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Abstract 

Recent progress in network sciences has made it possible to apply key findings from control theory to 
the study of networks. Referred to as network control theory, this framework describes how the 
interactions between interconnected system elements and external energy sources, potentially 
constrained by different optimality criteria, result in complex network behavior. A typical example is 
the quantification of the functional role certain brain regions or symptoms play in shaping the temporal 
dynamics of brain activity or the clinical course of a disease, a property that is quantified in terms of 
the so-called controllability metrics. Critically though, contrary to the engineering context in which 
control theory was originally developed, a mathematical understanding of the network nodes and 
connections in neurosciences cannot be assumed. For instance, in the case of psychological systems 
such as those studied to understand psychiatric disorders, a potentially large set of related variables 
are unknown. As such, while the measures offered by network control theory would be mathematically 
correct, in that they can be calculated with high precision, they could have little translational values 
with respect to their putative role suggested by controllability metrics. It is therefore critical to 
understand if and how the controllability metrics estimated over subnetworks would deviate, if access 
to the complete set of variables, as is common in neurosciences, cannot be taken for granted. In this 
paper, we use a host of simulations based on synthetic as well as structural MRI data to study the 
potential deviation of controllability metrics in sub- compared to the full networks. Specifically, we 
estimate average- and modal-controllability, two of the most widely used controllability measures in 
neurosciences, in a large number of settings where we systematically vary network type, network size, 
and edge density. We find out, across all network types we test, that average and modal controllability 
are systematically, over- or underestimated depending on the number of nodes in the sub- and full 
network and the edge density. Finally, we provide formal theoretical proof that our observations 
generalize to any network type and discuss the ramifications of this systematic bias and potential 
solutions to alleviate the problem.  

Key words: Network Control Theory; Neurosciences; Canonical Network Models, Subnetwork  
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1 Introduction 

Characterized by a set of elements and their connections, networks are ubiquitous in neurosciences 1. 
On multiple levels of abstraction, the brain can be studied as a complex system where the interaction 
of a large number of elements, across many scales, enables the emergent properties referred to, 

collectively, as brain dynamics 2. Structural networks based on structural connectivity 3, functional 

networks based on functional and effective connectivity 4 and structural covariance based on the 

interrelation of gray matter properties 5 are among the most studied networks in neurosciences. 

Similarly, networks are being increasingly used to study cognitive and psychological constructs 6. In 
fact, network theory of psychopathology posits that mental disorders can be best conceptualized and 

studied as causal systems of mutually reinforcing symptoms 7.  

Importantly, most networks studied in neurosciences concern fundamentally dynamic processes that 
change over time. For instance, a network model of a mental disorder is most relevant to inform the 
clinician if it can capture how the symptoms temporally unfold and how they functionally affect each 

other. While a large number of statistics is developed to study networks in general (see Gosak et al.8 
for a review), this and similar questions are being increasingly approached using results from network 

control theory 9,10.  With close ties to the dynamical systems theory, this framework concerns how the 
interactions between interconnected elements, potentially constrained by a set of given optimality 
criteria, result in complex systemic behavior 11. Central to network control theory is the idea that in a 
system of interacting components, the change in one element causes a cascade of events in the whole 

system and that these changes follow a general mathematical structure 11–13. When applied to 
neuroimaging data, network control theory provides a novel mechanistic framework to describe neural 

activity and the nodes that mostly drive the temporal dynamics14,15. Such a dynamical approach lets 
us quantify the disposition of nodes to change the system rather than gaining a momentary snapshot 
from centrality metrices. A typical example is the quantification of the role that each brain region or 
symptom plays to shape the temporal dynamics of the brain activity or the clinical course of a disease 
16. For this and similar questions, assuming linear temporal dynamics, network control theory provides 
a set of measures that mathematically quantify the relevance of the nodes 17. Specifically, average-, 
and modal-controllability are among the most frequently-used measures in neurosciences to study 
neural 9,10,18–20 as well as psychological symptom dynamics21,22 and are suggested to measure the 
average ability of nodes to affect network dynamics (see Karrer et. al. for a detailed mathematical 
introduction 23).  

