
ESE 617/MEAM 613: Nonlinear Systems & Control (Fall 2019)
Homework #1

Due on 9/18/2019, 9 a.m., in class

1. Qualitative behavior of second-order nonlinear systems. As mentioned in class, the first step in the
analysis of the behavior of any nonlinear system (i.e., before we get our hands dirty with the tools
that we learn later in the course!) is to find its equilibria and see if linearization around each of them
is conclusive (i.e., if the equilibrium points are hyperbolic). Computer simulations can also be very
helpful in guiding the subsequent rigorous analysis. Here, we do these steps for the following toy
systems:

(i)

{
ẋ1 = x2

ẋ2 = −x1 + 1
6x

3
1 − x2

(ii)

{
ẋ1 = −x1 + x2

ẋ2 = 0.1x1 − 2x2 − x21 − 0.1x31

(iii)

{
ẋ1 = −x1 + x2(1 + x1)

ẋ2 = −x1(1 + x1)

For each system, do the following (1 point/system each):

1.1 Compute the equilibrium points
1.2 Determine the type of each equilibrium point (stable node, unstable focus, etc.)
1.3 Generate the phase portrait of the system using MATLAB.

Hint: Consider a rectangle in the x1-x2 plane that encloses all the equilibrium points (with
a reasonable space between the boundaries of the box and the equilibria). Pick 10 equally
spaced points on each side of the box (giving a total of 36 points). Using a for loop, simu-
late the trajectories of the system starting from each of these 36 points as the initial point x(0).
Try to use a sufficiently long time horizon for stable trajectories to converge. In MATLAB,
use ode45. Then, plot each of these trajectories in the x1-x2 plane (in MATLAB, you can use
plot(x(:, 1), x(:, 2)), and don’t forget to use hold on). Finally, set the bounding box of
the figure to the original box that you chose (using axis in MATLAB) and mark the equilibria
with large dots/... in the same plot.
Hint: Use m-codes so that you don’t need to re-code for each system!

2. Chaos and the Lorenz system. In class, we saw that ultra-sensitivity to initial conditions is a funda-
mental characteristic of chaotic systems. Here, we will see this for the Lorenz system,

ẋ1 = σ(x1 − x1)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3

which is the most well-known example of a chaotic system for some range of its parameters (σ, ρ, β).
Set ρ = 28, σ = 10, and β = 8/3. Do the following (1 point each):

2.1 Simulate (using ode45 with the default options) and plot (using plot3) the trajectories from
x(0) = [1 1 1]T until t = 200 in the x1-x2-x3 space (not as a function of time). You should be
able to see the so-called “butterfly attractor”.



2.2 Now do the same, but for initial condition y(0) = [1+ε 1+ε 1+ε]T . Try ε = 10−6, 10−15, 10−16.
For each value of ε, plot both x1 and y1 (i.e., x(:, 1) and y(:, 1)) as a function of time in the
same plot. Do they lie on top of each other? Why or why not?
Hint: recall that the machine precision (i.e., the smallest value of ε for which 1 and 1 + ε can be
distinguished) for double precision arithmetic (the MATLAB standard) is given by the variable
eps (just type eps in command window).

2.3 We know that even if we do not add the ε to the initial condition, numerical computations
always have errors. To see the effect of these errors, this time simulate the system from the
same initial condition z(0) = [1 1 1]T but change the precision of ode45 using the command
options = odeset('AbsTol', 1e-10, 'RelTol', 1e-6); (and include options as the last
input to ode45). This makes z a more accurate estimate of the solutions of the Lorenz system
starting from [1 1 1]T than x. Plot both x1 and z1 as a function of time in the same plot. Do
they lie on top of each other? Why or why not?

2.4 Plot x, y (for ε = 10−6) and z in the phase space (using plot3). Do they (approximately) lie on
top of each other? Why or why not?

2.5 Based on 2.2 - 2.4, do you think computer simulations can be useful in the study of chaotic
systems?
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