ESE 617/MEAM 613: Nonlinear Systems \& Control (Fall 2019) Homework \#6

Due on 10/28/2019, 9 a.m., in class

1. Show that the following systems are ISS (2 points each):
(i)

$$
\dot{x}=-x^{3}+x u
$$

(ii)

$$
\dot{x}=-x+u^{3}
$$

(iii)

$$
\begin{aligned}
& \dot{x}=-x^{3}+x y \\
& \dot{y}=-y+u^{3}
\end{aligned}
$$

2. (4 points) Show that the following system is ISS

$$
\begin{aligned}
& \dot{x}=-x+y^{3} \\
& \dot{y}=-y-\frac{x}{\sqrt{1+x^{2}}}+z^{2} \\
& \dot{z}=-z+u
\end{aligned}
$$

using the Lyapunov function

$$
V(x, y, z)=\sqrt{1+x^{2}}-1+\frac{1}{4} y^{4}+\frac{1}{2} z^{8}
$$

Hint: After simplifying \dot{V}, use the infinity norm $\|(x, y, z)\|_{\infty}=\max \{|x|,|y|,|z|\}$ of the state to collect the terms in x and y and z into a single term in $\|(x, y, z)\|_{\infty}$. Also, beware of the fact that for any class \mathcal{K} function α and $a, b, c>0$,

$$
\alpha(a+b+c) \leq \alpha(3 a)+\alpha(3 b)+\alpha(3 c)
$$

which you can easily show (right?).

