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Natural convection in a vertical strip immersed in a porous medium
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Abstract

In this work, the conjugated heat transfer characteristics of a thin vertical strip of finite length, placed in a porous medium
has been studied using numerical and asymptotic techniques. The nondimensional temperature distribution in the strip and
the reduced Nusselt number at the top of the strip are obtained as a function of the thermal penetration parafmeter
measures the thermal region where the temperature of the strip decays to the ambient temperature of the surrounding fluid.
The numerical values of this nondimensional parameter permits to classify the different physical regimes, showing different
solutions: a thermally long behaviour, an intermediate transition and a short strip limit.
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1. Introduction

In this work we deal with the problem of the coupled conjugate conduction-natural convective heat transfer in a vertical solid
strip totally embedded in a porous medium. The book by Pop and Ingham [1] presents abundant theoretical evidence, showing
the importance of the thermal interaction with different heat transfer mechanisms in practical systems. In the same direction,
the book of Sundén and Heggs [2] shows that this simple geometrical configuration is found in a broad range of scientific and
engineering problems associated with different industrial applications. Additional examples on this and other related topics
can be obtained in the books by Ingham and Pop [3], Nield and Bejan [4] and Vafai [5]. Lock and Gunn [6] did the first
theoretical study dealing with the conjugate conduction-free convection problem of a long vertical thin strip or fin embedded
in a porous medium. They obtained self-similar solutions for the vertical fin geometry. Cheng and Minkowycz [7], Kuehn et al.
[8] and Sparrow and Acharya [9] developed equivalent analyses for the same type of problems. Based on these studies, Pop
et al. [10] obtained a set of similarity solutions for a long vertical plate projecting downward from a heated horizontal plane
base at uniform temperature, for the case of the thermal conductivity-fin thickness product varying as a power of distance from
a certain specified origin. Later, Pop et al. [11], improved the above analysis by developing a finite-difference numerical scheme
for the case of uniform thickness and thermal conductivity of the fin. Pop and Nakayama [12] reviewed the problem of conjugate
convective heat transfer from a vertical fin embedded in a fluid-saturated porous media.

The above mentioned authors mainly consider an infinitely long fin in order to formulate the thermally coupled governing
equations. For instance, Pop and Nakayama [12] introduced an unknown characteristiocje¢iggh (14) in [12]) in order
to nondimensionalize the governing equations and selected an appropriate origin of coordinates. However, the physical
interpretation to choose this length scale was not enough clarified. One of the objectives of the present work is to show that this
length scale, called in this papé&f, can be easily estimated using an order of magnitude analysis of the governing equations.
Furthermore, we avoid the unnecessary condition to assume an infinitely long fin by considering a vertical strip or fin of finite
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length L. Therefore, we introduce a nondimensional parametetZ, which identifies all possible physical regimes for this
conjugate heat transfer process.

Using order of magnitude estimates of the coupled governing equations, we identify the characteristic thermal penetration
length L*, where the temperature of an infinitely long fin would decay to the ambient temperature of the surrounding porous
medium. As was previously mentioned, the ratiaddfto the actual lengtiL of the fin is a fundamental parameter that serves
to classify the possible thermal regimes. Additional nondimensional parameters in the problem are the Rayleigh number (to be
defined below) and the aspect ratio of the strip. Perturbation and numerical methods are employed, together with the Darcy and
boundary layer approximations for the free convection flow, to analyze the transition from a thermally skos fifi (L > 1)
to a thermally long fin{ « 1) and to ascertain the influence of the thermal properties of the strip and porous medium on the
overall heat transfer rate. Finally, the analytical solutions obtained using perturbation techniques are compared with numerical
results.

