability of one neural population

by another may decrease, potentially making the lin-

earizing effects of low correlations favorable. Deter-

mining which effect dominates, and whether an op-

timal point exists at the levels of neural correlation

observed, remain areas of future research in vivo.

Results and Implications. The implications of the

linearity of brain dynamics are far-reaching. Linear

systems fundamentally have a more limited repertoire

of dynamic behaviors than nonlinear ones, excluding

the possibility of multi-stability, chaos, limit cycles,

or cross-frequency coupling, to name a few.41 When

driven by noise, linear systems act as linear filters

that shape the power spectrum of their output (here,

fMRI or iEEG time series) through their frequency

response, essentially amplifying the frequency con-

tent near their resonance frequencies and dampening

it elsewhere. Importantly, this effect of shaping the

power spectrum of linear systems acts independently

over different frequencies; in contrast, nonlinear sys-

tems can drive arbitrarily complex cross-frequency in-

teractions.42

The linearity of brain dynamics has even greater

implications for network control.43,44 The design and

analysis of optimal, robust, adaptive, and many other

forms of control are much better understood in the

context of linear systems than nonlinear ones. This

contrast in tractability only grows for large-scale sys-

tems like the brain, thus motivating the recent surge

of interest and advancements in using linear control

theory in neuroscience.45–47 Nonlinear models also

present additional challenges beyond network control,

including analytical and mechanistic understanding

of their functionality, obtaining provable guarantees

on their performance, and even hardware require-

ments for their use in chronic implantable devices.

In this context, the present work shows that the fa-

vorable tractability and simplicity of linear models

do not necessarily come at the often-presumed cost

of model inaccuracy, and also provide the necessary

tools for identifying the most accurate models for any

datasets of interest.

In the analysis of fMRI data, we found that incor-

porating an HRF component in the model, instead of

modeling the dynamics directly at the BOLD level,

results in a loss of accuracy in linear models (see ‘Lin-

ear (sparse)’ vs. ‘Linear w/ HRF’), and is almost inef-

fective in nonlinear models (see ‘NMM’ vs. ‘NMM w/

HRF’). It was also in light of this observation that we

did not include an HRF component in the majority of

our models, such as the DNN or the manifold-based

models. This lack of advantage of an explicit HRF

component (within the specific context of modeling

resting state fMRI dynamics using ODEs) is under-

standable on a number of grounds. First, in order

to include an HRF component in the model, either

one should learn the HRF from the data, such as in

our ‘linear w/ HRF’ model, which will create marked

model flexibility and therefore increase the likelihood

of over-fitting; or, one should use a typical HRF, such

as in our ‘NMM w/ HRF’ model, which is a source

for additional error. Second, by including the HRF

in the model, we ultimately seek to recover neural

information that is lost through the HRF. This task

is difficult, if not impossible, without a high signal-

to-noise ratio as well as more accurate HRF models

than those currently available. Finally, a linear auto-

regressive model can automatically capture a linear

approximation of the HRF dynamics,48 precisely as

present in the observed time series. Ultimately, our

results encourage a side-by-side comparison of models

with and without the inclusion of an HRF component

in order to assess the costs and benefits of such in-

clusion for any datasets of interest.

A very similar argument also applies to including
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colored noise in the model, both for fMRI and iEEG.

Even though the so-called “noise floor” in neural sig-

nals, over which neural oscillations are detected,49

has a clear power-law (1/f) PSD, its decay can be

well modeled by white noise passing through a linear

filter. This property of the 1/f noise is in fact why

the AR models, which assume a white noise signal

e(t), have prediction errors that are maximally white.

This latter fact can be directly seen from Figs. 2c,3c,

when noting that any model’s prediction errors are,

by construction, the model’s estimate of the noise e(t)

(Ref.25).

In addition to considering linear and nonlinear

models, we wish to underscore the importance of the

zero model. It is not uncommon in the modeling lit-

erature to assess the quality of a fitted model per se,

without any grounds for comparison. For instance,

our ‘DNN (MLP)’ model for fMRI had a median R2

of about 14% and for some participants it had a me-

dian R2 (among all regions) of over 50%. Even more

notably, the ‘DNN (MLP)’ model for iEEG had a me-

dian R2 of over 97%. Without any comparisons, these

numbers may suggest that the ‘DNN (MLP)’ models

are quite accurate; yet, as seen in Figs. 2b,3b, the

predictive accuracy of these models are in fact lower

than the zero model in fMRI, and indistinguishable

from it in iEEG. The act of comparing to a baseline

model is therefore an essential step in the assessment

of any model’s goodness-of-fit.

We restricted our analyses here in the main text

to certain spatiotemporal resolutions for both fMRI

(a coarse parcellation) and iEEG (a high sampling

rate), naturally raising the question of how robust our

findings are to our choices of resolutions. As shown

in Supplementary Figs. 12-19, our main finding

(higher predictive power of linear autoregressive mod-

els over all other model families) holds across all res-

olutions tested. We do, however, observe certain dif-

ferences between resolutions. In iEEG data, we ob-

serve that using lower sampling rates (and therefore

longer time intervals) increases the benefit of model-

ing network interactions, even whilst lowering the R2

values across all models. In fMRI data, we interest-

ingly see that as we move towards more fine-grained

parcellations and ultimately unparcellated data, (i)

the simpler ‘Linear (sparse)’ model with less parame-

ters gains advantage over the more populated ‘VAR-3

(sparse)’, and (ii) the overall R2 values of all mod-

els is reduced, potentially due to the improvement

in signal-to-noise ratio resulting from averaging in

coarser parcellations.

Methodological Considerations. Despite the

solid theoretical foundations of the PE method for

system identification, our results may still beg a prac-

tical question: would the same system identification

and side-by-side comparison procedure be able to

identify nonlinear dynamics, should they actually ex-

ist in the time series? A direct answer to this ques-

tion can be given, e.g., by applying the same proce-

dure to simulated time series generated from a non-

linear model whose ground truth functional form we

know. The result of such an analysis is provided di-

rectly in Extended Data Figs. 2,3, but also in-

directly in Fig. 4. Note that in the latter, we com-

pared the cross-validated predictive power of linear

and (MMSE or manifold-based) nonlinear models in

identifying the sigmoidal relationship y = σ(x) and

its variants, after averaging or noise addition. This

relationship can be equally viewed as a nonlinear dy-

namical system ẋ = σ(x), the nonlinearity of which

was only identified until counteracted or masked by

the four macroscopic effects we discussed therein.

In Supplementary Fig. 9, we take this valida-

tion one step further and compare the ‘DNN (MLP)’

model with linear autoregressive and subspace models

while also tuning their respective hyper-parameters

using simulated data from the Izhikevic model and

the same stochastic gradient descent (SGD) algo-

rithm used for hyper-parameter tuning in the main

results. The resulting higher predictive performance

of the ‘DNN (MLP)’ model is another testament to

the validity of the end-to-end process we used for

model training and comparison. Note, also, that the

amount of improvement that nonlinear models can of-

fer over linear ones can vary widely based on the true

underlying dynamics and the ability of either model

to capture them. In Supplementary Fig. 10, e.g.,

we show a similar side-by-side comparison between

the ‘DNN (MLP)’ and ‘Linear (dense)’ models on one

of the simplest nonlinear systems exhibiting a nonlin-

ear behavior (chaos in this case). Despite the extreme

simplicity of the true underlying model, the neural

network can achieve near-perfect accuracy with only

one hidden layer and 10 hidden units while the linear

model can achieve about 50% R2. Finally, we also

trained both the parameters and hyper-parameters

of the ‘DNN (MLP)’ model on fMRI data while re-
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placing its ReLU activation functions with linear ones

using the same codes and routines used for the actual

‘DNN (MLP)’ model. As seen from Supplementary

Fig. 11, the resulting model achieves indistinguish-

able R2 distributions with the (theoretically equiv-

alent) ‘Linear (dense)’ model, except for implemen-

tation differences between our hard-coded linear re-

gression solver and that provided by the MATLAB’s

trainNetwork function.

As for the comparison of linear and nonlinear mod-

els, one might expect nonlinear models to perform at

least as well as linear ones, but not worse, given that

the space of nonlinear models includes all linear mod-

els as a special case. In our comparison, however,

we saw that most of our nonlinear methods actu-

ally have a worse prediction performance than linear

ones. This behavior can be understood in light of at

least two facts. First, many nonlinear models, such

as neural mass models, do not include linear mod-

els as a special case and have structural biases that

can be a source of error if not consistent with the

data.32 Second, even nonlinear models that do not

have structural biases and/or contain linear models

as a special case, such as DNN, MMSE or manifold-

based models, still have a marked flexibility relative

to a linear model. This immense flexibility makes the

training of these models and finding their global op-

timum challenging. As a result, training algorithms

are quite likely to return suboptimal models which,

in this case, show worse accuracy and generalization

than their linear special cases.

A further noteworthy aspect of our study specifi-

cally, and the prediction error framework more gen-

erally, is the focus on fitting the time series rather

than its derivative statistics, such as the functional

connectivity (FC) (Ref.50–52) or power spectral den-

sity.53 While the choice of one approach over the

other ultimately depends upon the anticipated use

of the learned model, it is important to note that

the mapping from dynamical systems to FC (or any

other such statistic) is not a one-to-one mapping.54

In fact, linear systems of the form y(t) − y(t − 1) =

Wy(t− 1)+e(t) with completely different W matri-

ces can give rise to almost identical FC matrices (see

Extended Data Fig. 1). Therefore, when consid-

ering the accuracy of a general purpose model of the

brain, the time series contains the maximum amount

of information and thus provides the best target for

model fitting.

One modeling approach that we did not employ in

this study is dynamic causal modeling (DCM, Ref.55).

