ESE 617/MEAM 613: Nonlinear Systems \& Control (Fall 2019) Homework \#5

Due on 10/16/2019, 9 a.m., in class

1. Scalar LTI system (1 points). Consider the scalar system

$$
\begin{equation*}
\dot{x}(t)=(a+b \sin (t)) x(t), \quad t \geq t_{0}=0 \tag{1}
\end{equation*}
$$

Let $a=-1, b=0$. Using

$$
\begin{equation*}
V(t, x)=\frac{1}{2} p(t) x(t)^{2}, \quad q(t)=q=-1, \tag{2}
\end{equation*}
$$

prove that this system is exponentially stable using Theorem 4.12 in the book. Compare your result with the solution of the corresponding (time-invariant) Lyapunov equation.
Hint: choose $p(0)$ carefully!
2. Scalar LTV system (2 points). Now consider the same system (1) but with $a=1, b=1$. Still use the same V and q as in (2).
2.1 (1 point) Write down the appropriate differential equation for $p(t)$.
2.2 (1 point) Since this equation does not have an analytical solution, solving it numerically using ode 45 (time interval $[0, T], T=100$, arbitrary $p(0)$). Plot the result. Is the resulting $p(t)$ positive definite? (which, as you know, is different from being merely positive, right?)
3. Scalar LTV system (3 points). Again consider (1)-(2), but this time with $a=-1, b=1$.
3.1 (1 points) Repeat 2.1 and 2.2 for this system.
3.2 (1 points) Can you find an appropriate $p(0)$ for which the resulting $p(t)$ is positive definite? Compare this with the systems of Problems 1 and 2 in terms of the importance of $p(0)$. Do you see a pattern?
3.3 (1 points) Try solving the differential equation for $p(t)$ backwards, starting from an arbitrary $p(T)$ and solving backwards until $t=0$ (still use a large T such as $T=100$). Plot the result.
Hint: the command ode45 (odefun, T:-0.01:0, P_T) does this automatically! Is the resulting $p(t)$ positive definite? Is the system exponentially stable?
4. Vector LTV system (5 points). Now consider the system

$$
\dot{x}(t)=\left[\begin{array}{cc}
-2+\cos (t) & e^{-t} \sin (t) \\
e^{-2 t} & -3+2 e^{-t} \cos (t)
\end{array}\right] x(t)
$$

Using what you have learned so far, show that this system is exponentially stable.
Hint: A complete proof requires solving for $P(t)$ analytically, but it is OK (and our only option) here to find an appropriate $P(t)$ numerically.

