
communications biology Article

https://doi.org/10.1038/s42003-024-06859-2

Predictivemodelingof evoked intracranial
EEG response to medial temporal lobe
stimulation in patients with epilepsy
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Despite promising advancements, closed-loop neurostimulation for drug-resistant epilepsy (DRE) still
relies on manual tuning and produces variable outcomes, while automated predictable algorithms
remain an aspiration. As a fundamental step towards addressing this gap, here we study predictive
dynamical models of human intracranial EEG (iEEG) response under parametrically rich
neurostimulation. Using data from n = 13 DRE patients, we find that stimulation-triggered switched-
linear models with ~300ms of causal historical dependence best explain evoked iEEG dynamics.
Thesemodels are highly consistent across different stimulation amplitudes and frequencies, allowing
for learning a generalizable model from abundant STIM OFF and limited STIM ON data. Further,
evoked iEEG in nearly all subjects exhibited a distance-dependent pattern, whereby stimulation
directly impacts the actuation site and nearby regions (≲ 20mm), affects medium-distance regions
(20 ~ 100mm) through network interactions, and hardly reaches more distal areas (≳ 100mm). Peak
network interaction occurs at 60 ~ 80mm from the stimulation site. Due to their predictive accuracy
and mechanistic interpretability, these models hold significant potential for model-based seizure
forecasting and closed-loop neurostimulation design.

Closed-loop neurostimulation has long been considered a promising
alternative to highly invasive resection surgery for individuals with drug-
resistant epilepsy. Extensive research over the past decades has high-
lighted its numerous advantages, including short-term benefits like
electric stimulation-induced desynchronization of neuron firing to
counteract seizures, as well as long-term benefits such as the modification
of cortical excitability via neuroplasticity1,2. Nevertheless, its state-of-the-
art clinical implementation, the RNS®system from NeuroPace, Inc1, has
known limitations including a lack of mechanistic understanding3,
simplistic detection algorithms, and non-adaptive pre-selected stimula-
tion parameters1,4,5. As a result, though highly effective in some indivi-
duals, RNS outcomes vary widely among patients, and only 18% of those
receiving RNS implantation experience seizure freedom for a period of 1
year or longer6. To establish neurostimulation as a robust treatment with
predictable outcomes, it is vital to have the ability to predict the future
trajectory of neural activity, both in the absence and presence of neu-
rostimulation. Such predictive modeling, in particular, opens the door to
a host of model-based detection and control algorithms that have been

developed and studied for decades in engineering7–9 but often need
accurate predictive models to succeed.

Despite decades of research, accurate predictive models of an epileptic
brain’s response to neurostimulation are largely lacking. A large group of
studies have developed models that primarily provide explanations for the
disorder on a phenomenological level10–13. Thesemodels have been used for
extracting features in seizure detection algorithms14–21, conducting stability
analysis8,22, and localizing seizures23. However, these models are not tuned
using subject-specific stimulation data and are thus inadequate for robust
andpredictable closed-loop control designover thediverse set of parameters
for neurostimulation8,9. A second body of work has pursued more accurate
and/or subject-specificmodels using detailedfinite-elementmodeling of the
brain’s electromagnetic response toneurostimulation24–27. This is oftendone
in conjunction with biophysical modeling and used for the analysis and
optimization of the impact of electrode placement and (de)polarization
activity of neuronal tissue. Nevertheless, thesemodels are often not built for
and capable of accurate time-series prediction, particularly at a large-scale
network level beyond the local stimulation site.
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Finally, a third body of work has specifically pursued data-driven
predictive modeling of the brain’s response to neurostimulation. Multiple
studies have used linear autoregressive (AR)models to fit the neural activity
triggered by neurostimulation28–31 while others have opted for nonlinear
kernel-based autoregressive modeling32,33. However, these works have
mainly focused on univariate modeling (i.e., modeling the
neurostimulation-evoked response at a single measurement source), while
modeling the evoked network response has remained more challenging34–36.
Furthermore, a significant portion of these studies relies on simulated data,
data from non-human primates, or data in the absence of stimulation. As
such, accurate subject-specific predictivemodels of brain network dynamics
under neurostimulation have remained largely lacking. Finally, several
works have used cortico-cortical evoked potentials (a particular form of
evoked iEEG response to intracranial stimulation) to study effective brain
connectivity37–39. Theseworks, however, differ from the present study in that
they do not pursue dynamical system modeling of the evoked response, as
pursued herein.

In this study, we present a rigorous data-driven framework for devel-
oping subject-specific network dynamical models of intracranial electro-
encephalography (iEEG) dynamics in the absence and presence of medial
temporal lobe electrical stimulation in patients with epilepsy. We use
recordings from the Restoring Active Memory (RAM) Public dataset40,
which offers a particularly rich resource for data-drivenmodeling due to the
presence of factorial parameter search experiments where multiple stimu-
lation parameters are varied in extensive combinations, as illustrated in
Fig. 1.We follow a standard system identification approach41 wheremodels
are compared based on the accuracy of their one-step-ahead predictions
(namely, predictions of iEEGmeasurements at any sample t based on all the
available histories of past iEEG and stimulation data up to sample t− 1).
This emphasis on predictive modeling is not only essential for closed-loop
seizure prediction and suppression, as noted earlier, but also provides the
means for studying Granger causality among the input (neurostimulation)
and output (iEEG) variables, as described next.