The reason is that neither of the current variants of

DCM are feasible, due to their computational com-

plexity at the scale of our analysis: whole brain fMRI

with n = 116 parcellations or large-scale iEEG with

up to 175 and a median of 98 electrodes. The most ef-

ficient variant, spectral DCM for fMRI, for instance,

is applicable to ∼ 30-40 nodes, whereas stochastic

DCM (the most relevant to our study) is only applica-

ble to much smaller systems. However, in light of our

results thus far, the great computational complexity

of the DCM approach, and thus its potential for over-

fitting, we would not expect its cross-validated R2 to

reach that of a linear model, although this compari-

son remains unknown at the present.

In this work, we demonstrated four properties of

macroscopic neurodynamics that can counteract or

mask microscopic nonlinearity. In doing so, we pur-

posefully kept the discussion at a conceptual level and

generally abstained from tying it to specific micro-

or mesoscopic neural models, as doing so would re-

quire building on assumptions that our study explic-

itly seeks to avoid. For instance, it is currently un-

clear whether, and to what extent, the dynamics of

the mesoscopic local field potentials or population fir-

ing rates that seem to be the main neural drivers of

fMRI or iEEG are nonlinear and, if so, what the pre-

cise form of their nonlinearity is at each brain region.

A warranted avenue for future research would be the

re-analysis of the effects of spatial and temporal aver-

aging, observation noise, and limited data samples on

precise, data-driven models of mesoscopic brain dy-

namics, should they possess nonlinear interactions.

Limitations. Finally, we would like to highlight

some of the limitations of the present study. First,

it is important to note that the space of all nonlin-

ear models in tens to hundreds of dimensions is in-

tractably large, and the fact that our tested nonlinear

models did not outperform linear ones is not a proof

that no nonlinear model may ever do so.

In particular, some nonlinear models (e.g., ‘DNN

(MLP)’) have the capacity to implement the ‘Zero’ or

even linear AR models as a special case (e.g., by set-

ting the output weights of the ‘DNN (MLP)’ model

to zero to replicate the ‘Zero’ model or to adjust

its weights and biases so that all ReLU activation

functions operate in their linear range to replicate
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the ‘Linear (dense)’ model). Therefore, despite our

best efforts in training these models and validating

our training algorithms in alternative simulated set-

tings (cf. Supplementary Figs. 7-9), the fact that

their predictive power does not reach the performance

of the zero/linear models in some datasets suggests

suboptimal parameter and/or hyperparameter fitting

due, e.g., to local minima or a lack of enough train-

ing data. Therefore, we should highlight that our

achieved predictive power of those nonlinear meth-

ods do not necessarily reflect their best performance

and it is possible that future work with more training

data and/or alternative optimization approaches may

get better results from these nonlinear models that

match or outperform linear models in iEEG/fMRI.

Our work thus seeks to provide rigorous evidence

and methodology towards resolving the linear vs.

nonlinear modeling dilemma in computational neuro-

science, rather than a final resolution thereof. Hybrid

models consisting of various combinations of differ-

ent nonlinear structures (LSTMs and CNNs, for ex-

ample), may have substantial potential for obtaining

more accurate nonlinear models and warrant future

research. We can be confident, nevertheless, about

the optimality of linear models at the pairwise level

for fMRI or scalar AR level for iEEG given the equal

or higher prediction power of linear regression relative

to the optimal MMSE predictor. Moreover, our mod-

eling framework is currently only applicable to resting

state dynamics with no inputs, and has been tested

on the two modalities of fMRI and iEEG. Inclusion

of input signals for system identification of task fM-

RI/iEEG data requires accurate data-driven ‘input

models’ of how experimental stimuli, as well as par-

ticipants’ voluntary responses, influence the BOLD

or LFP signals in each brain region, and is a highly

warranted avenue for future research.56,57 Under in-

tensive task conditions, moreover, it is more likely,

or perhaps certain, to observe nonlinearities at least

in the form of saturation effects in the BOLD/LFP

signal. However, the precise form and extent of this

nonlinearity needs to be determined using rigorous

system identification routines.

In conclusion, our work sought to ask the often

unasked question of whether the brain is macroscop-

ically linear. Our findings show that simple linear

models explain the rsfMRI and rsiEEG data as well

as, or even better than, an array of nonlinear ones,

thus challenging the commonly held, yet untested

assumption of higher accuracy of nonlinear models.

However, the costs and benefits of nonlinear mod-

els are ultimately case-specific. Therefore, instead of

offering a universal recommendation on the prefer-

able choices for the modeling of neural dynamics, we

rather provide the groundwork for rigorous investi-

gation and informed decision-making in the context

of rsfMRI/rsiEEG. When feasible, following a similar

system identification routine is always recommended

for computational modeling of any datasets of inter-

est, in order to ensure the optimal fit of the models

used for subsequent analysis or design.

Methods

Data and pre-processing. For the fMRI analysis,

we used ICA-FIX resting state data from the S1200

Human Connectome Project release.58,59 The HCP

experiments were carried out by the WU-Minn con-

sortium and its adherence to ethical standards was

approved by the by the Internal Review Board of the

respective institutions. Explicit informed consent was

acquired from all participants involved in the study.

rsfMRI images were collected with the following pa-

rameters: TR = 720 ms, TE = 33.1 ms, flip angle

= 52 deg, FOV = 208x108 mm, matrix = 104x90,

slice thickness = 2.0 mm, number of slices = 72 (2.0

mm isotropic), multi factor band = 8, and echo spac-

ing = 0.58 ms. Brains were normalized to fslr32k

via the MSM-AII registration and global signal was

removed. No bandpass filtering was performed (see

Supplementary Note 1). Finally, we removed partici-

pants from further analysis if any of their four resting

state scans had excessively large head motion, defined

by having frames with greater than 0.2 mm frame-

wise displacement or a derivative root mean square

(DVARS) above 75. Also, participants listed in60 un-

der “3T Functional Preprocessing Error of all 3T RL

fMRI runs in 25 Subjects” or “Subjects without Field

Maps for Structural scans” were removed, leaving a

total of 700 participants that were used for all the

analyses. We parcellated the brain into 100 cortical

regions (Schaefer 100x7 atlas61) and 16 subcortical

ones (Melbourne Scale I atlas62).

For iEEG preprocessing, raw data from the RAM

data set we have published on previously63–65 was

segmented into task free epochs from either before

or after task completion that were at least 5 min-
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utes in length. This process resulted in a total of

283 recordings from 122 participants. Data were then

downsampled to the lowest sampling rate used across

recording sites (500 Hz). Electric line noise and its

harmonics at 60, 120, and 180 Hz were filtered out

using a zero phase distortion 4-th order stop-band

Butterworth filter with a 1 Hz width. This proce-

dure was implemented using the butter() and filtfilt()

functions in MATLAB. We then rejected noisy chan-

nels that were either (i) marked as noisy in the RAM

dataset notes, (ii) had a line length greater then three

times the mean, (iii) had z-scored kurtosis greater

than 1.5, or (iv) had a z-scored power-spectral den-

sity dissimilarity measure greater than 1.5. The dis-

similarity measure used was the average of one minus

the Spearman’s rank correlation with all channels.

Data were then demeaned and detrended. Channels

were grouped according to whether they were grid

or depth electrodes, and then common average ref-

erenced within each group. Following the common

average referencing step, plots of raw data and power

spectral densities were visually inspected by an ex-

pert researcher with 6 years of experience working

with electrocorticography data to ensure that data

were relatively clean.

Finally, while the aforementioned channel removal

criteria are consistent with the standard practice in

iEEG pre-processing (where we remove channels with

exceptional line length, kurtosis, and power spectral

densities to target high-frequency noise and ictal ac-

tivity,66,67 electrode drift and ictal spikes,68–70 or line

noise and flat power spectral densities,65,71 respec-

tively) and they are essential from a data quality per-

spective, see also Supplementary Fig. 22. Here, we

reproduced our main finding of the higher predictive

power of linear models on data without channel re-

moval as a validation that channel removal had not

confounded our finding by potentially providing an

edge for the linear models.

Computing and run time calculations. All the

computations whose run time was measured and re-

ported in Figs. 2e,3e were performed on the CU-

BIC cluster at the University of Pennsylvania, us-

ing 1 CPU core and 16 or 64 GB of memory per

fMRI or iEEG computing jobs, respectively. For each

method, fMRI participant/iEEG segment, and cross-

validation fold, one training time, one test time, and

one total time was computed, where the latter is sim-

ply the sum of the former two. Note that for the

‘Zero’, ‘Manifold’, and the ‘MMSE’ models no train-

ing time can be defined. This should be clear for the

‘Zero’ model, but it is also the case for the ‘Manifold’

and the ‘MMSE’ models due to their “model on de-

mand” nature, i.e., that all training data is directly

used in computing the prediction of each test point,

instead of the usual process of learning one model

from the training data and then using that model for

test predictions. Therefore, the training time is set

to zero for these models. For the remaining models,

the training time equals the CPU time taken for all

the computations from the point where data has been

broken into train and test and until the point where

the model is learned. The test time, well-defined and

non-zero for all the methods, starts immediately af-

ter the end of the training period and runs until the

point where the output time series (one-step ahead

predictions) are computed. Note that computations

of the R2 and whiteness statistics are optional post-

hoc analyses and done in the same way for all meth-

ods, hence not included in any of these run time cal-

culations. A breakdown of the run time into separate

training and test times is also shown in Supplemen-

tary Figs. 5,6.

Linear and nonlinear families of models. A

complete list of the models used in this study are

provided in Supplementary Table 1. For all mod-

els, the continuous-time dynamics in equation (1) is

first discretized. With a slight abuse of notation, we

also represent the discretized dynamics as

x(t)− x(t− 1) = f(x(t− 1)) + e1(t), (4a)

x(0) = x0, t = 1, . . . , N

y(t) = h(x(t)) + e2(t), t = 0, . . . , N (4b)

where the time index t is now an integer, for sim-

plicity of notation, but the discretization step size

is always equal to 720ms seconds for the HCP data

(equivalent to 1 TR) and 2ms for the RAM data. This

choice means that, e.g., the map f in equation (4a)

equals 1 time step multiplied by the map f in equa-

tion (1a), and T = 864s in equation (1a) corresponds

to N = 1200 in equation (4a) for the fMRI data.

