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Abstract

Understanding how neural dynamics shape cognitive experiences remains a
central challenge in neuroscience and psychiatry. Here, we present a novel frame-
work leveraging state-to-output controllability from dynamical systems theory to
model the interplay between cognitive perturbations, neural activity, and sub-
jective experience. We demonstrate that large-scale fMRI signals are constrained
to low-dimensional manifolds, where affective and cognitive states are naturally
organized. Furthermore, we provide a theoretically robust method to estimate
the controllability Gramian from steady-state neural responses, offering a direct
measure of the energy required to steer cognitive outcomes. In five healthy par-
ticipants viewing 2,185 emotionally evocative short videos, our analyses reveal a
strong alignment between neural activations and affective ratings, with an average
correlation of r ≈ 0.7. In a clinical cohort of 255 patients with major depressive
disorder, biweekly Hamilton Rating Scale trajectories over 11 weeks significantly
mapped onto these manifolds, explaining approximately 20% more variance than
chance (p < 10−10, numerically better than chance in 93% reaching statistical
significance in one-third of subjects). Our work bridges dynamical systems the-
ory and clinical neuroscience, providing a principled approach to optimize mental
health treatments by targeting the most efficient neural pathways for cognitive
change.

Keywords: Neural Dynamics, Cognitive Experience, Dynamical Systems Theory,
fMRI, Computational Psychiatry

1 Introduction

Why do we feel the way we do, and why is it sometimes easy—but other times difficult,
if not impossible—to change our “cognitive experience”? In the clinical domain, a
parallel question emerges: Why do some patients with affective disorders, such as major
depressive disorder (MDD), recover quickly, while at least 50% either fail to achieve
remission or relapse rapidly despite treatment [1]? These questions, which probe the
connection between neural dynamics and subjective experience, drive the core inquiry
of this paper.

We propose that the answers lie in the properties of the alignment between cog-
nitive and neural representations—a phenomenon that shapes cognitive experiences
into structured manifolds within the brain’s high-dimensional neural spaces [2–4].
These properties—might—reveal why cognitive states differ in their adaptability and
why clinical outcomes vary so widely, offering a mathematically reachable frame-
work to understanding them. Our argument rests on three interconnected insights
(see Figure 1), each showing how these properties, rooted in neural dynamics, can be
precisely quantified to explain and predict cognitive outcomes:

First, cognitive experiences are shaped—and constrained—by the geometry of neu-
ral manifolds. Although neural activity spans a vast and complex landscape, it is
governed by structural and functional constraints that determine which states can be
reached and which transitions are possible [8–10]. Picture a cognitive experience, like
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Fig. 1 Neural–Cognitive Alignment and State-to-Output Controllability Framework.
Left (Cognitive–Neural Alignment): Cognitive experiences (e.g., emotional dimensions) map
onto latent neural manifolds, capturing how large-scale brain activity encodes cognitive processes.
Moving across this manifold directly translates to a new cognitive experience or, in the case of
machines, newly generated stimuli that are very close to the original but have different cognitive
scores (see e.g., [5, 6]). Center (Experimental Setup): Participants underwent fMRI while viewing
a wide range of emotionally evocative video clips [7], rated along multiple affective and cognitive
dimensions. These stimuli serve as “perturbations,” allowing estimation of brain responses across
diverse cognitive states. Right (State-to-Output Controllability): By modeling neural states
(x) and cognitive outputs (z) in a linear system, we assess if and how cognitive perturbations can
shift brain dynamics and thus alter cognitive outcomes. The matrix equations (A,B,G) represent the
system’s dynamics and output mapping. See Section 2 for details.

the emotional tone of a memory, as a point on a curved surface: moving to a nearby
point (e.g., from neutral to slightly positive) might be easy, while climbing to a distant
or opposing state (e.g., reversing a deep sadness) could be steep or obstructed. Net-
work control theory has explored these limits in neural terms [11–13], but we argue
that the manifold itself serves as a geometric scaffold for cognition, dictating how
experiences evolve and why some changes are inherently harder.