Results
Model
The ability of any computational model to explain data depends heavily on
its chosen structure. In this work, unless when otherwise stated, we use a
bilinear model of the form

ΔykðtÞ ¼ ak þ UðtÞck
� �

TyLk ðtÞ þ bTku
MðtÞ þ

XC
i¼1
i≠k

dTk;iy
P
i ðtÞ ð1Þ

to model individualized (subject and channel-specific) iEEG response to
stimulation. In this model, the one-step change in the iEEG activity of the
kth channel, i.e., Δyk(t) = yk(t+ 1)− yk(t), is predicted linearly based on
the past L samples yLk ðtÞ 2 RL× 1 of iEEG in that same channel, the past
M samples uMðtÞ 2 RM × 1 of stimulation input, the past P samples
yPi ðtÞ 2 RP × 1 of iEEG in other channels, and the bilinear interactions
UðtÞyLk ðtÞ between the stimulation input and iEEG output (cf. Methods
for details). While we focus on one-step ahead prediction, our results and
methods can be extended to modeling the k–step ahead response as
shown in Supplementary Fig. 6. This bilinear choice of the model
structure is motivated by the long history of bilinear modeling in
neuroscience42 as well as our prior work showing the linearity of resting
state (i.e., STIM OFF) iEEG43. We thus depart from linearity towards
highly complex models (e.g., deep neural networks) gradually and only to
the extent supported by data. Bilinear models provide a natural first step
in moving beyond linearity44–46 and are thus preferred unless more
complex models provide substantial improvement in accuracy, a topic to
which we will return later.

iEEG data contains about 300ms of causal historical depen-
dence, despite significant heterogeneity across subjects and
channels
Unlike models with latent states such as linear state-space models41,47 or
hidden Markov models48, autoregressive models predict future outputs
based on the history (lags) of observed data, i.e., inputs and outputs. This
creates a trade-off, where AR models have significantly larger state
dimensions in return for having the state fully observed (and therefore
known more accurately) and interpretable. A critical structural parameter
for AR models is thus the amount of input and output history used for
prediction. Notably, this is different from and can be significantly smaller
than, the decay of iEEG autocorrelation. While the latter answers the
question of whether the output at two separate time points is merely cor-
related, the former answers a causal question, in the Granger sense of
causality49, of whether any piece of data in the past provides additional
information beyond what is available in the less-distant past.

Figure 2a shows how autoregressive models with different amounts of
autoregressive (L) and input (M) history compare across all subjects and
channels. In general, the amount of historical dependence that gives the
highest predictive accuracy greatly varies among subjects and even different
channelswithin each subject. In fact, for almost all combinations ofL andM,
we can find at least one subject-channel where that combination is optimal.
This vast heterogeneity exists regardless of the statistical measures for
comparison (mean- or median-based), and reinforces the need for sub-
individualized data-driven modeling, as opposed to normative models
which explain seizure dynamics generically. In what follows, we evaluate
each model on the basis of its “win rate”, i.e., the percentage of subject-
channels for which that model had the smallest cross-validated pre-
dictive error.

Increasing the amount of autoregressive history (L) almost mono-
tonically improves predictive accuracy, but only marginally so beyond
200–300ms. Specifically, models with larger L have larger win rates across
subjects and channels (Fig. 2b, bar plot), but increasing autoregressive
history from 300 to 500ms only improves win rate by 10% (Fig. 2b, dashed
horizontal line). This trend can also be seen from average prediction error
(average normalizedMSE (NMSE) across all subjects and channels), which

Fig. 1 | Illustration of the iEEG data used in this work. a Each cluster of adjacent
blue circles corresponds to contacts on a single electrode (warped due to registration
to standard space). u(t) encodes the applied stimulation pulse train, including both
its frequency and amplitude. yk(t) refers to the recorded iEEG signal of the kth
electrode ordered based on its closeness to the stimulation site. b Stimulation
locations across the 13 subjects in this study, shown in standard MNI space. Only
subjects withMedial Temporal Lobe (MTL) stimulation were selected (see Methods
for details).
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drops significantly when increasing L from 1ms to 50ms and decays fairly
notably until about 200–300ms but saturates thereafter (Fig. 2b, solid line).
Unlike autoregressive history, the amount of past input history (M) that has
a causal effect on evoked iEEG response varies greatly among subjects and
channels (Fig. 2a). For about two-thirds of the subject-channels, some
(though still heterogeneous) amount of input history improves predictive
accuracy, while for other subject-channels inclusion of any amount of input
history, even from the immediate past, lowers predictive accuracy. This lack
of direct causal effect in the latter group is consistentwith thehypothesis that
not all channels are directly excited by stimulation, but rather receive the
impact of stimulation through complex spatiotemporal interactions with
other channels. Such network-mediated stimulation effects may also be
small enough to be statistically undetectable compared to baseline
fluctuations43, characterizing a group of subject-channels with no evoked
response, whether direct or indirect.

Given the relatively fast sampling rate of iEEG (1000Hz), it is also
possible that successive input/output samples contain redundant, correlated
information and need not all be included in the model. To test this
hypothesis, we compared the above-described models with densely-
sampled input-output history against sparsely-sampled alternatives where
both the input and output are sampled every τ milliseconds (τ > 1). The
samenumberof lagswas usedacross thedense and sparsely sampledmodels
to ensure fair comparisons.We find that at lowmodel lags, sparse sampling
ismore beneficial indicating that the inherent process ismore dependent on
dynamics over longer time horizons as opposed to highly correlated dense
samples.With increasing lags however (Fig. 3), densemodels achieve higher
predictive accuracy, even though sparse models with the same number of

lags have access to a wider window for prediction (τLms for a sparse model
compared toLms in a densemodel). In particular, this result discourages the
use of delay embedding50 despite its theoretical appeal51, and instead
encourages investing the available computational power (which is often
extremely limited in chronic implants) into learning temporally short-range
predictive relationships.

iEEG evoked response is best described by switched-linear
dynamics
The functional form, extent, and even the very presence of nonlinearity
in the neural dynamics of patients with epilepsy has been the topic of
much debate52,53. In our recent work43, we showed that resting state
(interictal, STIM OFF) iEEG dynamics are best described by linear
autoregressive models. However, our examination of STIM ON and
STIM OFF periods reveals notable distinctions in the optimal auto-
regressive parameters (i.e., ak in (1)) when fit separately for each dura-
tion. Therefore, we first sought direct evidence for whether the presence
of stimulation makes iEEG dynamics nonlinear. We tested if parameter
ak trained using resting state data (i.e., STIM OFF) can generalize over
STIM ON durations. We did this by comparing 2 linear models across
each subject: (1) an ARX model trained over STIM ON duration (Stim
Model in Fig. 4a) and (2) the StimModel with the ak vector replaced with
that trained using STIM OFF data (RS Model in Fig. 4a). If the dynamics
in the STIM ON and STIM OFF durations were indeed similar, we could
expect the above 2 models to perform similarly when we test them on
unseen data. Moreover, an agreement between these models would
indicate that the iEEG dynamics can be captured largely by a single linear
model. However, our analysis in Fig. 4a, b showed that the Stim Model
performs significantly better on unseen data than the RS Model and thus
indicated the presence of stimulation-induced nonlinearity. Note that the
lag parameters L and M for the above experiment, as well as for the
remainder of the analysis in this work, were chosen based on the results
shown in Fig. 2. For each subject-channel, we used the optimal (L, M)
pair, as indicated by the median-based performance.