Recall that in this general form, the noise signals

e1(t) and e2(t) can have arbitrary statistics, including

white or colored PSD. We then learn the dynamics

in equation (4) using the following families of models.
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The hyper-parameters used for each model are listed

in Supplementary Table 1 (see ‘Hyper-parameter

selection’ below and Supplementary Figs. 7,8 for

details).

Linear models with states at the BOLD/LFP level

(‘Linear (dense)’, ‘Linear (sparse)’): This model is

our simplest. In it, we let y(t) = x(t), modeling the

dynamics directly at the BOLD/LFP level. This also

allows for combining the noise signals e1(t) and e2(t)

into a single noise signal e(t), which is then taken to

be white. These simplify equation (4) to

y(t)− y(t− 1) = f(y(t− 1)) + e(t). (5)

If we further let f(y(t)) = Wy(t) be linear, then we

get

y(t)− y(t− 1) = Wy(t− 1) + e(t) (6)

where W is an n-by-n matrix of effective connectivity

between brain regions. We fit and compare this model

both when W is dense and when it is sparse. The

latter is motivated by the facts that (i) from a mech-

anistic perspective, an important property of brain

networks and other large-scale complex networks is

their sparsity; while (ii) from a machine learning per-

spective, regularization and reducing the number of

free parameters in a model can prevent over-fitting

and improve generalization. To promote sparsity, we

use standard 1-norm (LASSO) regularization with a

λ hyper-parameter that is tuned separately for fMRI

and iEEG.

Linear autoregressive models (‘AR-2 (sparse)’,

‘VAR-2 (sparse)’, ‘AR-3 (sparse)’, ‘VAR-3 (sparse)’,

‘AR-100 (sparse)’, ‘AR-100 (scalar)’): motivated by

the long history of AR models in neuroscience,24,72,73

here we extend equation (6) to

y(t)− y(t− 1) = Wy(t− 1) +D2y(t− 2)

+D3y(t− 3) + · · · (7)

+Ddy(t− d) + e(t)

for an ‘AR-d’ model. The number of lags d was tuned

separately for fMRI and iEEG, and the matrix W

is either made sparse using LASSO or enforced to

be diagonal. Note that the latter results in n scalar

AR models at each node which are completely de-

coupled from each other. We restricted the matrices

D2,D3, . . . to be diagonal in ‘AR’ models but not so

in full vector auto-regressive (‘VAR’) models. In both

cases, we use LASSO regularization to promote spar-

sity in the regressors, signified by the ‘(sparse)’ suffix

in method identifiers, with the regularization hyper-

parameter λ chosen optimally and separately for each

model (cf. ‘Hyper-parameter selection’ below). In

general, we found that λ is a moderately sensitive pa-

rameter, more so for the whiteness of residuals than

R2 (cf. Supplementary Fig. 3 for an example).

Linear models with states at the neural level (‘Lin-

ear w/ HRF’, only applicable to fMRI data): A stan-

dard step in the computational modeling of fMRI dy-

namics is to incorporate a model of the hemodynamic

response function (HRF), and to separate the under-

lying neuronal variables from the observed BOLD sig-

nals. In this family of models, we thus separate the

states x from the outputs y, while keeping a one-

to-one relationship between the two (m = n). We

then let the latter be a filtered version of the for-

mer through the HRF. For generality and given the

natural and important variability of HRF across the

brain,74,75 we allow the HRF to vary regionally and

learn it from the data for all regions in addition to

the effective connectivity matrix W. Furthermore,

for the sake of generality, we allow both e1(t) and

e2(t) to be colored, with power spectral densities that

can also be different between regions and are learned

from data. Note that this choice includes, as a spe-

cial case, white e1(t) and e2(t). The result is a highly

flexible linear model given by

x(t)− x(t− 1) = Wx(t− 1) + G1(q)ê1(t) (8a)

y(t) = H(q)x(t) + G2(q)ê2(t)
H(q) =

∑nh

p=1
diag(H:,p)q

−p (8b)

F1(q) = I− G−1
1 (q) =

∑nϕ

p=1
diag(Φ:,p)q

−p (8c)

F2(q) = I− G−1
2 (q) =

∑nψ

p=1
diag(Ψ:,p)q

−p (8d)

Since LASSO regression produced the best results in

our BOLD-level linear models, we use LASSO (with

the regularization weight λ) to promote sparsity inW

here. H(q) is a diagonal matrix whose (i, i) entry is

a linear finite-impulse response (FIR) approximation

of the HRF in region i, parameterized as in equa-

tion (8b) (q−1 is the standard delay operator, such

that q−1x(t) = x(t− 1), see25). Similarly, G1 and G2
are diagonal filters, parameterized by the inverse FIR

forms in equation (8c)-(8d). The matrices Hn×nh ,

Φn×nϕ , and Ψn×nψ include learnable FIR parame-

ters of H(q), G−1
1 (q), and G−1

2 (q), respectively. Since
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the state vector x(t) is not measured, we learn this

model by iterating between state estimation and pa-

rameter estimation in an expectation-maximization

(EM)-like manner. Note that the presence of filters

increases the effective state dimension of the system

to n ·max{nϕ + 1, nh + nψ}, significantly increasing

the computational complexity of the state estimation

step. The final model is taken from the EM iteration

with the highest (training) R2.

Linear models with abstract data-driven states

(‘Subspace’): The previous model, despite and be-

cause of its extreme generality and flexibility, has a

very large state dimension and is extremely difficult

to fit. If we forgo the physiological interpretability

of the states, then significantly simpler and lower-

dimensional models of the form

x(t)− x(t− 1) = Wx(t− 1) + e1(t)

y(t) = Cx(t) + e2(t)

Cov

([
e1(t)

e2(t)

])
=

[
Q M

MT R

]

can be learned via subspace identification method.25

Unlike the model above, states represent abstract

low-dimensional regularities within the data, with a

dimension nx that is chosen optimally for each data

type. The hyper-parameters r and s represent the

amount of output and input-output history used, re-

spectively, in the output Hankel matrix construction

and subspace projection steps of the algorithm, re-

spectively (see Ref.25 Ch. 10 for details). The noise

sequences e1(t) and e2(t) are assumed to be white

but can be correlated, and the covariance matrices

Q, M, and R are also learned from data. Note

that this whiteness assumption on noise sequences

is without loss of generality in this case due to the

subspace method’s ability to learn any non-white dy-

namics (i.e., color) of noise as part of the abstract

state dynamics.

Nonlinear neural mass models (‘NMM’, ‘NMM w/

HRF’): Learning of the models above, except for the

‘Linear w/ HRF’, involves a convex optimization that

can be efficiently solved to find its unique global op-

timum. In contrast, the learning of nonlinear models

is less straightforward. Recently, Ref.76 developed

an algorithm called MINDy that uses state-of-the-art

optimization techniques for learning a neural mass

model of the form

x(t)− x(t− 1) = (Wψα(x(t− 1))−Dx(t− 1))∆T

+ e1(t)

y(t) = H(q)x(t) + e2(t)

using rsfMRI data. In this model, x(t) has the same

dimension as y(t) (one neural mass per brain region),

∆T is the sampling time, W is a sparse connectivity

matrix, D is a diagonal self decay matrix, ψα(·) is an
element-wise sigmoidal nonlinearity whose steepness

is determined by each element of the vector α (which

is also the same size as x), and H(q) is a scalar linear

HRF that is the same and fixed a priori for all re-

gions. The associated toolbox that we use allows the

user to either deconvolve y(t) using a canonical HRF

to obtain the state x(t) (‘NMM w/ HRF’), or set

H(q) = 1 and directly fit the model to y(t) (‘NMM’).

We use both methods for fMRI data but only the lat-

ter for iEEG. Since the MINDy algorithm was orig-

inally tuned for fMRI, we re-tune its regularization

hyper-parameters λ1, . . . , λ4 for use with iEEG data

(see ‘Hyper-parameter selection’ below).

Nonlinear models via multi-layer perceptron deep

neural networks (‘DNN (MLP)’): Here we use a

model of the form in equation (5) for fMRI and train

a rectified linear unit (ReLU) MLP DNN to approx-

imate the function f(·). The structure of the DNN

consists of an input layer, D ReLU layers, each pre-

ceded with fully connected and batch normalization

layers and succeeded with a 50% dropout layer, a fi-

nal fully connected layer, and the output layer. Given

the importance of AR lags in the modeling of iEEG,

for this modality we generalize equation (5) as

y(t)− y(t− 1) = f(y(t− 1), . . . ,y(t− d)) + e(t)

(9)

and similarly approximate f(·) using an MLP DNN.

We use MATLAB’s Deep Learning Toolbox for the

training and evaluation of the DNN and tune the

depth D and width W of the DNN separately for

fMRI and iEEG (see ‘Hyper-parameter selection’ be-

low).

Nonlinear models via convolutional deep neural

networks (‘DNN (CNN)’): Given the recent success of

CNNs in complex learning problems, we also included

a model similar to ‘DNN (MLP)’ but with a CNN to

approximate the function f(·). The network consists

of an input layer, D one-dimensional convolutional
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layers (convolving over time using nfilt filters of size

lfilt) each succeeded by a batch normalization layer,

a ReLU layer, and an average pooling layer with a

pool size of npool, a final dropout layer with proba-

bility pdrop, a fully connected layer, and the output

layer. Spatial convolution was not included in the

model, as is the standard in modeling dynamical sys-

tems with CNNs, due to the arbitrary nature of chan-

nel numbering. Temporal convolution is nevertheless

the basis of this model and we thus consider d > 1

autoregressive lags for both fMRI and iEEG.

Nonlinear models via long short-term memory neu-

ral networks (‘LSTM (IIR)’, ‘LSTM (FIR)’): The

above DNN models are inherently static (i.e., feedfor-

ward), whereas various recurrent neural network ar-

chitectures have also been proposed for directly mod-

eling dynamical systems. One of the most successful

such architectures are LSTMs which we implemented

here in two forms: infinite impulse response (IIR) and

finite impulse response (FIR). These two forms cor-

respond, respectively, to the two common sequence-

to-sequence and sequence-to-one forms of modeling

time series using LSTMs. In both cases, the net-

work consists of an input layer, a layer of W LSTM

units, a fully connected layer, and an output layer.