Despite the initial success and increasing popularity of employing network control theory in 
neurosciences, the statistical properties and reliability of these measures have remained poorly 
understood. Importantly, contrary to the engineering systems for which control theory was originally 
developed, a complete and agreed-upon understanding of the networks, nodes, and connections that 
are most relevant for each problem in neuroscience is far from available. For instance, in the case of 
psychological networks where nodes can resemble psychological states and edges model their 

interactions, even the variables that affect the phenomenon under study are only partly known 24. In 

fact, since most of the psychological variables are interrelated (see Robinaugh et al.25 for a current 
review), no psychological network can be assumed to be complete, as more nodes can always be added 

to any such network25. Similarly, in many studies involving neuroimaging data, the choice of the 
parcellation atlas, inclusion of subcortical regions in the analysis, the resolution of analysis (e.g. voxel 
based vs regional analysis), and even the regions to be included in the analyses (the so-called region 

of interest analysis 26) follow heuristics and statistical considerations rather than fundamental 
derivations. It is therefore critical to understand if, and how, the “estimated” controllability metrics 
that are computed from networks, consisting of only a subset of all possible nodes, deviate from their 
nominal values, if they were estimated based on more complete network (see Figure 1 for an 
illustrative example). To address this issue, we use a host of simulations based on synthetic data (see 
Figure 1 for an example) as well as data from MRI structural connectome to study the statistical 
properties of controllability metrics in subnetworks. We replicate all simulations in three canonical 
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network models, producing networks with different sizes, edge density, and number of nodes to 
compare the controllability metrics in the full- and in the sub-networks and finally provide a 
mathematical formulation for our main finding.  

 

Figure 1: Controllability metrics are biased if only part of the network is included in the analysis.  A) a 
representing example of a full network (above) and one subnetwork (below). Although not included in the 
calculations, the connection to other regions would still affect the controllability metrics of the nodes in the 
subnetwork. In this manuscript, we study if the deviation from the nominal values (i.e., those computed from the 
full network) systematically bias the estimations or shows itself as a zero-mean noise. (B) A simulated example of 
the deviation in controllability metrics. In this example, we simulated random graphs with 50 nodes with low 
connection density (see Methods) and compare the average controllability of the nodes with the estimated value 
when only a subnetwork with one fifth of the nodes is selected. The solid line represents the identity line. In the 
example here, we notice that the average controllability is mostly overestimated (the values lie mostly above the 
identity line), and the deviation seems to be largest for the nodes with highest original average controllability. 

2 Methods  

2.1 Network generation and subnetwork sampling 

A network, also called a graph, is mathematically defined as 𝐺 =  (𝑉, 𝐸) where 𝑉 = {𝑉1, … , 𝑉𝑁} 

represents the set of nodes (e.g., brain regions, set of symptoms, etc.) and 𝐸 = {(𝑉𝑖, 𝑉𝑗)| (𝑖, 𝑗)  ∈ 1: 𝑁} 

represents the set of edges connecting the nodes (e.g. white matter tracts, causal links across 
symptoms, etc.). The connections could be binary or weighted (different connections are similar or 
have different strength) and could be either directed or undirected (the connection between different 
nodes could have different strength in each direction, for instance, node 𝑉1 can influence 𝑉2 but not 
vice versa). A graph is therefore an abstraction of the relation among the constructing components of 
a system and is often used to relate the function to the structure of a system. Although every real 
graph is different from any other, it is useful to study the graph properties in families of graphs that 
have similar statistical properties. Following previous work on the assessment of graph properties, we 
simulate three canonical network types that are shown to be most representative of psychological and 

neural phenomena 27,28.  

 

1. Random networks, also called Erdős–Rényi (ER), are characterized by a fixed independent edge 
probability. That is, for a graph with 𝑁 nodes and an edge probability of 𝑝, each edge exists with a 
probability of 𝑝 and as such, the nodal degrees (the number of connections for each node) follow 

a binomial distribution with the expected value of 𝑝(𝑁
2

). Due to its property of being randomly 

interconnected, the random graph can be easily used as a baseline to compare to other network 
types. In this paper, we generate the networks using the code available from the MATLAB Central 

File Exchange 29.  
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2. Small world networks are characterized by the small distance between any two randomly chosen 
nodes in the graph and exhibits low short path length and low clustering coefficient. In this paper, 
we use the generation algorithm proposed by and named after Watts-Strogatz. For a graph with 
𝑁 nodes, this model has two parameters of 𝐾 and 𝛽 and that specify the mean degree and rewiring 
probability, accordingly. Small world networks result in highly interconnected regions of nodes, 
called hubs that are sparsely interconnected.  We generate the networks using built-in MATLAB 
function WattsStrogatz.   