Second, these neural dynamics can be captured effectively with linear models at the
macroscale. Despite the brain’s intricate complexity, our recent analysis of EEG and
fMRI data [14] shows that linear dynamical models consistently outperform nonlinear
alternatives, excelling in predictive accuracy and computational simplicity while leav-
ing little unexplained. This finding echoes decades of research—from Dynamic Causal
Modeling (DCM)[15] to system-identification techniques[16]—where linear formula-
tions reliably describe robust neural patterns. For cognitive experiences, this linearity
means that shifts along the manifold, such as a change in emotional arousal or valence,
can be approximated - at least locally - as straight-line paths, making them easier to
predict and potentially manipulate.

Third, cognitive and neural representations in large encoder-decoder models, such
as VAEs, GANs, and diffusion models, align remarkably well, with properties like
subjective aesthetics, emotional arousal, and valence emerging as linear gradients in
their latent spaces [5, 17] (see Figure 1). Accumulating evidence suggests this align-
ment mirrors how the human brain operates, indicating a deep parallel between
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artificial and biological systems [18, 19]. Our recent work [6] exemplifies this, show-
ing that the latent space of a Very Deep Variational Autoencoder (VDVAE) maps
tightly to fMRI brain responses from subjects viewing thousands of images. When
the VDVAE’s latent space is perturbed—say, shifting an image’s valence from neu-
tral to positive—the fMRI-reconstructed images reflect the same change; similarly,
altering the brain data produces matching shifts in the machine’s output, and these
effects are robust across subjects. Thus, cognitive and neural representations align so
closely that cognitive properties consistently appear as linear gradients, both in artifi-
cial latent spaces and the brain’s neural responses. This alignment provides a common
mathematical framework for modeling and controlling cognitive experiences.

Based on these insights, we formalize our central questions mathematically—i.e.,
which experiences are possible and how they unfold over time—as a state-to-output
controllability problem [20]. Specifically: can a new experience (hereafter referred to as
a “cognitive perturbation”) effectively alter neural states to achieve desired cognitive
outcomes? In our formulation, an external cognitive stimulus acts simultaneously as
an input (”cognitive perturbation”) and generates an output (”cognitive experience”),
”filtered” by neural dynamics (see Figure 1).

In what follows, we provide a formal description of this framework and formulate
two testable hypotheses. We then test these hypotheses on (i) a large-scale neuroimag-
ing dataset (Section 3), and (ii) clinical data from a large cohort of patients with
depression who received inpatient treatment (Section 4).

2 Theoretical Framework and Results

To understand how neural dynamics shape cognitive experiences and why some tran-
sitions are easier than others, we begin with a linear formulation that integrates all
key components: neural states, cognitive perturbations, and their projections onto
cognitively relevant gradients. Following our recent findings [6, 14], we model these
neural-cognitive dynamics as:

x(t+ 1) = Ax(t) +Bu(t), (1a)

z(t) = G⊤ x(t). (1b)

Here, x(t) ∈ RN is the high-dimensional vector of neural states (e.g. whole-brain fMRI
voxel activations), capturing the brain’s full activity at time t. The vector u(t) ∈ Rn,
where n ≪ N , represents low-dimensional cognitive perturbations (e.g., emotional
ratings of stimuli like videos), acting as inputs that nudge the neural system. The
output z(t) ∈ Rn is the projection of x(t) onto a neural manifold tied to cognitive
experience—still neural in nature, but its reduced size reflects movement along gra-
dients (e.g., valence or arousal) critical for generating subjective states. The matrices
A ∈ RN×N , B ∈ RN×n, and G ∈ RN×n define the state transitions, perturbation
mapping, and projection into this cognitive subspace, respectively.

This formulation allows us to address the paper’s central question—why are
some cognitive experiences easy to achieve while others resist change? —within the
framework of state-to-output controllability [20]. Specifically, we ask: can a cognitive
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perturbation u(t) (e.g. watching a video or undergoing psychotherapy) steer the neu-
ral state x(t) to produce any desired cognitive outcome z(T ) over time T? In control
theory, this is answered by the state-to-output controllability Gramian:

Wz =

∞∑
ℓ=0

G⊤AℓBB⊤(A⊤)ℓG, (2)

which is positive-definite if the system is controllable [21]. The energy required to shift
z(t) by ∆z(T ) is then ∆z(T )⊤W−1

z ∆z(T ), with Wz’s eigenvalues indicating the effort
needed for different directions of change.