The difference is that in the IIR model, the network

is initialized once at time 0 and run forward, con-

tinuously receiving y(t − 1) as input and generating

y(t) − y(t − 1) as output. Each output, therefore,

depends on the entire history of the inputs. In the

FIR model, on the other hand, the model is initialized

and run forward once for each time point t, receiv-

ing only y(t−d), . . . ,y(t−1) as input and predicting

y(t)− y(t− 1) as output.

Nonlinear manifold-based models (‘Manifold’):

Consider equation (5) or equation (9) and assume,

for simplicity, that f is differentiable. Each of these

systems of equations consists of n scalar equations,

each of which defines a manifold (surface) in n + 1-

dimensional (for equation (5)) or nd + 1 (for equa-

tion (9)) space. Various methods have been devel-

oped in the machine learning and system identifica-

tion literature77,78 and used in computational neuro-

science20,79 to capitalize on the fact that in the small

vicinity of a point, the manifold can be approximated

by a linear hyperplane tangential to it at that point.

Here, we use the simple method of local polynomial

modeling of order 1 (Ref.77). To explain this method,

first consider the simpler model in equation (5). For

each test time tℓ, we approximate the function f(·)
as a linear function in the vicinity of y(tℓ − 1), i.e.,

f(z) ≃ cℓ +Wℓ
[
z− y(tℓ − 1)

]
(10)

The constant vector cℓ and matrix Wℓ are learned

from training data (separately for each test point),

as follows. Each training point y(tm− 1) is weighted

according to its distance to y(tℓ − 1), i.e.,

kℓ,m = exp
(
− ∥y(t

m − 1)− y(tℓ − 1)∥2
2h2

)
(11)

where the hyper-parameter h controls how local or

global the model is. These weights are then used in

a weighted least squares estimation,

[
cℓ Wℓ

]
≃

(∑

tm

[y(tm)− y(tm − 1)]kℓ,mφℓ,m
T
)

·
(∑

tm

φℓ,mkℓ,mφℓ,m
T
)†

where † denotes pseudo-inverse and

φℓ,m =

[
1

y(tm − 1)− y(tℓ − 1)

]
. (12)

Note that only the computed cℓ is ultimately used,

since substituting z = y(tℓ−1) in equation (10) gives

f(y(tℓ − 1)) ≃ cℓ

which is used for computing the one-step-ahead pre-

diction at time tℓ. All the details remain the same

when applying this method to equation (9) for iEEG

data, except that y(tℓ − 1) and y(tm − 1) in equa-

tion (10), equation (11) and equation (12) are re-

placed with [y(tℓ− 1)T · · · y(tℓ− d)T ]T and [y(tm−
1)T · · · y(tm−d)T ]T , respectively. We tuned h sepa-

rately for fMRI and iEEG (see ‘Hyper-parameter se-

lection’ below), giving rise to values that are so large

that they essentially result in a globally linear model

(Supplementary Fig. 1). The value of h was inde-

pendently optimized for the computations reported

in Fig. 4i-j, as described below.

Nonlinear minimum mean squared error models

(optimal) (‘MMSE (pairwise)’, ‘MMSE (scalar)’):

The models in equation (5) (for fMRI) or equa-

tion (9) (for iEEG) ultimately define a stochastic

mapping from y(t − 1) or (y(t − 1), . . . ,y(t − d))

to y(t) − y(t − 1) such that observing the values of

the former provides information to predict the lat-

ter. It is not hard to show that for two random
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variables U and V , the optimal (i.e., minimum vari-

ance) prediction of U given V = v is given by its

conditional expectation û = E[U |V = v] known as

the MMSE prediction.80 Therefore, the optimal pre-

diction of y(t) − y(t − 1) given y(t − 1) or (y(t −
1), . . . ,y(t−d)) is given by E[y(t)−y(t−1)|y(t−1)]

and E[y(t) − y(t − 1)|y(t − 1), . . . ,y(t − d)], respec-
tively. Due to its optimality, it provides a theoret-

ical upper bound on the achievable accuracy of any

nonlinear model. The difficulty in calculating this es-

timate, however, is the estimation of the conditional

distribution of y(t)−y(t−1) given an observation of

y(t−1) or (y(t−1), . . . ,y(t−d)). Without imposing

additional assumptions (e.g., linearity or Gaussian-

ity), this task is not feasible in n ∼ 100 dimensions

with our limited data points per recording segment.

However, this distribution is indeed feasible (i) on

a pairwise basis, giving us the optimal predictions

E[yi(t)−yi(t−1)|yj(t−1)] for all pairs i, j = 1, . . . , n,

or (ii) on a scalar AR basis, yielding the optimal pre-

dictions E[yi(t)−yi(t−1)|yi(t−1), . . . , yi(t−d)] sep-
arately for each i = 1, . . . , n. We use the former for

fMRI and the latter for iEEG. To estimate this condi-

tional distribution for fMRI, we use a Gaussian win-

dow with a standard deviation equal to β times the

range of yj(t) in the training data to detect the train-

ing points close to each test yj(t − 1) and then use

an N -point weighted histogram to estimate the (con-

ditional) distribution. More precisely, for any pair of

i and j and any given test time tℓ, we first compute

the Gaussian weight

wℓ,mj = exp
(
− [yj(t

m − 1)− yj(tℓ − 1)]2

2σ2

)

σ = β ·
(
max
j,tm

yj(t
m)−min

j,tm
yj(t

m)
)

for all training times tm. Note that σ is obtained only

using training data. Then, we divide the interval

[
min
i,tm

yi(t
m)− yi(tm − 1), max

i,tm
yi(t

m)− yi(tm − 1)
]

into N equal bins and construct a weighted histogram

of all the training yi(t
m)−yi(tm−1) where we count

each yi(t
m) − yi(tm − 1) as much as wℓ,mj . We then

normalize this histogram by dividing all bin values

by their sum so that we obtain a well-defined (con-

ditional) probability distribution pℓi,j(∆y
k
i ), and esti-

mate the expected value of this probability distribu-

tion as

E[yi(t)− yi(t− 1)|yj(t− 1)] ≃
N∑

k=1

∆yki · pℓi,j(∆yki )

where ∆yki denotes the center of the k’th histogram

bin. The case for iEEG is similar, except that

the Gaussian weights are computed based on d-

dimensional Euclidean distances given that we condi-

tion on d-dimensional vectors. In both cases, β and

N are hyper-parameters that are tuned separately for

fMRI and iEEG (see ‘Hyper-parameter selection’ be-

low).

Zero model (‘Zero’): So far, we have discussed sev-

eral families of models. Comparisons among them

will provide a clear picture of which family provides

the best fit to the data relative to the others. Note

though that this process does not necessarily imply

that the best model is good in any absolute sense. In

other words, all models may be estimating ŷ(t|t− 1)

at chance level or lower. Therefore, we also consider

the zero model (a.k.a. zero-order hold, naive model,

or random walk)

y(t)− y(t− 1) = e(t)

with the trivial estimate ŷ(t|t − 1) = y(t − 1). Note

that this expression corresponds to equation (5) with

f(y(t− 1)) = 0 and is only meant to provide a base-

line for comparison, not to act as a formal model

itself. Also note that this model is different from,

and often performs better than, the constant predic-

tor ŷ(t|t− 1) = ȳ which constitutes the denominator

of R2.

Hyper-parameter selection. For all models that

involve the choice of a design hyper-parameter,

we simultaneously optimized over all the hyper-

parameters using stochastic gradient descent (SGD)

with minibatch, separately for fMRI and iEEG. Let

Nparam denote the number of hyper-parameters in

any of the models. Starting from an initial esti-

mate of the hyper-parameter vector, in each iter-

ation, 3Nparam hyper-parameter vectors were gener-

ated, constituting a hyper-cubic mesh around the cur-

rent hyper-parameter estimate. For integer-valued

hyper-parameters, we moved 1 point in each di-

rection while for real-valued hyper-parameters, we

moved 10−6 units. Using a minibatch of randomly

selected data segments, the mean-over-minibatch of
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the median-over-regions of the model R2 was com-

puted and maximized over the mesh. The random

minibatch selection was independent between mesh

points and between iterations. For integer-valued

hyper-parameters, their value was updated to that

of the maximizing mesh point. For real-value hyper-

parameters, a gradient-ascent step was taken in the

direction of the largest R2. The process was repeated

until the hyper-parameters stopped having a consis-

tent decrease/increase and hovered around a steady

state value (which always happens due to the stochas-

tic nature of SGD) and/or the R2 stopped having a

consistent increase.

For the ‘DNN (CNN)’ and ‘Subspace’ methods (the

latter only in iEEG data), the aforementioned pro-

cedure was infeasibly slow. This was the case due

to a high number of hyper-parameters for the CNN

model and due to cluster jobs becoming frequently

hung and needing to be killed and restarted for the

subspace method. As such, we slightly modified the

above procedure as follows. In each iteration of the

SGD, instead of generating 3Nparam search directions

at all the points of a hyper-cubic mesh, we generated

2Nparam+1 search directions, one at the current opti-

mum estimate and 2 at the current estimate±1ek (for
integer-valued) or ±10−6ek (for real-valued) for each

k’th hyper-parameter, where ek is the k’th canon-

ical unit vector (all zeros except one 1 at the k’th

location). The remaining details were similar to the

general case above. Finally, in all cases, we used 100

participants for fMRI (out of the total of 700) and

1500 segments for iEEG (out of the total of 8490)

for hyper-parameter tuning and then removed them

from the subsequent model fitting and validation ex-

periments to ensure a lack of over-fitting to hyper-

parameters.

The hyper-parameter and R2 values throughout

the process are shown in Supplementary Figs. 7,8

for fMRI and iEEG data, respectively, and the fi-

nal values of the hyper-parameters selected for each

model are reported in Supplementary Table 1.