3. Scale-free networks are characterized by the exponential distribution of the degree. In this paper, 
we use the scale-free network proposed by and named after Barabasi that has two parameters of 
𝑚𝑜 and 𝑚 that specify the seed and average degree. Scale-free models have a less hub-like 

structure than a small-world and are suggested to most closely resemble biological systems 30. The 
implementation of the models is done based on the code available from the MATLAB Central File 

Exchange31.  

In our simulations, for each network type, we generate undirected binary graphs. This choice is 
motivated by 1) the fact that binary networks are ubiquitous in neurosciences and have been shown 
to form a valuable model of the reality 32,33, 2) the controllability metrics behave similarly to weighted 
networks 28, 3) simulation of binary networks requires less number of parameters and the 
interpretation is clearer. However, to make sure that our results generalize to realistic settings, we 
compare the results based on synthetic binary networks to the brain structural data modeled by 
weighted network (section 3.3) and further provide formal theoretical proof for our main observations 
that is independent of the network types (section 3.4). In our simulations, we vary the number of nodes 
𝑁 between 10 and 200 and the mean degree between 0.2 × 𝑁 to 0.9 × 𝑁. By changing the mean 
degree, we aimed to include the full spectrum of sparse and densely connected networks as they can 

have fundamentally distinct statical properties8. For each full network, we subsampled nine 
subnetworks from which we selected a subset of the nodes (starting from one fifth, minimally 2 nodes 
for a full network of size 10) and their associated edges by following an iterative procedure: in the first 
step, we randomly selected one fifth of the nodes using the randperm function, integrated in MATLAB 
R2021b. For each new subnetwork with more nodes, we similarly selected random additional nodes 
from the whole set of nodes. Thereby each subnetwork builds on the previous node selection. In doing 
so, we made sure that the subnets with varying size are comparable in that they include incrementally 
bigger networks that encompass the previous smaller subnetworks. We repeated the whole procedure 
100 times to account for randomness in the selection process. All simulations were done in MATLAB 
2021b. 

2.2 Real Dataset and comparable simulation data 

To compare our simulations to real-world data, we use brain imaging data originally acquired and 
described by Muldoon and colleagues that is publicly available and preprocessed according to the best 

practices in the field 34. In short, eight subjects (mean age 27 ± 5 years) were scanned three times. In 
each session, they undergo Diffusion Spectrum Imaging (DSI), along with T1 anatomical scans. The DSI 
scans are sampled in 257 directions and are reconstructed in DSI studio using q-space diffeomorphic 

reconstruction (QSDR). More details on the data preprocessing can be found elsewhere 34. Structural 
brain networks are then obtained by subdividing the entire brain into 83 anatomically distinct brain 
areas (network nodes). For each of these networks with 83 nodes, we then randomly selected 
subnetworks (20-100%), similar to the networks used in our simulations. This time we use the 
randsample function to choose appropriate node indices of the given networks. Then we iteratively 
select additional nodes for each of the nine subnetworks. This subnetwork selection is repeated for all 
subnetwork sizes 20 times. In order to make simulation data comparable to the real dataset, we 
additionally simulate networks of a similar network size (N=83) and mean degree. We choose the mean 
degrees of those simulations according to the average degrees of the corresponding subsets of the 
real data. 
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2.3 Network Controllability Metrics 

Following the mainstream literature in studying controllability properties of brain networks 9, we 
assume a noise-free continuous-time linear time-invariant (LTI) dynamical system as follows: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑘𝑢𝑘(𝑡)          (1) 

where 𝑥(𝑡) ∈ 𝑅𝑁is the vector representing the values of the 𝑁 nodes in the network at time 𝑡, 𝐴 ∈
𝑅𝑁 × 𝑅𝑁 represents the networks (e.g. built as described in section 2.1) and models the interactions 

among the variables, 𝐵𝑘 is a canonical vector (a vector of length 𝑁 with all zero elements except a 1 in 

its 𝑘𝑡ℎ position), and 𝑢𝑘(𝑡) corresponds to an arbitrary input 40.  Within the framework of network 
control, controllability measures refer to the importance of single nodes in steering the network’s 
dynamics. In particular, average and modal controllability have been suggested to quantify the nodal 

ability to execute easy and difficult state transitions 23, respectively, and have been shown to be 

sensitive enough to relate to a wide range of brain cognitive and functional properties 16. Importantly, 
to estimate controllability properties, the network in equation 1 was normalized to ensure stability of 
the system. This was done by resetting the maximum eigenvalue of 𝐴 to less than 1 (i.e., 𝐴𝑛 = 𝐴/(1 +
𝜆𝐴)) where 𝜆𝐴 is the largest eigenvalue of 𝐴 23. Mathematically, average controllability (AC) of node 𝑘 
is defined as: 