Arguably, the simplest nonlinear choice to account for the observed
differencesbetweenSTIMONandSTIMOFFdynamics is a switched-linear
model that simply switches between one linearmodel during STIMONand
another linear model during STIM OFF. This is also a special case of the
bilinear model in (1), wherein the gating term UðtÞ ¼ 1 if t is within a
stimulation duration and 0 otherwise. A direct comparison between ARX
and switched ARX models showed that the switched ARX model was

Fig. 3 | Effect of sparser temporal sampling of autoregressive lags on model
accuracy. For each channel in the data, we considered two categories of models: ARX
models with dense temporal sampling (i.e., iEEG lags are spaced 1ms apart) and ARX
models with sparse temporal sampling (i.e., iEEG lags are spaced τ > 1ms apart). For the
latter, the exact sampling time τ was chosen separately for each channel based on delay
embedding theory using the method described in ref. 70. We trained sparse and dense
models of various lags (L ∈ 1, 50, 100, 150, 200, 250, 300) and plotted the normalized
MSE across subject-channels as a function of L. Although the sparse ARX model with
L lags has access to amuch larger duration of iEEG history (i.e., τLms) in comparison to a
dense model (i.e., Lms), the former has lower accuracy. Thus, temporally short-range
models with higher sampling rates are more predictive.

Fig. 2 | Model order distribution and performance across subjects and channels.
For each subject-channel, we trained ARX models of various orders (L, M)
(L ∈ {0, 1, 50, 100,…, 500} andM∈ {0, 100, 200, 300}) and determined the pair (L,M)
that resulted in themodel with the best fit over unseen data. aWeplotted theWin rate i.e.,
the percentage of times each (L, M) pair is the best across all considered channels
(n= 1547). We used two definitions of the best model: based on the mean ((L, M) pair
that resulted in the lowest MSE) and based on the median ((L,M) pair that is superior to
other model orders as per Wilcoxon signed-rank test (see Methods)). Irrespective of the
definition used, we saw that larger autoregressive lags (i.e., L≥ 400) are favored across
more than 90% channels. About 66% of the modeled channels favored a non-zero input
lag (i.e., M> 0) and hence are causally affected by direct stimulation input. b We also
plotted the validationMSE (averaged across allM) as a function of the autoregressive lags
(L) (left y-axis) and found that although a larger L is more favored, doing so only resulted
in a marginally better fit in comparison to a model with 200–300 autoregressive lags. In
the same figure, we also plot (right y-axis) the “statistical win rate”, defined as the
percentage of channels where a model of order L has an MSE that is statistically similar
(i.e., within ±2 S.E.M) to the MSE corresponding to the best model. From this plot, we
observed that a model with L= 300 is sufficient for nearly 90% of all the channels.
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favored over its linear counterpart for the majority of subject-channels, as
illustrated in Fig. 4c.

Nevertheless, the comparison of the descriptive ability of a switched-
linear model to that of a simple linear model has to be made from a more
nuanced level taking into account the potentially confounding effects of

other model attributes, such as the presence of network interactions and
direct STIM effect. Motivated by this, we compared a host of linear models,
such as the VARXmodel (linear ARXmodel with network interactions) or
AR model (linear AR model), with their switched-linear counterparts. As
shown in Fig. 5a, independent of the statistical measure for comparison
(mean or median), the switched-linear class of models is more consistent
with the data in the vast majority of cases. That being said, there is still vast
heterogeneity among subjects and channels in what kind of switched-linear
model achieves the highest predictive power, while even some (about 10%)
of subject-channels arebest describedbya single linearmodel throughout all
STIMON and STIMOFF durations. The distributions of win rates for each
subject also show a consistent preference for switched-linear models across
all subjects, even though vast heterogeneity also persists in these distribu-
tions, both within and between subjects (Fig. 5b).

A further aspect of the large heterogeneity in the channel models in
Fig. 5 is whether stimulation has a direct causal effect on iEEG evoked
response. We observed that stimulation effects are predominant in more
than 75% cases across subject-channels. This observation was further vali-
dated when we conducted a bootstrapping experiment (see Methods) over
the input lags and found empirical evidence for direct stimulation effects in
about 95% of the 75% subject-channels considered in the test.

Despite the higher predictive accuracy of switched-linear models
compared to linear ones, their binary gating enforces a single linear model
for all STIM ON durations, irrespective of the stimulation’s frequency and
amplitude. A fully bilinearmodel withUðtÞ ¼ uðtÞ in the formdescribed by
Eq. (1) can potentially alleviate this issue by allowing the stimulation
waveform to directly modulate the linear dynamics using the interaction
term UðtÞcTk yLk ðtÞ. A third, middle-ground alternative is to employ an
amplitude-weighted switched-linear (AWSL) model where the gating term
UðtÞ is determined by the amplitude of the stimulation rather than a binary
signal. However, we found the switched-linearmodel to bemore consistent
with the data compared to the more complex bilinear and AWSL alter-
natives (Fig. 6). This is remarkable not only fromabiological perspective but
also from an engineering perspective given the large body of literature on
control design for switched linear systems54.

While we notice the lack of benefit in bilinear over switched-linear
models, this does not remove the possibility that significantlymore complex
models still explain stimulation-evoked iEEG response better. When
compared against some of the most commonly known nonlinear models,
switched-linearmodels were highly predictive across channels, second only
to feedforward Artificial Neural Networks (ANNs) with ReLU activation.
Note, also, thatANNswithReLU activation are also switched-linearmodels.
In fact, when compared against ANNs with tanh nonlinearity, those with
ReLU activations explained the data significantly better. Nevertheless,
compared to a simple switched-linear model in Eq. (1), the ANNs with
ReLU activation have two orders of magnitude more parameters, combi-
natorially more switching regions, and almost no biological interpretability.
Thismakes the former, simpler switched-linearmodel potentially preferred

Fig. 4 | Evidence of nonlinear dynamics and switching behavior. We tested an
ARXmodel trained using STIMON (Stimmodel) data against a similar model with
the ak matrix replaced by that trained using STIM OFF data (Resting State (RS)
model). a The performance (MSE) difference between these models and b their
respective win rates, indicating the presence of stimulation-dependent nonlinearity.
cWhen we account for the nonlinearity using a switched ARXmodel, we found it to
be more descriptive of the iEEG response in comparison to a single ARX model.