A major challenge, however, is that computing Wz directly requires full knowledge
of A, B, and G—matrices that are impractical to estimate from empirical brain data
due to their high dimensionality and complexity. To overcome this, we propose a
novel theoretical approach: estimating Wz using only steady-state neural responses,
bypassing the need to model A and B explicitly. Assume we have steady-state fMRI
responses xk for K distinct cognitive stimuli uk (where K ≫ n), collected as:

X =
[
x1 x2 · · · xK

]
, U =

[
u1 u2 · · · uK

]
.

From steady-state dynamics (xk = (I −A)−1Buk), we define K = XU† (where † is
the Moore-Penrose pseudoinverse) and estimate G’s columns as fMRI gradients:

gi = E[x | ui = 1]− E[x | ui = 0],

reflecting the neural shift for each cognitive dimension ui (normalized to [0, 1]) [6].
The empirical state-to-output controllability Gramian is then:

Ŵz = G⊤KK⊤G. (3a)

This approximation, detailed in Appendix A, relies solely on U (stimulus rat-
ings) and X (fMRI responses), which our data—thousands of stimulus-response pairs
from emotionally evocative videos (Appendix C)—readily provides. For instance, our
fMRI dataset includes 2,185 videos rated across 14 affective dimensions, paired with
whole-brain voxel responses from five healthy subjects [22], offering ample steady-state
samples to compute Ŵz.

To validate this theoretical approach, we conducted simulations to compare the
exact and empirical Gramians. We generated data from 100 linear time-invariant (LTI)
systems (Eq. (1)) with N = 1000 and n = 14, using known A and B matrices to
simulate neural dynamics. Each system underwent 200 trials with constant cogni-
tive perturbations uk(t) (k = 1, . . . , 200), mimicking diverse stimuli. From these, we
derived X and U matrices and estimated G’s gradients, then computed the exact Wz

using Eq. (2) with ground-truth A and B, and the empirical Ŵz using Eq. (3). The
Hungarian algorithm ensured proper eigenvalue ordering across runs [23]. Figure 2
shows the distribution of mean correlation coefficients r (exact vs. empirical), demon-
strating that the empirical method (blue) achieves a mean r = 0.31, significantly
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Fig. 2 Numerical Evaluation of Spectral Similarity Between Exact and Empirical State-
to-Output Controllability Gramians. We simulated 100 linear time-invariant (LTI) systems
(Eq. (1)) with N = 1000 and n = 14, using known A and B matrices to generate neural dynamics.
Each system underwent 200 trials with constant cognitive perturbations uk(t) (k = 1, . . . , 200), from
which X and U were derived, and G’s gradients were estimated. The exact Wz was computed using
Eq. (2) with ground-truth A and B, while the empirical Ŵz used Eq. (3). The Hungarian algorithm
ensured eigenvalue ordering [23]. The figure displays the distribution of mean correlation coefficients r
(exact vs. empirical), with the empirical approach (blue, mean r = 0.31) showing significantly higher
similarity than chance (green, centered at r = 0.0), supporting the validity of our steady-state esti-
mation method.

higher than chance (green, centered at r = 0.0), validating our steady-state estimation
approach.

This framework yields two testable hypotheses:

1. Structural Alignment: The linear model predicts that the correlation structure of
cognitive inputs (U) mirrors that of neural projections (G), testable by comparing
eigenvalues and eigenvectors of their partial correlation matrices (Appendix B).

2. Trajectory Predictability: If macroscale dynamics are approximately linear,
Ŵz’s eigenvalues and eigenvectors should align with observed neurocognitive tra-
jectories, where large eigenvalues indicate easily navigable directions and small ones
signal high-effort transitions.

These hypotheses, tested in Sections 3 and 4, leverage our steady-state approach
to reveal how neural constraints shape cognitive and clinical outcomes.

3 The Parity of Cognitive and Neural Manifolds

We first investigate whether the system described by Eq. (1) exhibits state-to-output
controllability, a critical property that determines if cognitive perturbations can the-
oretically steer neural dynamics to any desired cognitive experience. To test this, we
utilized an fMRI dataset (detailed in Appendix C) from five healthy adults (four
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males, one female, aged 22–34). Each subject viewed 2,185 emotionally evocative short
videos, originally curated by Cowen and Keltner [22], with lengths ranging from 0.15
to 90 seconds (no audio). For each clip k, we obtained: 1) a low-dimensional rating
vector, uk ∈ R14, representing the video’s affective attributes, and 2) a corresponding
steady-state neural response in voxel space, xk ∈ RN .