 𝐴𝐶𝑘 =  𝑡𝑟𝑎𝑐𝑒(∑ 𝐴𝑛
𝑖 𝐵𝑘𝐵𝑘

𝑇𝐴𝑛
𝑇)𝑖)∞

𝑖=0          (2) 

where 𝐴 is the network under study and 𝐵 the 𝑘𝑡ℎ canonical vector (a vector of length 𝑁 with all zero 
elements except a 1 in its 𝑘’th position). Modal controllability (MC) is calculated by: 

 𝑀𝐶𝑘 = ∑ [1 − 𝜉𝑗
2(𝐴𝑛)]𝑣𝑘𝑗

2𝑁
𝑗=1           (3)  

where 𝜉𝑗 is the 𝑗’th eigenvalue and 𝑣𝑘𝑗 is the 𝑘’th element of the 𝑗’th eigenvector of 𝐴𝑛. Since average 

controllability is always above 1 and modal controllability below 1, for each original network 𝐴 and 
each subnetwork 𝐴𝑠, we define the deviations in 𝐴𝐶𝑠,𝑘 and 𝑀𝐶𝑠,𝑘 (computed over the subnetwork) as 

follows: 

Δ𝐴𝐶𝑠,𝑘 =   
𝐴𝐶𝑠,𝑘−𝐴𝐶𝑘

𝐴𝐶𝑘−1
           (4) 

Δ𝑀𝐶𝑠,𝑘 =   
𝑀𝐶𝑠,𝑘−𝑀𝐶𝑘

1− 𝑀𝐶𝑘
           (5) 

3 Results 

3.1 Deviation of estimated controllability metrics depends on nodal degree 

Controllability metrics are closely related to nodal degree 15. As such, we begin by studying the 
deviation of estimated controllability metrics in nodes with different degrees. Following the procedure 
outlined in Methods, we simulated examples of three network families and vary network sizes while 
keeping the mean degree and the ratio of nodes in the subnetworks constant. For each node and each 
graph, we calculated the difference in controllability metrics between the full and sub-networks (see 
equations 4-5). Our results show that, similarly across all network types, modal controllability is 
systematically underestimated (i.e., in most cases Δ𝑀𝐶 < 0), and that the underestimation is more 
prominent for the nodes with higher degree. Average controllability on the other hand shows a more 
complex behavior. It is on average underestimated for nodes with low degree (i.e., Δ𝐴𝐶 < 0), but it is 
overestimated for nodes with higher degree (i.e., Δ𝐴𝐶 > 0). Both effects tend to be larger for the 
smaller networks and for the nodes with higher degree (Figure 2). Interesting though, our results also 
show that average controllability is generally less biased compared to modal controllability for a wide 
range of network parameters (i.e., (‖Δ𝐴𝐶‖ < ‖Δ𝑀𝐶‖). In the simulations shown in Figure 2, the 
deviation in modal controllability (i.e., ‖Δ𝑀𝐶‖) is larger than the deviation in average controllability 
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(i.e., ‖Δ𝐴𝐶‖) in more than 80% of all nodes across all network types. In larger networks (i.e., network 
size >50), this ratio increases to 95%. 

 

Figure 2: Deviations of controllability metrics relate to the normalized nodal degree (z-scored nodal degree). 
We simulated networks with varying sized while keeping the mean degree (= 𝑁 × 0.3) and the ratio of nodes in 
the subnetworks constant (𝑁 × 0.4; see Methods for details). A-C) AC is underestimated for nodes with small and 
overestimated for nodes with high degree. D-F) MC is underestimated for all nodes, but the bias is most prominent 
for the nodes with highest degree.  