Note that the initial hyper-parameter estimates were

chosen based on prior experience, not randomly,

which is why they are often very close to or the same

as the final values.

Cross-validation. For the comparisons of Fig. 2

on HCP data, we performed the cross-validation as

follows, with slightly different procedures for brain-

wide and regional methods. For the brain-wide meth-

ods, for each of the 700 participants, we split each of

the 4 resting scans of that participant into 2 halves,

giving a total of 8 segments, each of length 600 sam-

ples. All of our methods were then applied using

an 8-fold cross-validation where each time one of the

8 segments was used for testing and the remaining

7 were used for training. For pairwise methods, we

were forced to lower the sample size due to the ex-

tremely high computational complexity of the MMSE

predictor. Therefore, instead of each of the above 8

segments (per participant), we used the second quar-

ter of that segment, giving us still an 8-fold cross-

validation but on segments of length 150 samples

each.

For the comparisons of Fig. 3 on RAM data,

we first split each of the 283, 5-minute recordings

into 8490, 10-second segments. Even though hav-

ing longer segments would in principle benefit model

fitting, 10-second segments ensured that all of our

methods could run using the 64 GB available mem-

ory per node on the CUBIC cluster. From the 8490

segments, those that contained any NaN entries (316

segments) or for which the subspace method pro-

duced NaN predictions (30 segments, due to the bad

conditioning of the Φ matrix therein) were removed

from further analysis. Since each recording is already

split into 30 segments, and due to the large number

of segments, we performed only a single-fold cross-

validation on each segment, with the first 8 seconds

used for training and the final 2 second used for cross-

validation.

Multivariate test of whiteness. A standard mea-

sure of the goodness of fit in the prediction error

method is the whiteness of residuals, measuring the

extent to which all temporal structure (i.e., dynam-

ics) in the data has been captured by the model. Note

that a multivariate time series e(t) is “white” if it has

no statistical dependence across time (i.e., e(s) and

e(t) are independent if s ̸= t) even though it can

have arbitrary statistical dependence across channels

(i.e., ei(t) and ej(t) can be dependent at the same

time t). Parametric (χ2) statistical tests have been

devised for multivariate whiteness, such as the classi-

cal Box-Pierce portmanteau test81 and its modifica-

tions by Ljung & Box82 and Li & McLeod.83 Under

strong assumptions, all of these tests have a statis-

tic Q (defined slightly differently between them) that
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is asymptotically (at infinite samples) χ2 distributed.

In our datasets we found, however, that Q is not χ2

distributed, and therefore we use randomization to

generate the true null distribution of Q by shuffling

the time indices of e(t) 100 times, computing Q for

each of them, and computing the 95th percentile of

the randomized Q values as the threshold Qthr for sig-

nificance. We use the original definition of Q (Ref.81),

Q = (N −M)

M∑

i=1

tr
(
R̂e(i)

T R̂e(0)
−1R̂e(i)R̂e(0)

−1
)

where N is the number of (test) samples, M is the

number of cross-correlation lags, and

R̂e(i) =
1

N −M
N−M−1∑

t=0

e(t+ i)e(t)T , i = 0, 1, . . . ,M.

is a finite-sample estimate of the cross-correlation ma-

trix between channels of e(t) at lag i. Since in prac-

tice R̂e(0) may be singular or near-singular, we use

the pseudo-inverse of R̂e(0) instead of its inverse in

computing Q. Finally, only in the case of “pairwise”

fMRI models where the residuals are inherently uni-

variate, we use the simpler χ2 test of whiteness for

univariate time series (Ref.25 Sec. 16.6).

Nonlinear predictors used for the analysis of

the linearizing effects of macroscopic dynam-

ics. Our discussions of linear and nonlinear models

and their hyper-parameters so far applies to the com-

parisons shown in Figs. 2,3 on neuroimaging time

series. In our numerical analysis of the linearizing ef-

fects of macroscopic brain dynamics in Fig. 4, we

also construct linear and nonlinear predictors and

compute their R2. The linear predictor is always a

simple linear regression model, while the nonlinear

predictor is the MMSE predictor for two-dimensional

predictions (Fig. 4a-h), and the manifold-based pre-

dictor for higher-dimensional predictions (Fig. 4i-

j). The MMSE predictor was as above, except that

β was adjusted as 0.02 + 0.02/SNR for Fig. 4g-h.

For the manifold-based predictor, we used a Gaus-

sian window and swept logarithmically over its hyper-

parameter h from 0.1 to 10 in every iteration and

chose the value of h that gave the largest R2. Fig. 4j-

left panel shows the average of the resulting optimal

h for 100 iterations.

Simulations involving the Izhikevic model. To

show the linearizing effects spatiotemporal averaging

on a model whose ground truth is known to be non-

linear, we generated simulated time series from the

Izhikevic model23

v̇(t) = 0.04v(t)2 + 5v(t) + 140− u(t) + I

u̇(t) = a(bv(t)− u(t))
(v(t), u(t))← (c, u(t) + d) if v(t) ≥ 30

with a = 0.02, b = 0.2, c = −65, d = 2, I = 7. We

discretize the model using Euler discretization with

0.1ms sampling.

Estimation of rsfMRI SNR. Here we describe

our method for the estimation of rsfMRI time se-

ries scanner noise and the resulting SNR reported

in Supplementary Fig. 4. From the 700 partici-

pants used for the study, 50 were selected uniformly

at random, and for each selected participant, one of

their 4 rest scans was selected also uniformly at ran-

dom. The following was then performed for each of

the 50 participant-scans. The rest scan was motion

corrected using intra-modal linear registration with 6

degrees of freedom (in general, we kept the amount

of pre-processing as minimal as possible throughout

the SNR estimation algorithm since each preprocess-

ing step often involves averaging and/or interpolation

steps that can bias SNR estimates). The first vol-

ume of the motion-corrected rest scan was visually

inspected and 10 voxels outside of the head were se-

lected. Due to the unavailability of phantom scans,

we used these voxels to estimate the scanner noise,

while the two (phantom scans and outside voxels)

have been shown to yield consistent noise estimates.84

For each of the 10 voxels, we calculated the tempo-

ral variance of the corresponding time series and av-

eraged the results, providing an estimate of scanner

noise variance σ2
N . To estimate the signal power, a

gray matter mask was extracted using each partic-

ipant’s T1 scan and linearly registered back to the

participant’s motion corrected rest scan. We then

computed the temporal variance of each gray matter

voxel and averaged the results, yielding an estimate

of the combined signal and noise variance. Assuming

statistical independence between scanner noise and

the participants’ BOLD activity, this combined vari-

ance is precisely the sum σ2
S + σ2

N of signal variance

and noise variance. The SNR was then calculated as

σS/σN . Note that this process is inherently conserva-

tive and provides an upper bound on the SNR, as it,
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for instance, does not include any physiological sig-

nals into “noise”. Therefore, the ratio between the

power of signals of neural origin over all other sig-

nals contributing to rsfMRI time series may be much

lower than 6.5. An SNR of about 6.5, however, is

still low enough to yield a notable linearizing effect,

highlighting the importance of measurement noise in

downstream computational modeling.

Reporting Summary. Further information on re-

search design is available in the Nature Research Re-

porting Summary linked to this article.

Data availability

The fMRI and iEEG data that support the findings

of this study are publicly available, respectively,

from the HCP S1200 Release at https://www.

humanconnectome.org/study/hcp-young-adult/

document/1200-subjects-data-release,

and the RAM Public Data Release at

http://memory.psych.upenn.edu/RAM.

Code availability

All the computations of this study (after data pre-

processing) are performed in MATLAB, and the cor-

responding codes are publicly available at https:

//github.com/enozari/rest-system-id.
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[27] Buzsáki, G., Anastassiou, C. A. & Koch, C. The

origin of extracellular fields and currents—eeg,

ecog, lfp and spikes. Nature reviews neuroscience

13, 407–420 (2012).

[28] Lindén, H., Pettersen, K. H. & Einevoll, G. T.

Intrinsic dendritic filtering gives low-pass power

spectra of local field potentials. Journal of com-

putational neuroscience 29, 423–444 (2010).

[29] Greve, D. N., Brown, G. G., Mueller, B. A.,

Glover, G. & Liu, T. T. A survey of the sources

of noise in fmri. Psychometrika 78, 396–416

(2013).

[30] Liu, Y., Coon, W., De Pesters, A., Brunner, P. &

Schalk, G. The effects of spatial filtering and ar-

tifacts on electrocorticographic signals. Journal

of neural engineering 12, 056008 (2015).

[31] Yang, Z. Incorporating Structural Bias into Neu-

ralNetworks for Natural Language Processing.

Ph.D. thesis, Carnegie Mellon University (2019).

[32] Kononova, A. V., Corne, D. W., De Wilde, P.,

Shneer, V. & Caraffini, F. Structural bias in

population-based algorithms. Information Sci-

ences 298, 468–490 (2015).

[33] Mehta, R., Shen, C., Xu, T. & Vogelstein, J. T.

A consistent independence test for multivari-

ate time-series. arXiv preprint arXiv:1908.06486

(2019).

[34] Dafilis, M. P., Sinclair, N. C., Cadusch, P. J. &

Liley, D. T. Re-evaluating the performance of

the nonlinear prediction error for the detection

of deterministic dynamics. Physica D: Nonlinear

Phenomena 240, 695–700 (2011).

[35] Deneux, T. & Faugeras, O. Using nonlinear

models in fmri data analysis: model selection

and activation detection. NeuroImage 32, 1669–

1689 (2006).

[36] Liu, Z. et al. Linear and nonlinear relationships

between visual stimuli, eeg and bold fmri signals.

Neuroimage 50, 1054–1066 (2010).

[37] Schulz, M.-A. et al. Different scaling of linear

models and deep learning in ukbiobank brain im-

ages versus machine-learning datasets. Nature

communications 11, 1–15 (2020).