Fig. 5 | Comparison of linear and switched-linear models. aWin-rate distribution
across all subjects and channels. Irrespective of the criterion used, switched-linear
models were observed to outperform linear models for more than 90% of the
channels. The preference for modeling the causal effects of stimulation and network
interactions seemed to vary greatly among channels. b A zoomed-in version of the
plot in (a) shows the subject-wise distributions of the model win rate.

Fig. 6 | Comparison of switched-linear models with other forms of nonlinear
models. aWe compared the switched-linear model against an amplitude-weighted
(AW) switched-linearmodel and a fully-bilinearmodel. As indicated by the win rate
across, we found switched-linear models to be most predictive across all subject-
channels. bWhenwe compared switched-linear to other forms of nonlinear models,
we found that the artificial neural networks (ANNs) resulted in the lowest MSE and
this result was followed by the switched-linear model (*p < 0.05).
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for mechanistic understanding and model-based closed-loop seizure sta-
bilization, particularly in chronic implants with limited logic gates and
battery resources.

Network-mediated input spread is consistently distance-
dependent
A critical feature in the dynamics of any iEEG channel is network interac-
tionswithother channels, both fromanetwork control perspective aswell as
a mechanistic understanding of how stimulation effects spread throughout
the brain. Network interactions are captured by the term

PC
i¼1
i≠k

dTk;iy
P
i ðtÞ in

Eq. (1), where we refer tomodels with at least one nonzero dk,i (at least one
nonzero effective connectivity between two electrodes) as vector auto-
regressive (VAR). In our recentwork43, we foundVARmodels to be less, not
more, predictive of resting state iEEG compared tomodels with no network
interactions (all dk,i = 0), indicating a lack of causal effects among the
channels at rest.

The presence of stimulation, on the other hand, has the potential to
boost causal network interactions through which the stimulation effect can
spread. As noted earlier (cf. Fig. 2a), across all subjects, we found no direct
causal effect from stimulation input to about 25% of the channels. Never-
theless, several of such channels still demonstrate clearly heightened activity
during STIM ON periods, therefore hinting at an indirect causal effect of
stimulation mediated by network interactions (Fig. 7).

Assuming that the spread of the stimulation through the brain con-
nectome is the main reason for the significance of network effects in STIM
ON durations compared to resting state periods, then the stimulation
channel itself should have no causal network effect from other channels.
Therefore, we hypothesize that response at the site of stimulation canbe best
explained by a switched-linear model without network interactions (i.e.,
switched ARX). This was indeed the case when we compared switched
VARX and switched ARX models trained for stimulation channels, and
found that the latter model was favored in 10 out of the 13 subjects in our
data. Even for the three subjects where switched VARX was favored, we
found that the relative improvement in MSE from incorporating data from
other channelswas onlymodest (<10%). Interestingly, this is consistentwith
the role played by the do-operator in causal discovery55, effectively isolating
the anode from being causally influenced by other nodes within the
network.

Analyzing the channels corresponding to electrodes that were directly
stimulated, we consistently found that these non-stimulated channels most
often receive causal effects from other nodes in the network. More inter-
estingly, however, we found that the strength of this causal effect (i.e., the
amount of added model predictive power when including the past history
fromother channels) varies in a consistently distant-dependentmanner (see
Fig. 8). At one extreme, we observed that the strength was least pronounced
for electrodes located in close proximity to the anode. This indicates that the
response in these channels, similar to the stimulated channel itself, ismostly

overpowered by direct stimulation effects. On the other extreme are nodes
that receive little to no effect from stimulation, whose network interactions
are expectedly similar to weak/insignificant network interactions during
resting state found earlier43. At an intermediary Euclidean distance from the
anode (around 70 ± 16mm) were nodes that received the strongest causal
effect from network interactions.

Channel importance as a function of distance indicates an
S-shaped relationship
An important inquiry inmodeling dynamics across large networks pertains
to whether precise predictions hinge on capturing network interactions
across all channels or if comparable performance can be attained using only
a limited subset of channels. In particular, does incorporating electrodes in
close proximity to the channel being modeled suffice? If so, what is the
radius of influence beyond which electrodes cease to significantly impact
modeling (in the sense of Granger causality)?

We partially address this via backward elimination of regression fea-
tures to compute the impact of removingnetwork informationpertaining to
subsets of electrodes. Specifically for each subject-channel being modeled,
wegroupelectrodesbasedon their distance to the channel. Subsequently, for
each group,we iterativelymodeled the channel dynamics by eliminating the
terms in Eq. (1) associatedwith the electrodes in the group and compute the
validation NMSE. We consider a channel to be successfully modeled if the
obtained performance is equivalent to a model with complete network
information (i.e.,with all channels) as indicatedby a <2%relative increase in
NMSE. As depicted in Fig. 9, the graph of the percentage of successfully
modeled channels against the distance of the eliminated electrode group
demonstrates an S-shaped pattern (p < 0.001), suggesting that electrodes in
close proximity exert amore pronounced influence onmodeling outcomes.

The modeling error is the highest when removing local channels, as
compared to those mid-distance from the target channel (Supplementary
Fig. 5). Specifically, wefind that for ~50 ± 12%of the channels, it is sufficient
to include just the local electrodes within a 40mm radius of the modeled
channel. This proportion rises to 80 ± 9%of the channels when the radius is
increased to 60mm. These findings hint at the potential for modeling iEEG

Fig. 7 | Heightened activity in channels without direct causal effect from the
stimulation. a Plot showing the STIM ON durations within a specific stretch of the
recordings. In (b)–(d), we plot the iEEG activity in response to the stimulation signal
in (a) for three channels that did not show any evidence of being directly affected by
the applied stimulation.