2. Basic equations

The physical model and a suitable coordinate system are given in Fig. 1. A vertical heated conducting strip @f éextjth
thickness 2 « L, is totally embedded in a fluid-saturated porous medium with a temper&turd he upper surface of the
strip is assumed to have a uniform temperafiye- T, Whilst the lower surface is assumed to be adiabatic. Heat is transferred
from the top of the strip to the fluid-saturated porous medium through the strip. Consider first an infinitely long strip. Owing to
the heat loss to the surrounding fluid-saturated porous medium, the temperature of the strip decreases downward from its top,
decaying towards the ambient temperature of the fluid in a thermal penetration region, with a characteristit*emgith
can be estimated from the balance of heat transfer to the fluid-saturated porous medium and heat conduction along the strip.
Assuming that the Rayleigh numberRa g KB8(Tg— Too) L* /am v is very large compared with unity (whege K, 8, oy, and
v are the gravity acceleration, the specific permeability of the porous medium, the thermal expansion coefficient, the thermal
diffusivity of the fluid-saturated porous medium and the kinematic viscosity, respectively), the flow around the strip is confined
to a natural convection boundary layer of characteristic thickb&ss L*/ Ra*1/2. The total heat lost by conduction to the
fluid-saturated porous medium per unit time and unit width of the strip is of the ordetkak 7/§*, while the heat conducted
along the strip is of ordetks AT /L*, wherek andk, are the thermal conductivity of the porous medium and the strip material,
respectively kK = ¢k r + (1 — ¢)kn, [4], where¢ is the porosityk ; andk;,, are the thermal conductivities of the fluid and the
porous matrix, respectively).The balance of these two fluxes yields

ks /k 2/3
L =h%, )
Ra,

To To
g 1
Strip ‘;
L To
X
v | - RN }'m
htsa0dy.

Porous Medium

Fig. 1. Sketch of the studied problem.
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where Rg = gKB(Ty — Teo)h/amv is the Rayleigh number based on the half-thickness of the strip. The boundary layer
approximation is then valid for values of the ratio of thermal conductivitigs > L*/h > 1. For values ofL > L*, the
actual length of the strip is irrelevant aid is the appropriate characteristic length in the heat transfer process. This regime
corresponds to the thermally long strip. A parameter relating both characteristic lengths is defined.byL. The thermally
long strip corresponds to values .ok 1. Using the estimate of the thermal penetration length, the total heat flux transferred
at the top of the strip per unit time and unit width of the strip is of order;- hks(To — Too)/L™*, oOr in nondimensional
form, Nu_ong= Q/k(Tp — Too) ~ Ra*1/2. The order of magnitude of the heat flux going from the solid to the fluid in the
porous medium i&s AT,/ h ~ kATRa&Y2/L* whereAT,, denotes the variation of the solid temperature in the transverse
direction. From this relationship we obtainT,, /AT ~ (k/ks)(h/L*)Ra*Y/2 ~ (h/L*)2. Therefore, for values of <« L*,
the temperature variation in the transverse direction of the strip is very small compared with the overall temperature difference
(thermally thin solid). This approximation is valid for valueskgf k > Rahl/z.

In the opposite case of short strips with« L « L*, that iss > 1, the longitudinal temperature variation from the top
to the bottom of the stripATy; say, can be estimated from the energy bala@ce hks AT, /L ~ LkAT/S, wheres is
the characteristic thermal boundary layer thicknéss; L/ Rai/z. This balance give\Ty; ~ AT/s3/2. This means that
the temperature of the strip is almost uniform and equal to its top temperature for valsdargé compared with unity.
In this regime,ks ATy,/h ~ kATR&'%/L, and thenATy, /AT ~ (h/L*)3/2(h/L)Y2 ~ (h/L*)%sY/2. The thermally thin
approximation is valid for values af< (L*/h)*, as long as Ra>> 1. In the limit of short strips, the overall Nusselt number
is then Nuyport~ Ra+1/2 /s1/2, for values ofs > 1. The advantages of the long strip regime is clearly seen when the overall
Nusselt numbers for both regimes are compared .