[38] He, T. et al. Deep neural networks and kernel re-

gression achieve comparable accuracies for func-

tional connectivity prediction of behavior and

demographics. NeuroImage 206, 116276 (2020).

23



[39] Wobst, P., Wenzel, R., Kohl, M., Obrig, H. &

Villringer, A. Linear aspects of changes in de-

oxygenated hemoglobin concentration and cy-

tochrome oxidase oxidation during brain activa-

tion. Neuroimage 13, 520–530 (2001).

[40] Rumyantsev, O. I. et al. Fundamental bounds

on the fidelity of sensory cortical coding. Nature

580, 100–105 (2020).

[41] Khalil, H. K. Nonlinear Systems Pearson Ed-

ucation (Prentice Hall, 2002). URL https://

books.google.com/books?id=t_d1QgAACAAJ.

[42] Palva, J. M. & Palva, S. Functional integration

across oscillation frequencies by cross-frequency

phase synchronization. Eur J Neurosci 48,

2399–2406 (2018).
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fied a bias in citation practices such that papers from

women and other minority scholars are under-cited

relative to the number of such papers in the field.85–89

Here we sought to proactively consider choosing refer-

ences that reflect the diversity of the field in thought,

form of contribution, gender, race, ethnicity, and

other factors. First, we obtained the predicted gen-

der of the first and last author of each reference by

using databases that store the probability of a first

name being carried by a woman.89,90 By this mea-

sure (and excluding self-citations to the first and last

authors of our current paper), our references con-

tain 8.73% woman(first)/woman(last), 18.87% man/-
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woman, 18.34% woman/man, and 54.06% man/-

man. This method is limited in that a) names, pro-

nouns, and social media profiles used to construct

the databases may not, in every case, be indicative

of gender identity and b) it cannot account for inter-

sex, non-binary, or transgender people. Second, we

obtained predicted racial/ethnic category of the first

and last author of each reference by databases that

store the probability of a first and last name being

carried by an author of color.91,92 By this measure

(and excluding self-citations), our references contain

14.39% author of color (first)/author of color(last),

15.47% white author/author of color, 23.76% au-

thor of color/white author, and 46.37% white au-

thor/white author. This method is limited in that

a) names and Florida Voter Data to make the predic-

tions may not be indicative of racial/ethnic identity,

and b) it cannot account for Indigenous and mixed-

race authors, or those who may face differential biases

due to the ambiguous racialization or ethnicization

of their names. We look forward to future work that

could help us to better understand how to support

equitable practices in science.
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1
Extended Data Fig. 1 | Different systems can produce almost identical functional connectivity (FC).

Ten different systems of the form y(t) = Ay(t−1)+e(t) are shown with completely different A matrices and spectra

(eigenvalues of A), but almost identical FC matrices. The Pearson correlation coefficient between all pairs of FCs is

1.0000 while the absolute value of the Pearson correlation coefficients between the A matrices range from a minimum

of 0.0023 to a maximum of 0.36. All systems were driven by independent and randomly generated noise sequences

e(t). In the figures, the diagonal entries of the FC matrices (which are by definition equal to 1) are set 0 to increase

color resolution.
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1
Extended Data Fig. 2 | The linearizing effect of spatial averaging on the Izhikevic spiking model.

(a) The Izhikevic model23 was simulated for Nave neurons and their vi and ui variables were averaged before being

“observed”. The neurons had the same parameters (and hence the same spiking frequency) but were initialized at

random phases of their limit cycles. The average of dvi/dt is plotted against the average of vi and ui, showing the

loss of nonlinearity at about Nave ∼ 103-104. dvi/dt is chosen since it has a more nonlinear dependence on vi and ui

than dui/dt for one neuron, but the same (even stronger) linearizing effect holds for (⟨vi⟩, ⟨ui⟩, ⟨dui/dt⟩). (b) The

R2 distributions of a linear (simple linear regression) and nonlinear (manifold-based locally linear regression) model

for the relationships in panel (a) and 100 random repetitions. The manifold-based model was chosen over the MMSE

model as it consistently gave significantly higher R2 values (due to the high sample complexity of the MMSE model).

Note that the R2 distribution of the linear model is mostly flat (less affected by spatial averaging), while that of

the nonlinear model decays rapidly with Nave until it reaches the linear level. (c) Nonlinear R2 as a function of the

manifold method’s window sizes h for varying Nave values. The circles and error bars show median and inter-quartile

ranges, respectively. While an optimal, mid-range h exists for small values of Nave, the curve plateaus for large h

as Nave increases, showing the loss of nonlinearity with increasing Nave. (d-f) Same as panels (a-c) but for a model

where process noise is added to the dvi/dt equations. The noise has a very low power (SNR = 100) and is only

meant to destroy the artificial micro-nonlinear relationships that are visible in panel (a) and can inflate the power of

nonlinear regression for Nave ∼ 10-103. Note that this is different from the addition of observation noise discussed

in the main text, even though adding observation noise could serve this purpose as well. In all box plots, the center

point, box limits, and whiskers represent the median, upper and lower quartiles, and the smallest and largest samples,

respectively.
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1
Extended Data Fig. 3 | The linearizing effect of temporal averaging on the Izhikevic spiking model.

Panels parallel those in Figure 2. (a) One Izhikevic model23 was simulated, starting from a random initial condition

on its limit cycle, and its v and u variables were low-pass filtered before being “observed”. d/dt LPF{v} is plotted

against LPF{v} and LPF{u}, showing the loss of nonlinearity at about fcutoff ∼ 10−4. (b,c) Similar to panels (b,c)

in Figure 2, except that here the R2 of the linear model reaches that of the nonlinear one as temporal averaging is

intensified. The nonlinear model always has a near-perfect prediction power given the fully deterministic nature of

this simulation (i.e., a sufficiently small h was always sufficient to perfectly match a locally-linear model to the curves

in panel (a). Note that addition of process noise here does not have the same “blurring” effect of Figure 2(d-f) since

it lies before the low-pass filter. Observation noise can nevertheless be added with the same effect (not shown here).

In all box plots, the center point, box limits, and whiskers represent the median, upper and lower quartiles, and the

smallest and largest samples, respectively.
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Extended Data Fig. 4 | The spatial distribution of predictability in fMRI data. (a) Regionwise comparisons

between all pairs of models. The color and number in each cell indicates the percentage of brain regions where the

median of the R2 values of the model on the row is statistically significantly greater that the median of the R2 values of

the model on the column (α = 0.05, Wilcoxon signed rank test, and Bonferroni correction for multiple comparisons).

(b) The correlation coefficient between the R2 values of all the (brain-wise) methods. All methods produce almost

the same cortical distributions of R2 (albeit with different absolute values of R2, cf. Figure 2a in the main text),

except for ‘Linear w/ HRF’ which has an un-correlated R2 distribution relative to the rest of the methods. (c) The

cortical distribution of the R2 of our best model (‘VAR-3 (sparse)’), averaged over the 700 subjects. (d) Violin plots

of the distribution of R2, averaged over all the regions of each resting state network, for all subjects. Note that

each distribution in panel (b) is thus composed of 700 samples. All pairs of distributions have significantly different

medians in the order plotted (one-sided Mann-Whitney U -test at α = 0.05 with BH-FDR correction for multiple

comparisons). The most striking difference is between the cortical and subcortical regions, where the dynamics of

the latter are remarkably less predictable than the former. This lower predictability can be viewed as having “more

noisy” dynamics or, more precisely, less spatially and temporally correlated (i.e., more white) fMRI time series in

these regions.
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1 Supplementary Note 1: Effect of Bandpass Filtering on System

Identification and the Detection of Nonlinearity

A standard step in the preprocessing of resting state fMRI time series is bandpass filtering, typically over the

range [0.01, 0.08] Hz [1], to reduce the contribution of non-neuronal sources on the signal and improve the

SNR. In this work, however, we purposefully avoided this step. In the following, we discuss in detail the role

and effects of pre-filtering in this rather unconventional context of system identification and, in particular,

detection of nonlinear dynamics.

1. First, band-pass filtering (or any linear filtering for this matter) has no effect on the fitting or evaluation

of linear models. The reason, in short, is the commuting property of linear systems. More specifically,

any linear system including all of the ones used in this work can be written in the impulse-response

form [2]

y(t) = G(q)e(t),

where G is the transfer matrix

G(q) =

G11(q) G12(q) · · ·
G21(q) G22(q) · · ·

...
...

. . .


such that for any i and j

Gij(q) = gij(0) + gij(1)q
−1 + gij(2)q

−2 + · · ·

Here, gij(t) is the impulse response from the the jth input ej(t) to the ith output yi(t), and q is the

standard shift operator such that q−1s(t) = s(t − 1) for any signal s(t) [3]. Recall that y(t) is the

BOLD time series without band-pass filtering, as used in the main text, and let

F (q) = f(0) + f(1)q−1 + f(2)q−2 + · · ·

be any linear filter, including the bandpass filter used in common preprocessing pipelines. Assume,

without loss of generality, that f(0) ̸= 0 (an almost identical argument can be given if f(0) or any

number of the first terms in F (q) are zero, simply by factoring out enough powers of q−1). The output

of the filter is

z(t) = F (q)y(t) = F (q)G(q)e(t).

It then immediately follows from the prediction error framework [3] that the one step ahead prediction

error of z(t) is given by

z(t)− ẑ(t|t− 1) = f(0)G−1(q)F−1(q)z(t)

= f(0)G−1(q)y(t)

= f(0)
[
y(t)− ŷ(t|t− 1)

]
.

In other words, the prediction error of z(t) is identical to the prediction error of y(t), except for a

constant factor equal to the instantaneous gain of the filter. Therefore, not only is fitting a model by

minimizing the prediction error of z(t) identical to fitting a model by minimizing the prediction error

of y(t), but the cross-validated R2 (up to a fixed constant) and residual whiteness of these models are

also identical.