Fig. 8 | Strength of network interactions as a function of distance from the
stimulation site. The strength of causal effects from other nodes (channels) in the
network to each node is measured by the MSE advantage MSEscalar−MSEvector,
where the former (latter) comes from a model in which the history of other nodes'
iEEG values is not (is) used for one-step-ahead prediction. a–d The MSE advantage
for each channel as a function of its distance to the stimulation site (shown in blue)
across 4 different subjects. We found that the distance-based moving average of this
advantage (shown in red) is initially close to 0, rises with distance until about
70 ± 16 mm, and then decreases thereafter. Plots for the remaining 9 out of 13 sub-
jects have been provided in Supplementary Fig. 4.
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response on a local scale and the prospect of constructingmodelswith fewer
regression features. Such models, as proposed, could be better suited for
designing stimulation protocols in chronic implants.

Evoked iEEG dynamics are highly consistent across stimulation
frequencies but less consistent across sessions
A critical challenge for model-based control design for neurostimulation
is learning models that generalize beyond the (past) data over which they
are trained, particularly given the extreme inter and intra-subject varia-
bility in epilepsy on the one hand and scarcity of stimulation data on the
other. One aspect of such generalizability is across responses to different
stimulation frequencies, which is not trivial given that various stimula-
tion frequencies elicit unique inhibitory and excitatory responses36. We
performed a large-scale combinatorial experiment wherein we trained
models for each channel using a dataset with k of the six stimulation
frequencies (including 0 Hz, i.e., STIM OFF durations) and validated the
models on a test dataset containing all the six frequencies. Figure 10
shows the normalized MSE for different values of k, averaged across all

channels and 6
k

� �
possible models for each value of k. We found that

using a training dataset with a higher variety of stimulation frequencies
proves advantageous in learning a more generalizable model. In parti-
cular, the inclusion of 0 Hz stimulation (STIMOFF data) in training data
resulted in a better model. Given the abundance of such STIM OFF
recordings across various datasets, our result indicates that such data can
be leveraged to learn more accurate models of stimulation-evoked
response models. Additionally, the saturation of the MSE with just six
frequencies indicates that it is possible to learn a predictive model with a
relatively safe and simple experimental design.

Another important aspect of generalizability is that across temporally-
spaced sessions. The RAM dataset consists of multiple stimulation sessions
for most subjects, and we assessed whether including training data from a
second session can improvemodeling accuracy on the first session—as well
as ahigherbarofwhether amodel trainedonlyonone session cangeneralize
to a completely unseen session. Per RAM protocols, stimulation sites were
varied across sessions. Therefore, generalizability is less expected over STIM
ON periods, and we instead tested the hypothesis that constructing a STIM
OFF model (without exogenous input) during periods far from any sti-
mulation would exhibit consistency across sessions. If brain dynamics were
to be stationary across different sessions, combining the data directly from
these sessions should result in a superiormodel compared to fitting amodel
using data from only one session. We thus compared three types of
switched-linear models over two different recording sessions: a model
trained on Session 1, amodel trained on Session 2, and a thirdmodel trained
on both sessions. When these models were tested using unseen data from
one of the sessions (Session 1), we found the model trained on data only
from that session to be themost predictive. This was in fact the case in all 13
subjects. This finding thus indicates the presence of non-stationary or time-
varying behavior across sessions. Therefore, models trained over a prior
session cannot be directly deployed in a new session, but have to be re-
trained continuously to make sure they remain predictive.

Discussions
In this study, we presented a data-centered framework for modeling the
iEEG response induced by intracranial neurostimulation. We highlighted
the effectiveness of switched-linear autoregressive models with about
300ms length of history in accurately representing seizure-free iEEG
dynamics throughout the pre-STIM to post-STIM duration. Furthermore,
we elaborated on efficient methodologies for training such models without
requiring supplementary information. We analyzed the models and chan-
nels from the standpoint of causal effects of stimulation, both direct and
indirect. In addition to the modeling, we experimentally characterized the
generalizability of the system identification process across different stimu-
lation frequencies and recording sessions.While thisworkprovides a critical
precursor to treatingmedial temporal lobe (MTL) epilepsy viamodel-based
closed-loop neurostimulation, we must highlight that RAM stimulation
sites were not located near seizure onset zones (SOZ) and that the data does
not contain seizure durations. Nevertheless, the rigorous model-based
approach pursued in this paper provides foundational knowledge towards
closed-loop neurostimulation in epilepsy, as well as other neurological
conditions such as movement disorders and depression.

Our focus on iEEG in this work stems from its importance and gold-
standard role as a feedback signal for closed-loop intracranial neuro-
stimulation. In the context of epilepsy, iEEG has long been used for the
localization of the SOZ37,39,56, and subnetworks extracted purely from iEEG
data using unsupervised machine learning have been shown to be able to
differentiate between SOZ and non-SOZ regions7,57 as well as pre-ictal,
onset, and ictal durations8. Furthermore, the general predictive modeling
methodology used in this study is not restricted to iEEG and can be used,
subject to proper modifications, with other forms of neurophysiology and
neuroimaging data (see, e.g., ref. 43).

A rather undesirable aspect of iEEG recordings in general is the pre-
sence of stimulation artifacts36 and epileptic discharges. From the

Fig. 10 | Generalizability of trained models across stimulation frequencies and
sessions. aWe plotted the normalized test MSE as a function of the number of
stimulation frequencies used as part of the training set. We found that including
more frequencies results in amore generalizablemodel.bHowever, we did notfind it
to be beneficial when we extend the dataset using recordings frommultiple sessions.
Specifically, when we considered two sessions and the three possible models that can
be trained from them (using only session 1 or only session 2 or both in the training
set), we found that unseen data from session 1 was best predicted by the model
trained on data from Session 1 only (*p < 0.05).

Fig. 9 | Impact of inter-electrode distance in the modeling of network interac-
tions. For each subject, we plot the % of channels unimpacted by the elimination of
an electrode group at a given distance. The build-up within the first 60 mm and
saturation beyond 80 mm indicates that local electrodes are more important in
modeling network interactions. Transparent lines illustrate the subject-wise trend,
while the opaque line indicates the average trend across all subjects. The orange line
shows the best fit sigmoid curve to explain the observed trend.
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perspective of understanding brain function, it is common practice to
remove any such effect, often conservatively, and only consider the “clean"
data for modeling and analysis58,59. However, when modeling the brain for
the purpose of closed-loop detection and control, we need models that
accurately capture all the effects and elements that appear in the control
loop, including all 3 durations (pre-STIM, STIM ON, post-STIM) and
regions (SOZ and non-SOZ, gray and white matter). We can no longer
afford to disregard numerous channels and recording durations, as often
happens during common iEEG preprocessing. Therefore, we adopt a
minimal pre-processing pipeline (cf. Methods) and delegate the task of
handling complexities in the data to the data-driven model.