Using the Darcy—Boussinesq and boundary-layer approximations, the natural convection flow in the fluid-saturated porous
medium is described by the following governing equations [4]

u v

m L% o, 2

ox | ay @)
KB

u=gT<T—Too), €)

aT  aT 82T

U d v —a— (4)

ox dy dy2

for the mass conservation, momentum and energy, respectively. The heat equation for the strip is given by

2 2
¥ ¥ =0. (5)
ax2 ay2

In the above equations, v are the velocity components along they axes,T andTy are the temperatures of the fluid-saturated
porous medium and the solid plate, respectively. Egs. (2)—(5) are to be solved with the following boundary conditions:

aT aT,
v=0, T=Tj, k_=ks_s ony =0, (6)
ay ay
aT,
—= =0, Ty(L,y)=1, ™
aT,
s =0, (8)
9x [y=0
u—0 T —Ts asy— ooandx=0withy#£0Q. 9)

If the aspect ratio of the strip/L* is assumed to be very small compared with unity, Eq. (4) can be integrated in the
transverse direction, resulting

27, k aT
——| =o. 10
d.x2 + ks 8y 0 ( )

In this case, the temperature at the strip is assumed to depend only on the longitudinal coordinate alone. In the following two
sections we present the asymptotic solutions for long and short strips, respectively.
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3. Longstrips

For thermally long stripsL > L* (s < 1), the appropriate characteristic lengthZi§. The following nondimensional
variables are introduced for this regime

L —
o="0""1 z_2YRal2 y=",
L* L* Uc (11)
T -Tx Ty — Too

v=_"Ral2 g= ;6=

whereLg is a length to be computed later ang is the characteristic flow velocity, defined by = gK8(Tg — Txo)/v. The
nondimensional form of the governing Egs. (2)-(5), are now for this regime

s

au av
4+ =0 12
do + 0Z ’ (12)
U=-0, (13)
2
g2y 207 14
do 0Z  9z2
d%, 96
-~ 4+ —| =0 15
dw? 9z o (15)
with the corresponding nondimensional boundary conditions
V=0 6=60;, atZ=0, U,6—0 forZ,o— oo, (16)
6 =1 ato =oy, 0 — 0 foro — oo.
Here,oq= (Lg— L)/L*.
This problem, as shown by [7,10], has a self-similar solution of the form
3/2
dh ag dh 322
9=9s(‘7)¥, V=—7|:h+2‘§£i|; E=00 ﬁ» (17
whereg; is found to beds = (op/o)3. The function (§) satisfies the ordinary differential equation
d3h dn\2  d%h
— =3 — h— =0 18
e ) e 49
with the boundary conditions
dh dn
h(0) = — —1=— =0. (29)
dé £=0 dé E—o00
1.0 . T T T
dh/dg
0.8 / R
0.6 5 5 .
h d“h/dg"| _=-1.5158
c’0
0.4 B
0.2 1 i
0.0 T T T T +
0 2 4 6

Fig. 2. Numerical solution of functioh (&), obtained by solving Egs. (18) and (19) in the long strip regime.
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The value ofog can be obtained by introducing Egs. (17) into the energy equation for the strip (15), resujtiag
(12/d?h /dg?|,,—0)%/3 ~ 3.9722. The lengtLg is then Lo = L + 3.9722L*. Fig. 2 shows the functioh (&), obtained after

solving numerically Egs. (18), (19), using a central difference scheme with the aid of a quasi-linearization technique. The
nondimensional temperature of the strip then is given by

oos 3
O = ———— fors — 0. (20)
ops+1—x/L
Finally, the nondimensional heat flux or Nusselt number at the bottom of the strip is given by

N do 3
% — 2 ~075525 fors— 0. (21)
Ra+1/2 do o=0y 00

4. Short strips

For large values of compared with unity{, <« L*), the appropriate characteristic length.isThe heat transfer problem in
this regime can be studied using the nondimensional variables

x Ty (x) — Too Ra/?y
X=7> Oy = ————, = ""Trn17" (22)
L To — Too LY/2x1/
and
T —T 9 /2R 9 9
g TON—Too w _0f ,_ wRa[ of 1 ndf] (23)
To— Too uc on L/2y, Ix 2 20y

where Ra is the Rayleigh number based on the length of the strip. In nondimensional variables, Eq. (10) becomes