Having established that the controllability metrics systematically deviate in subnetworks, we further 
studied how this deviation relates to the edge density. For this, we simulated networks (𝑁 =  30) with 
varying mean degree (see Methods for details). Our results show that the modal controllability is 
systematically underestimated across all network types, and the deviation is comparable across all 
values of edge density. Average controllability is however overestimated for graphs with low edge 
density and underestimated for graphs with high mean degree (see Figure 3 and Supplementary Table 
S1). Interestingly, similar to the results in the previous section, we observe that across a large number 
of parameters, average controllability is on average less biased than modal controllability (‖Δ𝐴𝐶‖ <
‖Δ𝑀𝐶‖, Figure 3). Related, our results show that the deviation of controllability measures is not the 
same for all the nodes and subnetworks, with the variance of the deviations being largest for smaller 
subnetwork sizes and for the networks with lower mean degree.  
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Figure 3: Deviation of controllability metrics for networks with varying mean degree and fixed size (N = 30). In 
these simulations networks are generated with the maximum mean degree (i.e., 100%) of 28 (i.e., each node in 
each network has on average 28 connections to other nodes) and the minimum mean degree of 10 which is 36% 
of the maximum range in these simulations. The figure shows the mean value of Δ𝐴𝐶 and Δ𝑀𝐶 averaged over all 
nodes and simulated networks where the errorbars represent the range of these deviations across the nodes 
within each network. Each complete errorbar represents one standard deviation.  A-C) Deviation of average 
controllability across. D-F) Modal controllability is underestimated independent of the edge density.  

3.2 Deviation of estimated controllability metrics depends on network size 

Previous results demonstrate that the controllability deviation depends on the size of the selected 
subnetwork. We further asked, if beyond the selected number of selected nodes (subnetwork size), 
the size of the full network would affect the controllability deviation. To address this question, we 
simulated networks with a fixed mean degree (= 𝑁 × 0.3) and estimated the controllability deviation 
while systematically changing the size of the networks and subnetworks. Our results show that average 
controllability is systematically over, and modal controllability is systematically underestimated (see 
Figure 4 and Supplementary Table S1), but the bias is largest for smaller subnetworks. The size of the 
full network seems to be less relevant for the controllability deviation and is different between the 
controllability metrics where larger network sizes are associated with higher deviation of average and 
lower deviation of modal controllability. In line with our previous simulation, we also note that, the 
deviation of modal controllability is much larger than average controllability (up to five times) and that 
the deviation from the nominal value varies greatly among network nodes. 
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Figure 4: Controllability deviation for different network sizes. The figure shows the mean value of Δ𝐴𝐶 and Δ𝑀𝐶 
averaged over all nodes and simulated networks where the errorbars represent the range of these deviations 
across the nodes within each network. Each complete errorbar represents one standard deviation. A) Average 
controllability is systematically overestimated (i.e., ‖Δ𝐴𝐶‖ > 0) and B) Modal controllability is systematically 
underestimated (i.e., ‖Δ𝑀𝐶‖ < 0) across all network types. The deviation is highest for small networks and for 
modal controllability. It is interesting to note that for small world networks, one sees that the deviation for 
average controllability for very small number of nodes does not follow the same pattern as the other networks. 
This, we believe, relates to the instability of the network generation for very small sizes.  

3.3 Deviation of estimated controllability metrics in brain networks 

Further, we tested if the deviation we estimated from our simulations aligns with real data. To do this, 
we used data from brain structural connectome of 8 subjects in 3 sessions each with 83 brain regions 
(see Methods). We simulated networks comparable to the MRI data, having the same number of nodes 
and mean degree. Based on these networks, we sampled 9 different subnetworks where we included 
between 0.2 to all the nodes with a step site of 0.1. The results show that the deviation in average and 
modal controllability is similar to our models for all subjects and in all sessions (see Figure 5 for the 
group data, Supplementary Figure S1 for individual participants, and Supplementary Table 2 for the 
data including standard deviations across the nodes), thereby confirming that the results are 
generalizable.  

 

Figure 5: Comparing deviations of controllability measures of brain networks to simulations averaged over all 
subjects and simulations. (A) Deviation of average controllability for the brain structural connectome compared 
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to the simulations. Here we built networks with 83 nodes (as in the brain structural connectome, see Methods for 
details) with the same mean degree as in the brain data. We sampled nine subnetworks where we varied the 
subnetwork size between 20% to 100% of the original nodes. The dashed line shows the identity line. (B) illustrates 
deviation of average and modal controllability for different subnetworks (including between 20% to 100% of node 
in 9 steps) from whole networks with N=83.  The average deviations of all networks (Random, Scale Free and 
Small World, as well as DSI) are depicted together with the interindividual averages across scans.  