Nonetheless, we investigated the potential effects of artifacts on
modeling performance. From Supplementary Figs. 7 and 8, we see that the
error profile during the three durations of pre-stimulation, stimulation, and
post-stimulation is dependent on the distance of the target contact from the
stimulation site as well as the parameters of the applied stimulation. For
channels farther from the anode, resulting inweaker physiologically-evoked
response and less volume conduction leading to fewer artifacts, the amount
of error during the three durations is similar. However, as the total stimu-
lation response (physiological plus artifacts) increases due to less physical
distance to the stimulation site and/or larger stimulation amplitude, model
prediction errors become significantly larger during STIM ON periods
while staying relatively low during the STIMOFF durations. While further
research is needed to determine the exact contribution of artifacts to this
unexplained variance, this analysis at least ensures that the discussedmodels
have not significantly fit to the artifacts and their accuracy is driven by
artifact dynamics. Furthermore, since we have carefully time-locked the
response time series across repetitions to stimulation onset (Supplementary
Fig. 2) and neurophysiological evoked responses are typically slower than
stim artifacts, it is likely that artifacts are less predictable and therefore
contribute more to prediction errors than neurophysiological responses.

An important aspect of our findings is the vast heterogeneity among
optimal model structures (let alone parameters) among subjects and even
channels within the same subject. This is understandable considering the
variations in input effects and the diverse network influences across chan-
nels, and only reinforces the need for individualized analysis and treatment
in epilepsy60.We even observe sufficient heterogeneity among the dynamics
of different recording sessions from the same individual to prevent a model
tuned to one session from properly generalizing to another. This is con-
ceptually similar to thewell-known lackof stability of intracranialmulti-unit
activity recordings across sessions61 but is observed at a significantly larger
spatial scale where the physical drift of the recording electrodes relative to
the surrounding tissue is less to blame.Nevertheless, across scales, suchnon-
stationarity necessitates adaptive detectors and controllers with constant re-
tuning of models and algorithms62,63.

Our modeling framework is similar to Dynamic Causal Modeling
(DCM)64 in a number of respects. Bilinear families of dynamicmodels have
a long history in DCM, and switched-linear models with a STIM ON/OFF
switching signal are conceptually similar to works that build separate DCM
models for STIM ON and STIM OFF periods45,65. Nevertheless, we depart
from DCM in a number of ways, including a prediction-error-based para-
meter estimation methodology41 instead of the variational Bayes metho-
dology used in DCM66. Furthermore, DCM typically uses single-lag bilinear
models for fMRI45 and complex neural mass models for EEG67, whereas we
show the power of bilinear autoregressive models with long input–output
histories in explaining EEG dynamics. These modifications not only make
the resulting models more predictively accurate but also significantly more
scalable to large-scale recordings. Similar hybridmodeling approaches have
also been done for autoregressivemodels44 and provide a broad rationale for
the models described in this paper.

In the context of system identification41, the experiment design process
holds significant importance for and essentially limits the achievable
accuracy of any downstream modeling. A good experiment design process
involves probing the system with a persistently exciting or a diverse set of
input frequencies in order to record all the possible dynamical modes of the

system41. This may even be more important for the brain, as it has been
suggested that different stimulation frequencies can result indistinct typesof
responses, with lower frequencies (10–60Hz) typically inducing inhibitory
effects and higher frequencies (100–200Hz) producing excitatory
responses36. Thus, it becomes crucial to incorporate a diverse range of sti-
mulation parameters before modeling. Nevertheless, the conventional
approach to experimental design in human studies42,44 often entails
repeatedly applying a single,fixed-parameter stimulation.Thiswill allow the
models to simply “memorize" the brain’s response to that specific stimu-
lation, without necessarily learning anything generalizable about the brain’s
response to neurostimulation. The RAMParameter Search recordings used
in this study are one of very few that encompass a wide range of stimulation
frequencies, amplitudes, and durations. However, this dataset is not ideal
either, e.g., due to a lack of recordings where changes in stimulation para-
meters occur without going through a STIM OFF phase. While recent
works34 have attempted to construct more parameter-rich experiments for
non-human primates, similar efforts towardmodeling the human brain are
largely absent. Nevertheless, the ability to learn predictive models using the
RAM dataset, as described in our work, suggests that it is feasible to achieve
successful modeling using a relatively small yet carefully chosen set of sti-
mulation parameters.

In our study, we demonstrated a distance-based trend in the
MSEscalar−MSEvector plots in Fig. 8. Additionally, we showed that electro-
des in close proximity to the electrode beingmodeledplay amore significant
role in capturing network interactions. However, it is well-known that the
brain operates through intricate pathways, andour current approach,which
relies on Euclidean distance, may benefit from refinement through more
sophisticated methods such as functional or structural connectivity graphs.
This could be a promising direction for future research. Additionally, it
remains unclear why the MSEscalar−MSEvector trends exhibit substantial
variation across different subjects. We investigated electrode coverage and
anode location as potential factors influencing these trends, but have not yet
identified any statistically significant effects. To develop a robust hypothesis,
extending our analysis to include more subjects and sessions will be an
essential next step.

Future steps towards the development of a complete model-based
closed-loop seizure control system require even richer and more extensive
datasets that encompass simultaneous seizure and neurostimulation,
enabling models to learn the interactions between ictal and stimulation-
evoked dynamics. Such data, however, is challenging to collect for a number
of reasons. Despite ongoing advancements in seizure detection, accurately
and reliably timing stimulation relative to seizure onset remains a major
challenge, which is further exacerbated by the heterogeneity of seizure
events even within the same individual. Further, iEEG recordings have
significantly better spatial and temporal coverage and algorithmic flexibility
during acute seizure monitoring, but manipulating intrinsic seizure
dynamics can interfere with medical diagnostics at this stage. Animal and
computational models can therefore play an invaluable role before algo-
rithmic designs can be translated to humans.