Using the empirical state-to-output controllability Gramian Ŵz (derived in
Section 2), we assessed controllability across all five subjects. The Gramians were
found to be full rank (i.e., all eigenvalues were nonzero), indicating that, in principle,
the system is state-to-output controllable. This means that cognitive perturbations,
such as viewing new scenes, could theoretically guide the brain to any desired cog-
nitive state given sufficient time. However, the eigenvalues spanned over two orders
of magnitude, with some up to 500 times larger than others. This variability sug-
gests that while full controllability is possible, the effort required differs vastly across
dimensions—easy changes align with large eigenvalues, while difficult ones correspond
to small eigenvalues. For instance, if one hour of intervention yields a noticeable shift
in an “easy” direction, the same effort might produce a 500-fold smaller effect in a
“hard” direction tied to a smaller eigenvalue.

Next, we examined average controllability (AC) to quantify how easily specific
dimensions can be influenced. We computed partial correlation matrices for the 14
affective dimensions (the rows of U), PU, and for the empirically estimated fMRI
gradients (the columns of G), PG⊤ . For a given matrix Pn×n, the AC of each dimen-
sion i measures the ease of steering a hypothetical system ξ(t + 1) = Pξ(t) + eiυ(t)
using an input υ(t) affecting only the ith dimension (ei is a binary vector with a
single 1 at position i) [9]. Figure 3 (top panel) presents scatter plots comparing AC
at the cognitive level (PU) versus the neural level (PG⊤) across the five subjects.
The results revealed robust linear correlations (r ≈ 0.7), with regression confidence
intervals shown in blue, indicating that dimensions easiest to control cognitively align
closely with those easiest to control neurally.

Finally, we explored the eigenvectors of the controllability Gramian to identify
the specific directions of change most amenable to cognitive perturbations. These
eigenvectors reveal the principal trajectories along which cognitive experiences evolve,
naturally leading to an analysis of cognitive trajectories. Figure 3 (bottom panel) shows
heatmaps of cosine similarity between the eigenvectors of PU and PG⊤ , with each
row representing an eigenvector of PG⊤ and each column an eigenvector of PU. The
diagonal dominance (brighter blocks) and statistically significant alignments (aster-
isks) confirm that the dominant eigenvectors are highly similar across cognitive and
neural spaces. Across subjects, the top-ranked eigenvectors exhibited strong pairwise
matches (cosine similarity 0.4–0.9, p < 10−12), suggesting conserved patterns. This
led us to Figure 4, which illustrates the three largest eigenvectors averaged across
subjects (mean r = 0.6) due to their high similarity. These radar plots highlight com-
binations of affective dimensions—such as valence, approach, and control—that are
most susceptible to alteration via cognitive or psychotherapeutic inputs, with larger
magnitudes indicating greater ease of change.
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Fig. 3 Neural–Cognitive Linear Alignment. (Top) Scatter plots of the Average Controllability
(AC) at the cognitive level (PU) vs. the neural level (PG⊤ ) in five subjects. For a given matrix
Pn×n, AC of each dimension i is a spectral measure quantifying the ease of steering the hypothetical
dynamical system ξ(t+1) = Pξ(t)+eiυ(t) using a hypothetical input υ(t) which only affects the ith
dimension directly (ei is a binary vector with only one 1 at the ith location) [9]. We observe strong
positive correlations between ACs of PU and PG⊤ (r ≈ 0.7, regression confidence interval shown in
blue). (Bottom) Heatmaps of cosine similarity between eigenvectors of PU and PG⊤ . The diagonal
dominance reveals that trajectories defined in the cognitive space are predictably mirrored in the
neural state space. Each panel represents data from one subject.

4 Neural–Cognitive Trajectories and Their Clinical
Implications

The findings from Section 3 indicate that cognitive and neural dynamics align closely,
suggesting a clinical hypothesis: the same low-dimensional “controllability” structure
that governs these dynamics may also constrain how psychiatric symptoms evolve in
conditions such as Major Depressive Disorder (MDD). In other words, affective state
transitions—such as moving from a negative mood to a more positive one through
psychotherapy—are likely confined to a limited number of key directions defined by the
leading eigenvectors of the controllability Gramian. These directions, in turn, outline
the most feasible paths toward clinical improvement.