This argument clearly fails for nonlinear systems. Indeed, fitting a nonlinear model on z(t) can result

in a different model with different R2 and residual whiteness than the same model fit on y(t). The

critical point, however, is that the linear filter F (q) cannot generate nonlinearity, while it can certainly

weaken and even eliminate it. We explain these two points in more detail next.
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2. Assume, first, that the dynamics of y(t) are truly linear, as seems to be the case from our analysis in

the main text. Then, the relationship between ∆y(t) and y(t − 1) (as random vectors) is linear. By

definition, if the relationship between two random vectors u and v is linear, they can be written in the

form [
u

v

]
=

[
A11 A12

A21 A22

] [
e1
e2

]
(S1)

where A is an appropriate matrix and e1 and e2 are independent. Now let uF be the result of applying

a linear filter F (q) to (the samples of) u. In other words, if N is the order of an (arbitrarily accurate)

FIR approximation of F (q),

uF =
[
u1 u2 · · · uN

]


f(0)

f(1)
...

f(N − 1)

 =
[
u1 u2 · · · uN

]
f (S2)

where f(t) is the impulse response of F (q) and u1,u2, . . . ,uN are identically distributed (but not

necessarily independent) samples of u. From Eq. (S1),

[
u1 u2 · · · uN

]
=

[
A11 A12

] [e1,1 e1,2 · · · e1,N
e2,1 e2,2 · · · e2,N

]
(S3)

where e1,1, . . . , e1,N are identically distributed (but not necessarily independent) samples of e1, simi-

larly for e2. Note that each e1,t is still independent from each e2,s by definition. Substituting Eq. (S3)

into Eq. (S2) thus gives

uF =
[
A11 A12

] [e1,1 e1,2 · · · e1,N
e2,1 e2,2 · · · e2,N

]
f

=
[
A11 A12

] [e1,F
e2,F

]
where e1,F and e2,F are filtered versions of e1 and e2 and, still, independent of each other. Following

the same steps for v, we get [
uF
vF

]
=

[
A11 A12

A21 A22

] [
e1,F
e2,F

]
showing that uF and vF are still linearly related after filtering. This is indeed expected since a linear

filter cannot generate nonlinear dependence between two signals that are originally linearly related.

3. Now assume, in contrast, that the dynamics of y(t) is in fact nonlinear and we filter y(t) to get

z(t) = F (q)y(t). The best that can happen, as far as detecting nonlinearity is concerned, is that the

dynamics of z(t) remain nonlinear. However, it is possible that F (q) weakens or completely averages

out the nonlinearities in y(t), as we saw in the main text. In fact, the common bandpass filter over

[0.01, 0.08] Hz (compared to a Nyquist frequency of 1/2TR ≃ 0.7 Hz) is strongly lowpass and involves

significant averaging over time.

In conclusion, while bandpass filtering has no effect on linear models and preserves linearity of time

series, it can well weaken/eliminate any nonlinearity in the time series. Therefore, regardless of how much

“cleaner” bandpass-filtered data might be, finding no nonlinearity before bandpass filtering, as pursued in

the main text, is a stronger statement than the same finding would be if obtained after bandpass filtering.

3



2 Supplementary Table 1: List of linear and nonlinear families of

models

Supplementary Table 1 | List of linear and nonlinear families of models. The marks † and ‡ indicate,

respectively, that a method is used only for fMRI or iEEG. See Methods for a description of each model.

Label Title Equation Hyper-parameters

Linear (dense)
Linear models with

states at the

BOLD/LFP level

y(t)− y(t− 1) = Wy(t− 1) + e(t)

None

Linear (sparse)
λ = 0.95 (fMRI)

λ = 1.35 (iEEG)

Linear (pairwise)† yi(t)− yi(t− 1) = wijyj(t− 1) + ei(t), i, j = 1, . . . , n None

AR-2 (sparse)†

Linear autoregressive

models

y(t)− y(t− 1) = Wy(t− 1) +D2y(t− 2)

+D3y(t− 3) + · · ·
+Ddy(t− d) + e(t)

d = 2, λ = 0.95, diagonal D2

VAR-2 (sparse)† d = 2, λ = 0.9

AR-3 (sparse)† d=3, λ=0.5, diagonal D2,D3

VAR-3 (sparse)† d = 3, λ = 0.35

AR-100 (sparse)‡ d = 112, λ = 1.35

AR-100 (scalar)‡ d = 112

x(t)− x(t− 1) = Wx(t− 1) + G1(q)ê1(t)

y(t) = H(q)x(t) + G2(q)ê2(t)

H(q) =
∑nh

p=1
diag(H:,p)q

−p

F1(q) = I− G−1
1 (q) =

∑nϕ

p=1
diag(Φ:,p)q

−p

F2(q) = I− G−1
2 (q) =

∑nψ

p=1
diag(Ψ:,p)q

−p

Linear w/ HRF†
Linear models with

states at the neural

level

nh = nϕ = nψ = 5, λ = 11

x(t)− x(t− 1) = Wx(t− 1) + e1(t)

y(t) = Cx(t) + e2(t)

Cov

([
e1(t)

e2(t)

])
=

[
Q M

MT R

]Subspace

Linear models with

abstract data-driven

states

s = 1, r = 3, nx = 25 (fMRI)

s = 10, r = 69, nx = 445

(iEEG)

NMM

Nonlinear neural

mass models

y(t)− y(t− 1) = (Wψα(y(t− 1))−Dy(t− 1))∆T + e(t)

MINDy default (fMRI)

λ1 = λ2 = 0.2, λ3 = 0.7,

λ4 = 0.5 (iEEG)

NMM w/ HRF†

x(t)− x(t− 1) = (Wψα(x(t− 1))−Dx(t− 1))∆T

+ e1(t)

y(t) = H(q)x(t) + e2(t)

MINDy default

DNN (MLP)

Nonlinear models via

multi-layer

perceptron deep

neural networks

y(t)− y(t− 1) = f(y(t− 1), . . . ,y(t− d)) + e(t) d = 1, D = 6,W = 2 (fMRI)

d = 4, D = 3,W = 29 (iEEG)

DNN (CNN)

Nonlinear models via

convolutional deep

neural networks

y(t)− y(t− 1) = f(y(t− 1), . . . ,y(t− d)) + e(t)

d = 17, D = 2, lfilt = 7,

nfilt = 11, npool = 4,

pdrop = 0.4 (fMRI)

d = 13, D = 2, lfilt = 5,

nfilt = 10, npool = 2,

pdrop = 0.51 (iEEG)

LSTM (IIR)
Nonlinear models via

long short-term

memory recurrent

neural networks

y(t)− y(t− 1) = f(y(t− 1), . . . ,y(0)) + e(t)
W = 12 (fMRI)

W = 7 (iEEG)

LSTM (FIR) y(t)− y(t− 1) = f(y(t− 1), . . . ,y(t− d)) + e(t)
d = 1,W = 16 (fMRI)

d = 32,W = 2 (iEEG)

Manifold

Nonlinear

manifold-based

models

y(t)− y(t− 1) = f(y(t− 1), . . . ,y(t− d)) + e(t)
d = 1, h = 830 (fMRI)

d = 7, h = 1.3× 104 (iEEG)

MMSE (pairwise)† Nonlinear minimum

mean squared error

models (optimal)

yi(t)−yi(t−1) = E[yi(t)−yi(t−1)|yj(t−1)], i, j = 1, . . . , n N = 280, β = 0.156

MMSE (scalar)‡
yi(t)− yi(t− 1) = E[yi(t)− yi(t− 1)|yi(t− 1), . . . ,

yi(t− d)], i = 1, . . . , n
d = 9, N = 309, β = 0.007

Zero Zero model y(t)− y(t− 1) = e(t) None
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3 Supplementary Figures

a

b

1
Supplementary Fig. 1 | Effect of window size h on the accuracy of the manifold-based locally linear

(‘Manifold’) model in fMRI data. (a) Boxplot of the R2 distribution as a function of h, combined across the 116

brain regions of 70 randomly selected subjects (10% of all subjects to reduce computational cost). The R2 values were

not computable (‘NaN’) for h = 10 due to limited machine precision. The model is equivalent to the zero model for

the three leftmost boxplots as no training point falls within the Gaussian-weighted neighborhood of any test points.

As h is increased to h ∼ 10, few training data points start to fall within the neighborhood window of some of the

test points, but are far enough that their Gaussian weights fall below machine precision, leading to missing (‘NaN’)

predicted values and, hence, R2. As h is further increased, more training points fall within the neighborhood of each

test point, but are few enough to lead to poor R2, until h is increased enough to reach the globally linear regime.

(c) The distribution of the Euclidean distance between all pairs of training and test points for a randomly selected

subject (subject 103818) to aid in understanding the trends that are apparent in panels (a) and (b). In particular,

note that h = 104 (and even smaller values) clearly lead to a globally linear model as almost all of the training-test

pairs of points have distances less than h/10.
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a b

c d

e f

1Supplementary Fig. 2 | The effects of the number of lags and sparsity patterns on the prediction

accuracy and computational complexity of linear AR models of rsfMRI. Panels parallel those in Fig. 2 in

the main text and the descriptions of method acronyms are given in Table 1 therein. Generally, the number of lags

and sparsity patterns have little effect on the prediction accuracy of linear AR models for rsfMRI data (in contrast to

rsiEEG data, as explained in the main text), as seen from panel (a). The estimates of statistical significance in panel

(b) are to a great extent due to the large sample size (700×116). However, increasing the number of regressors, both

by increasing the number of AR lags and by allowing for off-diagonal entries of all lags (‘VAR’ models), does lead to

a non-trivial improvement in the whiteness of residuals, even though is often accompanied by non-trivial increases in

model complexity and computation time as well. In all box plots, the center line, box limits, and whiskers represent

the median, upper and lower quartiles, and the smallest and largest samples, respectively, and sample size = 81200.
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a b

c d

1Supplementary Fig. 3 | The effect of the LASSO parameter λ on the accuracy of the ‘VAR-3 (sparse)’

model. Panels parallel those in Fig. 2 of the main text. (a) The distribution of the cross-validated regional R2
i ,

combined across all regions and 10% of subjects (randomly selected), for varying values of λ. (b) The p-values of the

one-sided Wilcoxon signed rank test performed between all pairs of distributions of R2 in panel (a). (c, d) Similar

to panels (a, b) but for the Q statistic of the test of whiteness of the residuals.
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1
Supplementary Fig. 4 | Histogram of scanner SNR estimates for rsfMRI data. Scanner SNR was estimated

for 50 randomly selected rest scans by comparing the average signal powers inside the respective subject’s gray matter

and outside of their head (see Methods). Due to the conservatism of this method, the resulting SNR estimates are

expectedly over-estimated, but yet are not far from the SNR = 1 level that is enough to completely mask nonlinear

interactions on its own (Fig. 4g-h).
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a
Brain-wise Pairwise

b

c d

1

Supplementary Fig. 5 | Separate training and test times for system identification methods of rsfMRI.