Methods
Data
Throughout this work we use data from the Parameter Search experiments
of the RAM project, consisting of multichannel resting state, task-induced,
and neurostimulation-induced iEEG responses of over 80 human subjects40.
As reported extensively in theRAMdocumentation, the highest stimulation
amplitude (Asafe) that could be applied to each subject without resulting in
after discharges were first measured. This value was then used in the PS2
experiments which we use in this work, providing subjects with 500ms
fixed-duration stimulations of biphasic pulse trains delivered at varying
combinations of current amplitudes (three levels:Asafe,Asafe− 0.25mAand
Asafe− 0.5mA) and frequencies (single pulse, 10Hz, 25 Hz, 50Hz, 100 Hz,
or 200Hz). Each subject has undergone multiple stimulation sessions,
ranging from 2 to 5, with each session involving a different stimulus
(anode–cathode) location as shown in Fig. 1.
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During each session, pulse trains of each combination of amplitudes
and frequencies were repeatedly delivered multiple times (about 20–30
times, equivalent to 30min of total experimentation). Such exhaustive
repeated parameter sweep data is rare in stimulation-evoked iEEG and
makes this dataset particularly rich for the modeling purposes of this study.
To partly control for the great variability among subjects and the high
computational cost of numerical experiments, we limited our analyses to
subjects with an iEEG sampling frequency of 1000Hz. Additionally, we
excluded subjects with stimulation outside theMTL, resulting in 13 subjects
for further analysis.

Preprocessing and data decomposition
As noted earlier (see “Discussions”), we used minimal preprocessing in
order to build models that can capture stimulation-evoked iEEG dynamics
in its full complexity. We removed power line harmonics by applying 4th-
order Butterworth notch filters at 60Hz, 120Hz, and 180Hz. We then
detrended the signal using afirst-order polynomialfit to remove linear drifts
and z-scored the data to standardize signals across all subjects and channels.
Finally, we selected windows of length 1500ms around each stimulation.
These consisted of 500ms pre-stim, 500ms stim, and 500ms post-stim for
pulse train stimulations and 750ms pre-stim and 750ms post-stim for
single-pulse stimulations. This was due to the fact that only about 1/6 of the
recordings corresponded to durations where stimulation was applied.
Hence, using the full recordings could (and did, based on our pilot analyses)
bias the models towards fitting STIM OFF durations and ignoring evoked
responses.

We define the input time-series u(·) based on the stimulation timing
and parameters. If a pulse train with frequency f and amplitude a was
applied starting from time tk (always lasting for 500ms), then we set
u(tk+Δt) = a for all Δt ∈ [0, 500] that are integer multiples of 1000/f and
u(t) = 0 otherwise. The modulating term Uð:Þ in (1) was set as UðtÞ ¼ a
(amplitude-weighted switched linear) or UðtÞ ¼ 1 (switched linear) for all
t within stimulation durations [tk, tk+ 500], and UðtÞ ¼ 0 for other dura-
tion. In the case of the complete (fully) bilinearmodel, we setU ¼ u, which
can be thought of as a more natural choice for modulation. See Supple-
mentary Fig. 1 for further clarification.

The input times recorded in the RAMdatawere frequently found to be
inconsistentwith the actual times of stimulation delivery, as indicated by the
delays in the output response of the anode channel (Supplementary Fig. 2).
To address this discrepancy, we identified the actual time of input by
thresholding the difference Δy(t) = y(t)− y(t− 1) in the anode channel.
This allowed us to detect the precise time of stimulation delivery, and we
used this onset time for time-locking instead of the reported onset time in
the dataset.

Unless otherwise stated, we split the processed iEEG recordings into
training and test as follows. Each 1500ms window (corresponding to each
instanceof stimulation, see above)was split intofive continuous folds of data

(300ms each), out of which four randomly selected folds were used for
training, and the remaining fold was used for testing.

Models
Themain focus of our work is the dynamicmodel described in (1), which is
used to make one-step ahead predictions about the iEEG response given
past iEEG and input history lags as regression features.We denote the iEEG
history of length L for channel k at time t as the vector yLkðtÞ ¼
½ykðt � 1Þ; ykðt � 2Þ; . . . ; ykðt � LÞ�T. Similarly, the input lags vector uM(t)
of lengthM is given by ½uðt � 1Þ; uðt � 2Þ; . . . ; uðt �MÞ�T.

Several families of models used in this work are special cases of the
model in (1). A linear autoregressive model is obtained by setting the
matrices bk, cK, and dk,i to 0. The learnable (not necessarily zero) parameter
sets of the subclasses of (1) used in this work are listed in Table 1.

Determining the structure of (1) involves choosing appropriate model
orders (L,M, and P) as well as determining the subset of {ak, bk, ck, dk,i} that
can be nonzero. We make all such choices in a data-driven manner. This is
particularly important when we want to fit personalized models, where we
need to account for the knowingly large subject-to-subject variability60,68.
Given the compound and combinatorial nature of structural choices, we
also use a hierarchical bottom-up approach where we tune low-level
quantities (e.g., number of autoregressive lags) before selecting higher-level
choices (e.g., type of nonlinearity or presence of network interactions). For
each channel, we first assume an ARXmodel and find the pair of iEEG and
input lags (i.e., L and M) that maximizes the model accuracy. Fixing the
obtained values of (L, M), we train the models described in Table 1 while
keeping the value of themaximumnetwork lags P as 1. Oncewe statistically
determine the best model structure (i.e., linear or bilinear/switched), we
use it to determine the optimal value of P by evaluating the validationMSE
of models fit with different values of P (increased from 1 to 100 in
steps of 10).

In addition to the abovemodels, we trained other nonlinearmodels, as
follows:

Artificial Neural Network (ANN). A two-layer feedforward network
with ReLU activation, with 500 and 50 nodes in the first and second
layer respectively, and inputs being yLk and uM. We opted for
the ReLU activation function due to our observation that it yielded
superior performance compared to alternative nonlinear functions, such
as tanh.

Long Short-Term Network (LSTM). Standard single layer LSTM with
yk(t− 1) and u(t− 1) as input and expected output Δyk(t) Sparse Iden-
tification of Nonlinear Dynamics (SINDy) using 3rd degree polynomial
expansion

Nonlinear ARX (NLARX) specified in MATLAB69, model order (50,
50, 1) used for all channels.