3.4 Theoretical results 

In previous sections, we experimentally established, using synthetic as well as neuroimaging data, that 

average controllability is mostly over- and modal controllability is mostly underestimated (Figures 2-

5). Here, we provide a formal theoretical analysis that explains this trend based on the effects of 

network subsampling on network eigenvalues. Consider, for simplicity, random symmetric matrices 

𝐴𝑁×𝑁 with independent (modulo symmetry) and identically distributed edge weights. By the well-

known semi-circle law for the spectra of random matrices 35 if one keeps the distribution of edge 

weights independent of the network size, the largest eigenvalue of 𝐴 grows as 𝑁 while the remaining 

𝑁 − 1 eigenvalues of 𝐴 (a.k.a. the eigenvalue “bulk”) grow as √𝑁. Therefore, once we normalize A by 

dividing it by its largest eigenvalue (as almost always done to ensure stability in controllability analyses 
9,16), the bulk of eigenvalues of 𝐴 decays as 1/√𝑁. Therefore, for large networks (dozens of nodes or 

more), normalized 𝐴 has one eigenvalue equal to 1 and the rest of eigenvalues near 0.  Now, by the 

Cauchy’s Interlace Theorem for eigenvalues 36, the eigenvalues of 𝐴𝑠 “interlace” (lie between pairs of) 

the eigenvalues of 𝐴. Importantly, this means that the largest eigenvalue of 𝐴𝑠 (call it 𝜇1) lies between 

1 and the bulk of eigenvalues of 𝐴, while the remaining (bulk) of eigenvalues of 𝐴𝑠 lie between the 

bulk of eigenvalues of 𝐴.  Since the bulk of eigenvalues of 𝐴 are small (order 1/√𝑁) and all lumped 

together, so are the bulk of eigenvalues of 𝐴𝑠. Therefore, on average, the bulks of 𝐴 and 𝐴𝑠 are nearly 

indistinguishable. However, since 𝐴𝑠 is re-normalized to make its largest eigenvalue equal to 1, all of 

its eigenvalues are multiplied by 
1

𝜇1
> 1, hence boosting its bulk above that of 𝐴. Thus, after 

normalization, both 𝐴 and 𝐴𝑠 have one eigenvalue equal to 1 and one bulk of small eigenvalues, where 

the bulk of 𝐴𝑠 is an order of 1/𝜇1 larger than that of 𝐴. This fact nicely explains the mainly negative 

(positive) trends we observed in Δ𝑀𝐶 (Δ𝐴𝑐) since, as we showed in our recent work 18, the average 

(over all network nodes) AC and MC have the simple expressions as shown in equations 6-7. 

𝑀𝐶 = 1 − ⟨𝜉𝑗
2(𝐴)⟩          (6) 

𝐴𝐶 = ⟨
1

1− 𝜉𝑗
2(𝐴)

⟩           (7) 

where ⟨. ⟩ denotes average over all 𝑗. In words, average MC is negatively correlated with mean squared 

network eigenvalues (and hence smaller in subnetworks), while average AC is positively correlated 

with mean squared eigenvalues (and hence larger in subnetworks).  

Note, however, that this analysis provides only a first-order approximation to the complex and multi-

dimensional effects of network subsampling on average and modal controllability. In particular, 

relatively little is known about the effects of matrix sparsity (corresponding to mean nodal degree in 

our results) on the asymptotic scaling and interlacing properties of eigenvalues 37. Accordingly, the 

extension of our analysis to also explain the effect of mean nodal degree on the over/under-estimation 

of Δ𝐴𝐶 and Δ𝑀𝐶 remains an open problem and in need of further research. 

4. Discussion 

In neuroscience, network control theory is increasingly used 10,18,19,21,38, for good reasons, to study 

neural, biological, and psychological constructs. It relates fundamental theory-driven results from 

controls literature to the study of networks that are the natural points of interest in neurosciences14. 
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However, as with other computational approaches, the added value of such synergies can only be fully 

exploited once the statistical properties and theoretical prerequisites have been thoroughly 

investigated 15,39,40. Here, building upon the notion that biological and psychological networks are 

fundamentally different from the systems studied in the engineering context, we studied if the 

estimated controllability metrics would manifest any systematic deviation from their nominal value. 