To test this hypothesis, we examined symptom data from 255 hospitalized MDD
patients, each assessed roughly every two weeks over an 11-week period using the
17-item Hamilton Rating Scale for Depression (HRSD-17; median 5.8 assessments
per patient; data originally presented in [24]). Our aim was to determine whether
the 14-dimensional cognitive–neural subspace derived in Section 3 could explain real-
world symptom trajectories. Because the HRSD-17 spans 17 symptom dimensions
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Fig. 4 State-to-Output Controllability Gramian and Cognitive Trajectories. Radar plots
depict the three largest eigenvectors of the controllability Gramian in a 14-dimensional cogni-
tive space. These directions—which combine dimensions such as arousal, valence, control, and
approach—are most readily affected by cognitive or psychotherapeutic inputs. Larger magnitudes in
an eigenvector indicate greater ease of inducing changes in that dimension. Results are shown across
five subjects, whose eigenvectors exhibit a high degree of similarity (mean cosine similarity r = 0.6).

(e.g., mood, sleep, guilt), whereas our subspace has only 14, we embedded the 14-
dimensional directions into the 17-dimensional clinical space by zero-padding and
orthonormalizing. Crucially, this embedding did not require matching specific symp-
tom items (e.g., “valence” to “mood”); rather, it tested whether the overall shape of
symptom changes aligns with the healthy cognitive–neural patterns.

Next, we quantified how symptoms evolved over time for each patient. Let Z ∈
RT×17 denote the HRSD-17 scores across T clinical assessments. For each patient, we
computed “velocity vectors,”

v(t) = Z(t+ 1, :)− Z(t, :),

capturing symptom change over each two-week interval. We then projected each
velocity vector onto the embedded 14-dimensional subspace,

v̂(t) =
(
v(t)Borth

)
B⊤

orth,

and calculated how well these projections matched the observed changes using an R2

metric:

R2 = 1−
∑

t ∥v(t)− v̂(t)∥2∑
t ∥v(t)∥2

.

This R2 value represents the proportion of variance in the actual symptom-velocity
vectors explained by the subspace.

To ensure the alignment was not due to chance, we performed a permutation test:
we randomly shuffled the order of the 17 HRSD-17 items 100 times for each patient,
recomputed R2, and compared the resulting null distribution to the true R2. The
fraction of shuffled R2 values exceeding the real R2 served as the p-value.

Among the 143 patients with T ≥ 5 clinical assessments, 93% showed an R2 that
exceeded the mean of the shuffled distribution, with over one-third achieving statistical
significance (p < 0.05). These results imply that the geometry of depressive symp-
tom trajectories adheres to the same low-dimensional constraints identified in healthy
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Fig. 5 Decomposing Extended Cognitive Perturbations into Smaller Inputs. Any
extended cognitive intervention (e.g., a long therapy session or repeated stimulus exposures) can be
viewed as a sequence of smaller perturbations that each follow the same neural–cognitive dynamics
estimated from our original video dataset. In this schematic, the system transitions from an initial
state (gray node) toward a target state (red node) via multiple intermediate steps (U1, U2, . . . , Un).
Crucially, the resulting velocity vectors for these steps lie predominantly within the subspace spanned
by the eigenvectors of the state-to-output controllability manifold. In Section 4, we demonstrate this
principle empirically in a clinical dataset of 255 subjects [24], showing that real-world symptom tra-
jectories in depression likewise adhere to these manifold-based constraints.

individuals. In most cases, real symptom changes lay closer to the cognitive–neural
manifold than expected by chance, indicating a robust directional preference in how
symptoms evolve.

5 Discussion

The key idea behind our work is that while the cognitive and neural state space is
high-dimensional, not all possible patterns are achievable; instead, these trajectories
are constrained to a much lower-dimensional manifold that can be quantified and its
properties can inform and explain what we observe in human behavior and mental
health trajectories. The concept of neural manifolds in high-dimensional brain activ-
ity has been studied extensively in computational neuroscience [3, 4], yet their specific
implications for cognition and therapy remain underexplored. Our findings suggest
that these manifolds serve as geometric scaffolds for cognitive experiences, determining
which transitions—such as shifting from a negative bias to a more positive affect—are
more feasible under purely cognitive interventions. While we did not impose prior
assumptions, our results indicate a nearly one-to-one correspondence between cognitive
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and neural manifolds, suggesting that the number of dominant controllable dimen-
sions (eigenvectors) within the manifold is relatively limited. This aligns with network
control theories that emphasize low-dimensional constraints on brain dynamics [14].