Learning
We train the free parameters of each model by minimizing the regression
mean squared error

CostðθÞ ¼ MSEðθÞ þ λjjθjj22 ð2cÞ

MSEðθÞ ¼ 1
N

XN
t¼1

ðΔykðtÞ � f ðxkðtÞ; θÞÞ2 ð2dÞ

where f(·) is any of the aforementioned parametric families of models and
xk(t) denotes the regression features of the tth sample and the kth iEEG
channel. This may include the lags of iEEG recording of the kth channel
(yLk ðtÞ), that of other channels (yPi ðtÞ), and input lags (uM(t)). This mini-
mization is l2-regularized to avoid overfitting. Specifically,we added a cost of
λjjθjj22 to the MSE cost function, where λ is the penalty factor and was
empirically fixed to a value of 0.1.

Table 1 | Parameter sets of linear and bilinear/switched linear
(BL/SL) models used in our work

Model Parameters θ

AR {ak}

ARX {ak, bk}

VAR {ak, dk,i}

VARX {ak, bk, dk,i}

BL/SL AR {ak, ck}

BL/SL ARX {ak, bk, ck}

BL/SL VAR {ak, ck, dk,i}

BL/SL VARX {ak, bk, ck, dk,i}

Note that bilinear and switched linearmodels have the sameset of nonzeroweights andonly differ in
their encoding of U (see “Preprocessing and data decomposition” above). In each case, the shown
matrices are learned from data while matrices outside of this set are assigned to 0.
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Performance metric
We evaluated trained models over test data based on a number of
metrics. One metric is test (normalized) MSE which is also computed
from 0.10 but computed over test data. Sample durations with different
levels of NMSE have been provided in Supplementary Fig. 3. Since MSE
(as with any mean-based measure) can be susceptible to outliers, we also
compared the models based on a one-sided Wilcoxon signed-rank test
with Bonferroni correction for comparisons between multiple pairs.
Once we determine the best models for each channel across all the
subjects, we define the model win rate for any model fi as

Winrate ðfi Þ ¼
# channels where fi is best

# total channels
ð3Þ

Sparse ARX modeling via delay embedding
When comparing dense vs. sparse autoregressive models, we compared a
regular ARX model (cf. Table 1) with a sparse version

ΔykðtÞ ¼ aTk

ykðt � τkÞ
ykðt � 2τkÞ

..

.

ykðt � LτkÞ

2
66664

3
77775
þ bTku

MðtÞ: ð4Þ

The tuning of the delay time τk has been studied extensively in the delay
embedding literature50. In this work, we select a separate optimal τk for each
subject and channel using the auto embedding method described in ref. 70.

Indirect test of linearity
The results demonstrated in Fig. 4 were obtained as follows. For each
channel, we divided the iEEG dataset into 3 sub-datasets, with the first one
including only STIMOFF data while the other 2 contained only STIMON
durations. Using the first dataset, we trained an AR model with parameter
matrices fað1Þk g. The second dataset was used to learn an ARX model with
parameter matrices fað2Þk g and fbð2Þk g. Finally, a second ARX model was

trained on dataset 2 by fixing autoregressive weights to fað1Þk g and only

learning fbð3Þk g. We then tested the two ARX models fað1Þk ; bð3Þk g and

fað2Þk ; bð2Þk g on the third dataset. If the underlying process is indeed linear, we
expect the autoregressive weights ({ak}) to remain the same during STIM
ON and STIM OFF durations, which would result in the ARX model

fað1Þk ; bð3Þk g performing as good as fað2Þk ; bð2Þk g. However, if the process is
nonlinear, the latter would perform significantly better because of having
both {ak} and {bk} trained on STIM ON data.

Bootstrap test
For each subject and channel, we used a bootstrap test to validate if the
presence of input lags significantly improved the prediction accuracy (i.e.,
whether a direct causal effect from input to that channel existed). From the
original dataset D ¼ fYk;U ;Y�k;Δykg for channel k (where Y−k corre-
sponds to the iEEG information fromall channels other than k) we created a
synthetic one ~D ¼ fYk; ~U ;Y�k;Δykg by randomly shuffling the input
history dataU(·) across time samples (i.e, ~UðiÞ ¼ UðjÞ for some random j).
We then split this dataset into training and test sets, learn a dynamical
model, and compute the corresponding testMSEas before.We repeated this
process 100 times and compared the testMSEof the unshuffledmodel to the
distribution of test MSEs from shuffled models to compute a sample-based
p-value.We reject the null hypothesis of no input effect (i.e., conclude that a
direct causal effect from input to that channel existed) if p < 0.05.

In addition to input effects, we also validated the causal effects of
network interactions in each subject-channel using a similar bootstrap test,
wherein we generate synthetic datasets for each channel by randomly
shuffling the iEEG past lags of other available channels. Specifically, a
synthetic dataset ~D ¼ fYk;U; ~Y�k;Δykg was created by randomly

shuffling the network information history data Y−k(·) across time samples
(i.e, ~Y�kðiÞ ¼ Y�kðjÞ for some random j). The test for network effects fol-
lows the same experimental structure as described in the previous
paragraph.

Learning models on subsets of stimulation frequencies
The results reported in Fig. 10 were generated as follows. We first split the
dataset for each subject based on the stimulation frequency during each
window and created multiple training sets corresponding to all subsets of
{0(nostim), 10, 25, 50, 100, 200}. For each subset of frequencies, we fit a
switched ARX model and tested it on the complementary subset of fre-
quencies omitted in the training set. The normalized MSEs for all the
combinations are reported in Fig. 10.

Statistics and reproducibility
Statistical testing were performed using the stats API of the SciPy library
in Python. Model comparisons were performed using the one-sided
Wilcoxon signed-rank test and paired t-test. We have used Bonferroni
correction to account for multiple comparisons. Significance was
declared when we obtained p < 0.05. We ensure reproducibility of our
results (e.g., train-test splits, bootstrapping) by fixing the NumPy’s ran-
dom number generator.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The iEEG data used in this study is publicly available from the RAMPublic
Data Release at http://memory.psych.upenn.edu/RAM40. The numerical
source data corresponding to the generated plots can be accessed from
https://doi.org/10.6084/m9.figshare.2633337171.

Code availability
Python code for the analyses in this study is publicly available72 via Zenodo.
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