Details in panels (a,b) and (c,d) parallel those in of Fig. 2e,f in the main text. Note that the ‘Zero’, ‘Manifold’,

and ‘MMSE (pairwise)’ methods do not have a training time by definition and hence we have set their training times

uniformly to zero.
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a b

c d

1

Supplementary Fig. 6 | Separate training and test times for system identification methods of rsiEEG.

Details in panels (a,b) and (c,d) parallel those in of Fig. 3e,f in the main text. Note that the ‘Zero’, ‘Manifold’,

and ‘MMSE (scalar)’ methods do not have a training time by definition and hence we have set their training times

uniformly to zero.
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Supplementary Fig. 7 | Hyper-parameter tuning of linear and nonlinear model families for fMRI.

For each parametric family of models, its hyper-parameters were simultaneously optimized using stochastic gradient

descent (SGD, see Methods) to select the model with the highest cross-validated R2 within that model family. (a)

Linear (sparse); (b) AR-2 (sparse); (c) VAR-2 (sparse); (d) AR-3 (sparse); (e) VAR-3 (sparse); (f) Linear w/ HRF;

(g) Subspace; (h) DNN (MLP); (i) Manifold; (j) MMSE (pairwise); (k) LSTM (FIR); (l) LSTM (IIR); (m) DNN

(CNN). Each panel shows the evolution of the hyper-parameter(s) of one model family during the SGD iterations,

color-coded with the value of R2 at each iteration, and the hyper-parameter value(s) selected as optimal (dotted

gray lines, also given in Table 1 in the main text). Note that the hyper-parameter(s) are not expected to converge

to a fixed (optimal) value, but rather to fluctuate around it due to the stochastic nature of SGD and the natural

variability of data segments.
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Supplementary Fig. 8 | Hyper-parameter tuning of linear and nonlinear model families for iEEG.

(a) Linear (sparse); (b) AR-100 (sparse); (c) AR-100 (scalar); (d) Subspace; (e) NMM; (f) Manifold; (g) DNN; (h)

MMSE (scalar); (i) LSTM (FIR); (j) LSTM (IIR); (k) DNN (CNN). Details and interpretations are the same as

Supplementary Fig. 7.

14



a

b

c

d

e

1
Supplementary Fig. 9 | Comparing the ‘DNN (MLP)’ model with linear models in fitting simulated

data from the Izhikevic model. Panels (a-c) parallel those in Supplementary Figs. 7-8 and show the resulting

hyper-parameter trajectories for (a) AR-d (sparse); (b) Subspace; (c) DNN (MLP) when tuned via SGD. Panels (d,e)

parallel those in Fig. 2a for (d) v(t) and (e) u(t) outputs of the Izhikevic model. Unlike Fig. 2a where we combined

across all output channels, we here kept them separate due to the distinct form and role of their dynamics.
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Supplementary Fig. 10 | Comparison of ‘Liner (dense)’ and ‘DNN (MLP)’ models on the logistic map

dynamical system. System dynamics are given by y(t + 1) = ry(t)[1 − y(t)], r = 3.7707. (a) Box plots of cross-

validated one-step-ahead prediction R2. The neural network model achieves near perfect R2 even with 10 hidden

units while the linear model achieves R2 ≃ 0.5. (b) The approximations that each model provides to the nonlinear

function y 7→ ry(1− y). (c) The cross-validated one-step-ahead predictions of each model for the first 50 samples of

a random run.
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Supplementary Fig. 11 | Comparing ‘DNN (MLP)’ model with a linear activation function against

‘Linear (dense)’ and ‘Linear (sparse)’. (a) The comparison results for the ‘DNN (MLP)’ model with a linear

activation function and hidden depth of 0. The network therefore only consists of input and output layers and a

fully connected layer in between. The right panel displays the same information as the left panel except for using

violin plots. Red crosses and green squares show means and medians, respectively. (b) Hyper-parameter tuning for

a ‘DNN (MLP)’ model with a linear activation function and hidden depth of 1. W denotes the width of the hidden

layer. As with hyper-parameter tunings in the main text, 100 subjects whose data is not used in subsequent model

comparisons are used for hyper-parameter tuning to avoid potential over-fitting to hyper-parameters. (c) Similar to

(a) for but for a ‘DNN (MLP)’ model with a hidden depth of 1.
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Supplementary Fig. 12 | Linear vs. nonlinear models of finely-parcellated rsfMRI activity. 400 cortical

parcels (Schaefer 400x17 [4]) and 50 subcortical ones (Melbourne Scale III [5]) were used. Panels and details parallel

those in Fig. 2 in the main text, except that only data from 32 randomly selected subjects and a single-fold cross-

validation has been used to reduce computational complexity. The half-session used as the test for each subject has

been selected at random and the remaining 7 half-sessions have been used for training, as in the main text. The

model with the highest R2 is now the ‘Linear (sparse)’ even though ‘VAR-3 (sparse)’ still has whiter residuals.
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Supplementary Fig. 13 | Linear vs. nonlinear models of unparcellated cortical rsfMRI activity. To

reduce computational complexity and be able to fit and validate all model families, we considered only vertices taken

from two randomly selected cortical parcels: (a-f) a left somato-motor area ‘17Networks LH SomMotB S2’ consisting

of 152 vertices, and (g-l) a right precuneus/posterior cingulate cortex area ‘17Networks RH DefaultA pCunPCC 1’

consisting of 177 vertices [4]). Panels and details parallel those in Supplementary Fig. 12.
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Supplementary Fig. 14 | Linear vs. nonlinear models of unparcellated subcortical rsfMRI activity.

To reduce computational complexity and be able to fit and validate all model families, we considered only voxels

from one randomly selected subcortical parcel (left dorsoanterior caudate, ‘CAU-DA-lh’ [5], consisting of 154 voxels).

Panels and details parallel those in Supplementary Fig. 12.
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1Supplementary Fig. 15 | Linear vs. nonlinear models of minimally pre-processed rsfMRI activity.

Data from HCP minimally preprocessed data without ICA-FIX denoising has been used in order to ensure that the

observed linearity has not stemmed from ICA-FIX. Panels parallel those in Fig. 2 in the main text, except that data

from a random selection of 10% (70) of subjects is used to reduce computational complexity.
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Supplementary Fig. 16 | Test-retest validation of model comparisons for rsfMRI data. Panels in each

row parallel those in Fig. 2a,b in the main text. Panels (a,b) show the results of a session-wise approach, where

the data from a single resting state session is used for both training (75%) and test (25%). Panels (c,d) show the

results of a leave-one-session-out approach where 3 resting state sessions (chosen at random) from a subject are used

for training and the last session from the same subject is used for test. Data from a random selection of 10% (70) of

subjects is used to reduce computational complexity.
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Supplementary Fig. 17 | The channel-wise R2 distribution of the zero model for iEEG data with

different subsampling ratios and the corresponding sampling frequency. As expected, higher subsampling

results in less smooth time series, which in turn results in lower ‘Zero’ R2, but also allows for using data from longer

time intervals in model fitting and validation with the same amount of memory.
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Supplementary Fig. 18 | Linear versus nonlinear models of 5-fold subsampled rsiEEG activity. Panels

parallel those in Fig. 3 in the main text. In panel (a), the box plot for the subspace method only has the top line

(100th percentile) because for more than 75% of data segments the subspace method was unable to complete (either

hung indefinitely or caused MATLAB to crash). For such cases we assign R2 = −∞, Q = +∞, run time = +∞ for

the subspace method, causing its boxplot to miss the third quartile and anything below that. A similar situation

holds in panels (c) and (e).
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Supplementary Fig. 19 | Linear versus nonlinear models of 25-fold subsampled rsiEEG activity. Panels

and details parallel those in Supplementary Fig. 18. Note that here the ‘AR-100 (sparse)’ (which includes network

interactions) has the highest R2 distribution, even though the ‘AR-100 (scalar)’ model still has the whitest residuals.

26



a
Brain-wise Pairwise

b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

e f

g h

1
Supplementary Fig. 20 | k-step ahead prediction of rsfMRI data. Panels in each row parallel those in

Fig. 2a,b in the main text for (a,b) k = 2, (c,d) k = 3, (e,f) k = 5, (g,h) k = 10. Data from a random selection of

10% (70) of the subjects is used to reduce computational complexity.
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Supplementary Fig. 21 | k-step ahead prediction of rsiEEG data. Panels in each row parallel those in

Fig. 3a,b in the main text for (a,b) k = 5, (c,d) k = 10, (e,f) k = 20. Data from a random selection of 84 iEEG

segments (1% of the total data used in the main text) is used to reduce computational complexity.
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Supplementary Fig. 22 | Model comparisons on iEEG data without channel removal. Panels (a-f) parallel

those in Fig. 3 in the main text, except that here no channels are removed due to being noisy as done in the main

text and explained under Methods and we only compared the top-performing linear model (‘AR-100 (scalar)’) with

nonlinear models. The result echos the results obtained in the main text and ensures that channel removal (although

performed according to standard practices and highly advisable from a data quality perspective) had not confounded

the superiority of the linear models. (g) The distributions of channel counts across all subjects before and after the

removal of noisy channels. The two distributions have medians 110.5 and 98 and means 108.8 and 95.4, respectively.
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