Further, our results align with clinical observations and neurostimulation findings,
confirming that not all regions of the neural manifold are equally accessible, with
some cognitive and emotional trajectories being more feasible than others [13, 25, 26].
Our analysis of the state-to-output controllability Gramian reveals eigenvalues span-
ning over two orders of magnitude, indicating that transitions associated with large
eigenvalues require minimal effort, while those tied to smaller eigenvalues demand sig-
nificantly greater energy, time, or therapeutic support. Clinically, this suggests that
certain cognitive and affective dimensions are more amenable to intervention, whereas
others pose greater challenges. For instance, psychotherapies like cognitive-behavioral
therapy (CBT) often effectively target symptoms such as depressed mood and neg-
ative thought patterns, facilitating shifts in emotional valence within 10–15 sessions
for many patients, yet they frequently struggle with entrenched sleep disturbances
and cognitive rigidity [27, 28]. These harder-to-control dimensions often correspond
to residual symptoms in Major Depressive Disorder (MDD), such as anhedonia, sleep
disturbances, fatigue, guilt, and cognitive rigidity, which persist despite treatment and
increase relapse risk [29]. Our findings provide a mathematical framework to eluci-
date these residual symptoms by mapping them to low-controllability eigenvectors,
predicting their persistence using eigenvalue magnitudes, and potentially controlling
them by modifying the brain’s dynamic properties. Interestingly, recent evidence from
our group and others demonstrates that symptom network dynamics enable accu-
rate prediction of these trajectories, strongly corroborating our controllability-based
findings [30–34].

From a therapeutic perspective, identifying dominant controllability directions
offers actionable insights: interventions are likely to be most effective when they lever-
age eigenvectors associated with high controllability, thereby facilitating meaningful
cognitive shifts with reduced effort and time. Conversely, more challenging trajectories
may require additional interventions, such as neurostimulation or pharmacotherapy,
to alter the brain’s underlying controllability properties [35]. This opens a promis-
ing avenue for neurostimulation, which could re-engineer neural manifolds beyond
traditional state-space control by directly targeting and reshaping the controllability
landscape. Such an approach may unlock previously inaccessible regions of the mani-
fold, addressing residual symptoms more effectively, a potential that aligns closely with
recent clinical observations [36–38]. Incorporating data from neurostimulation stud-
ies could further refine this approach, as evidenced by targeted brain state-dependent
interventions.

5.1 Limitations and Future Directions

Temporal and Multiscale Dynamics. A key limitation of our study is its simpli-
fied representation of cognitive and neural dynamics, which does not account for the
multiscale interactions observed in real-world brain processes. These interactions are
driven by distinct time constants: neural dynamics operate on a fast time scale (τx),
typically on the order of milliseconds to seconds, while cognitive experiences evolve
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on slower time scales (τu), often spanning seconds to minutes [39–42]. To address
this, our framework could incorporate a model where cognitive updates occur in dis-
crete blocks of neural steps, potentially altering the controllability landscape. Such
a model suggests that larger mismatches between τx and τu might complicate the
control of less aligned cognitive trajectories, though the precise effects on control
dynamics (e.g., time or effort required) remain uncertain and necessitate further the-
oretical investigation. This omission may bias our controllability Gramian estimates,
as multiscale effects could influence the accessibility of certain manifold directions.
Multiscale dynamics are a critical factor in mental health, as demonstrated by our
recent study on Fourier transformation of Ecological Momentary Assessment (EMA)
data [43], which reveals their importance in decoding temporal patterns of psychiatric
symptoms. Addressing these complexities could enhance the framework’s relevance to
real-world mental health applications and may inspire new treatment strategies, such
as navigating the controllability manifold to bypass energetically costly directions and
target hard-to-control symptom trajectories more effectively.