Simulating a large number of networks of varying types and sizes, we found that average and modal 

controllability, two of the most widely adopted controllability metrics in neuroscience23, are 

systematically biased and that from these two, average controllability seems to be the one with lower 

bias. Indeed, as Figure 5B illustrates, in a setting similar to those often used in neuroimaging studies, 

the deviation in average controllability is up to three times smaller than that of modal controllability. 

Importantly, we further provided theoretical results that formally supports our empirical observations 

independent of network model, size, and edge density.  

Beyond the subnetwork size, nodal degree seems to be an important factor in the size of the deviation. 

Since nodal degree is also independently related to the controllability metrics9,15, our results suggests 

that any statistical test comparing controllability metrics should correct for the effect of nodal degree. 

Otherwise, the associated effects could be a result of inflated controllability metrics or the degree itself 

rather than the topological properties embodied by controllability metrics. Relatedly, our results 

suggest that the controllability metrics for larger subnetworks are less deviated. While this is 

mathematically a trivial phenomenon, it has important ramifications in practice. In the context of 

neuroimaging studies, whole-brain analysis is more likely to be accurate and in the context of 

psychological networks, including more items is likely to benefit the robustness of the metrics. Yet, 

larger networks also require more data to be reliably estimated (e.g., Epskamp et al.41), pointing to a 

trade-off that every researcher will need to consider in their experiment design. Importantly, our 

observations in this paper do not directly undermine the application of controllability metrics when 

the same metric is compared across the nodes within the same network. However, since no two 

networks are completely identical, and different controllability metrics are associated with different 

biases, our results warrant caution when tests are carried out across networks or metrics. 

Finally, two notes are warranted concerning the various ways in which network models can be 

extracted and the results presented in this paper: 1) the estimation of the adjacency matrix 𝐴, and 2) 

the structure of subnetworks. It is common practice in the applications of network control theory in 

neuroimaging applications to obtain the adjacency matrix 𝐴 from structural connectome data 

extracted from diffusion imaging 38. Alternative to this approach is extracting the adjacency matrix 

based on the temporal correlations observed in the functional data 42, an approach that is also heavily 

used across psychological sciences 41 although more complex models based on generative models are 

being employed as well 43,44.  Critically, since these models are often arbitrarily weighted, they are 

commonly first normalized before estimating the controllability properties23. As shown in the formal 

derivation above (section 3.4), the normalization of the 𝐴 matrix plays a major role in the bias we 

empirically observe in subnetwork-estimated controllability metrics. This normalization is neither 

necessary nor recommended from a pure control perspective – all controllability metrics can be 

computed for stable systems (even if the largest eigenvalues is not exactly one) and many (using finite-

horizon controllability Gramians) are computable for unstable systems. However, the arbitrary 

weighting of the networks makes normalization almost inevitable 23. Networks learned using the 

system identification theory 45, on the other hand, have well-defined edge weights computed from 

nodal time-series data regardless of the selection of network nodes from which data has been 

recorded. This can in turn significantly improve the reliability of controllability metrics and limit the 

effect of un-measured nodes to an increase in the unexplainable variance of model predictions. 

Further, we based our analysis on the assumption that the statistical properties of the connectivity are 

the same across sub- and whole-networks. Based on this assumption, we used an incremental 
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approach of building subnetworks where we systematically increased the size of the subnetworks to 

close to the whole network by addition to the previously set of nodes. Further research is essential to 

test if and how our results would change in cases where this assumption is challenged. For instance, in 

the study of networks based on MRI data in different spatial resolutions, it remains unclear if the 

controllability and thus the functional ability of a region remains the same across different spatial 

scales. 

4 Conclusion 

Our results warrant caution when using engineering motivated metrics in neurosciences. Network 
control theory has a lot to offer but the many differences between engineering systems for which this 
framework is developed and neurosciences must be properly addressed. Further, it is worth 
highlighting that we here analyzed average and modal controllability only due to their prevalence in 
the literature, but network control theory provides a significantly broader picture than these metrics 
such as a systematic approach to estimate the required energy for state transitions 46,47. Future work 
should analyze similar (sub)network size effects on other controllability metrics.  
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