Model Validation and Data Availability. While our study involving 255 MDD
patients underscores the clinical relevance of low-dimensional manifolds, further val-
idation on larger and more diverse datasets is essential. Additionally, many clinical
endpoints remain categorical (e.g., “remission” vs. “non-remission”), contrasting with
the continuous-state assumptions in our linear model. Future research may benefit
from hybrid models that integrate discrete and continuous representations to better
capture clinical realities. The inpatient focus of our MDD dataset may introduce bias,
limiting generalizability to outpatient populations.

Moreover, our study focused primarily on affective ratings such as arousal and
valence, which are central to emotional processing. However, a broader spectrum of
cognitive processes—including attentional biases, motivational states, and metacog-
nition—may also be integral to psychiatric disorders [27, 44]. Expanding the scope
of cognitive measures could reveal additional eigenvectors or controllability dimen-
sions relevant to other psychiatric conditions. Lastly, mental health outcomes are
shaped by socioeconomic factors, genetic predispositions, environmental stressors, and
interpersonal dynamics—variables not explicitly incorporated in our control-theoretic
approach. Developing a more holistic framework that integrates these additional
influences could enhance predictive accuracy and inform next-generation precision
psychiatry.

6 Conclusion

Our findings integrate dynamical systems theory, neural-cognitive alignment, and
psychiatric intervention research, offering a novel framework that conceptualizes cog-
nitive experience as a state-to-output controllability problem. We provide theoretical
and empirical evidence that low-dimensional neural manifolds constrain the cogni-
tive states most readily attainable, with trajectories governed by the controllability
Gramian’s eigenvalues. This approach provides a mathematical framework to explain
why certain therapeutic interventions succeed while others falter. Our theory and
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results suggest the potential to quantify and understand human behavior, enabling pre-
cise control of cognitive states through targeted interventions. Specifically, combining
Ecological Momentary Assessment (EMA) data, neuroimaging, cognitive-behavioral
therapy (CBT), and neurostimulation can provide the necessary data and strate-
gies, with further refinement needed to address multiscale dynamics, while dynamical
systems and control theory illuminate the path forward.
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Appendix A

Detailed derivations on empirical state-to-output controllability Gramian.
In this Appendix We provide simple derivations that better illustrate the theoretical
relationship between exact and empirical state-to-output controllability Gramian.

Consider the same state-space model as in (1), repeated here for convenience:

x(t+ 1) = Ax(t) +Bu(t), (A1a)

z(t) = G⊤ x(t). (A1b)

Assume that A is stable (i.e., all eigenvalues lie within the unit circle), so that the
steady-state response to a constant input uk(t) ≡ uk exists. In particular, after a
sufficiently long time the system reaches

xk = lim
t→∞

t−1∑
ℓ=0

AℓBuk =
[ ∞∑
ℓ=0

AℓB
]
uk = (I−A)−1Buk. (A2)

The last expression also follows directly from (A1a) as its fixed point solution–setting
x(t + 1) = X(t). Now suppose we collect steady-state responses xk, k = 1, . . . ,K for
K different cognitive stimuli uk, k = 1, . . . ,K and define the data matrices

X =
[
x1 x2 · · · xK

]
and U =

[
u1 u2 · · · uK

]
.

Then, from (A2), we have

X = (I−A)−1BU. (A3)

If U ∈ Rn×K is full row rank (a reasonable assumption when K ≫ n), the unique
solution to the system of linear equation (A3) is

(I−A)−1B = XU†. (A4)

This can then be used to approximate the state-to-output controllability Gramian, as
follows. The state-to-output controllability Gramian is defined as

Wz =

∞∑
ℓ=0

G⊤AℓBB⊤(A⊤)ℓG = G⊤
[ ∞∑
ℓ=0

AℓBB⊤(A⊤)ℓ
]
G

≃ G⊤
[ ∞∑
ℓ=0

AℓB
][ ∞∑

ℓ=0

B⊤(A⊤)ℓ
]
G

= G⊤(I−A)−1BB⊤(I−A)−TG = Ŵz. (A5)

The last equality serves as the definition of the empirical Gramian Ŵz. Note that Ŵz

is only an approximation of Wz because the product of the two infinite series on the
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second line of (A5) has extra terms in addition to the terms in the preceding infinite
series. Using the relation in (A4), we then have

Ŵz = G⊤ (
XU†) (XU†)⊤ G. (A6)

Since the matrices X and U are computed from the steady-state responses, one can
compute Ŵz and its spectrum directly from data, thereby assessing the energetic cost
of steering the output z(t).

Appendix B

Detailed derivations on the linearity of fMRI gradients’ relationship to cog-
nitive perturbations. Here we demonstrate that, under a linear dynamical model,
the structure of the fMRI gradients is linearly related to the correlations among cog-
nitive inputs. Assuming that the range of each component of the cognitive input u
is normalized to lie in [0, 1], the fMRI gradient associated with the i-th cognitive
experience is

gi = E[x | ui = 1]− E[x | ui = 0]. (B7)

Using the steady-state response from (A2), we have

E[x | ui = c] = (I−A)−1BE[u | ui = c], c ∈ {0, 1}.

Hence,
gi = (I−A)−1B (E[u | ui = 1]− E[u | ui = 0]) . (B8)

Assuming that components of u are approximately related to each other via a linear
stochastic relationship, we have

E[uj | ui = 1] = ρji and E[uj | ui = 0] = 0,

where ρji is the correlation coefficient between uj and ui (with ρii = 1). Denote
by ρi the i-th column of the cognitive perturbation correlation matrix P; that is,
ρi = [ρ1i, ρ2i, . . . , ρni]

⊤. Then, (B8) becomes

gi = (I−A)−1Bρi. (B9)

This shows that under the linear model in (A1) the fMRI gradients are linearly related
to correlation coefficients between the components of cognitive perturbations.

Next, consider the inner product between two fMRI gradients gi and gj :

g⊤
i gj = ρ⊤

i

[
(I−A)−TB⊤B(I−A)−1

]
ρj .

Therefore, defining the symmetric matrix

Q = B⊤(I−A)−T (I−A)−1B,
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we have
g⊤
i gj = ρ⊤

i Qρj . (B10)

This expression shows that the inner product (and hence the correlation) between gi

and gj is determined by a quadratic form in the corresponding vectors ρi and ρj of
the cognitive correlation matrix P, with weighting given by Q. Therefore, the matrix
of all pairwise correlations among the fMRI gradients is, approximately up to a scaling
factor, given by

PQP.

This clearly demonstrates that if the brain dynamics are well approximated by a linear
model, then the (partial) correlations among the fMRI gradients mirror the linear
structure of the cognitive inputs.

Appendix C

fMRI data and processing. We used an fMRI dataset originally collected and made
available by Cowen and Keltner [22]. Five healthy adult participants (four males, one
female, aged 22–34) viewed a total of 2,185 unique emotionally evocative short videos.
These videos were extracted from an original set of 2,196 clips whose durations ranged
from approximately 0.15 s to 90 s. Each video was shown without sound, resized to
fit within a 12° visual angle, and presented against a gray background. Participants
underwent multiple fMRI scanning sessions over roughly two months, yielding approx-
imately eight hours of data. All procedures for video presentation, participant head
stabilization, and run structuring followed the protocols described in the original study.
Rest periods were interspersed between video blocks (each 7–10min run contained
36 video blocks, plus a 2 s rest following each block).

Functional images were acquired using a 3.0T Siemens MAGNETOM Verio
scanner (TR=2000ms, TE=43ms, flip angle= 80°, 2× 2× 2mm voxels, 76 slices,
multiband factor= 4). T1-weighted anatomical scans were also collected. Preprocess-
ing was conducted with fMRIPrep [45]. After preprocessing, nuisance regression was
performed (polynomial trends and motion parameters). The time series were shifted
by 4 s to account for hemodynamic delay and despiked to remove extreme values. We
then averaged voxel signals within each stimulus block (i.e., a video’s on-period plus
a 2 s rest), and z-scored across all stimuli per voxel. This yielded one fMRI response
vector per video, per subject. We used whole brain data these data for subsequent
neural–cognitive alignment and controllability analyses.

Each of the 2,185 video stimuli was annotated with a 14-dimensional affective rat-
ing, provided by an online crowd-sourced protocol (see Cowen and Keltner [22] for
details). Participants in that separate study rated the videos along 14 affective dimen-
sions (e.g., arousal, valence) on a 9-point scale, and ratings were averaged across raters.
These 14 scores are treated as low-dimensional descriptors of each video’s emotional
content.
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