S3/2d29S_ 1 9%f

=——_—2| 24
a2~ X202, (24)
with the boundary conditions at the top and bottom of the strip given by
do
gs=1 aty=1 and d—s=0 aty =0. (25)
X
The nondimensional governing equations for the fluid immersed in the porous medium reduces to
0°r  £O%f _ [3f ?f _of Bzf] (26)
on3 " 292 “Lomaxan  ax on?2]
The associated nondimensional boundary conditions are then
) a
f=—f—9s atp=0 and —f—>0 forn — oo, (27)
an an

plus conditions of regularity at the origin of the boundary layet 0.
An asymptotic solution of problem (24)—(27) for large values oan be sought as a regular expansion in powess‘%fz,
which is the small parameter dictated by Eq. (24). The solution can then be written as

6 650 } 1 { 05 (0 }
= + - . 28
{f} {fo(n) ZvW FiGem (28)

j=t"

The leading term for the nondimensional temperature in the strip is clégyl 1. Carrying expansions given in Egs. (28)
into the nondimensional Egs. (24) and (26) with the associated boundary conditions, and keeping terms up S otider
following set of equations are obtained.

For the solid:
26, ; 32fi_
SJ =_i£‘ forj}l, (29)

dy? X2 am? 1o

with the boundary conditions
% =6, (1)=0, forj>1 (30)

= Usj =Y J =z L1

d)( XZO ’
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For the fluid immersed in the porous medium:

fo 1, df
Z fo—=> =0, 31

a3 50 a2 (31)

3 f1 1( 2f  dfo ) [dfo ’f  df 3f1]

R R i i IR e S S S ) 32

a3 2 fo an? dn? f)=x dn axon  dp? 9yx (32)
etc., with the boundary conditions valid fgr> 0

af/'

fj=a—r~]—esj=o atn=0 (33)
and

8 .

i=O forn — oo. (34)

an

Eq. (31), with the boundary conditions (33) and (34) fet 0, corresponds to the classical problem of convection in a porous
medium adjacent to a heated isothermal vertical plate [7], giving tn2|o = —Go = —0.444. The first order correction for
the nondimensional temperature of the strip given by Eq. (29), can be obtained after integrating it twice to yield

4Go 3/2
Os1= Z “an=—T(1—X/)- (35)
n=0,3/2

Hereag = —az;2 = —4Go/3. The solution to the linear Eqg. (32) with the corresponding boundary conditions must be of the
form f1(x,n) = Zn=0’3/2 an x"gn(n), whereg, (n) satisfies the ordinary differential equations

d3¢n 1, d%  dfpdgn 1 & fo
a3 +§f0 a2 —naa (E—n>—2gn—0, forn=0,3/2. (36)

dn
The associated boundary conditions ggrare

dgn
0) = 22—
gn(0) dn

1= dgn

=5 =0. (37)

n—00

n=0

The solution of Egs. (36) and (37), gives the valuegn) = —d2g, /dn?|o. It can be easily shown, using the invariance
properties of the boundary layer equations, #iat0) = 3/2Go = 0.666. The obtained numerical value Gf,(3/2) = 0.937.
Following the same procedure, the second order correction of the nondimensional temperature in the strip is given by

_ anG1(n) n+1/2 _
“2= n;% 21D T32) (x Y 9

Summarizing, the nondimensional temperature of the plate for large values of the pargrapterterms of order—3, can be
written as

fy=1— (1-x%2)+ g%[lZGo(l— x¥2) = G13/2)(1 - x3)] + O(s~9/2). (39)

3532

The reduced Nusselt number, l)&lRaf"l/2 = s df;/dx |4 is then given by

Nu _ 2Go[. 6Go—G1(3/2)
3¢3/2

The thermal properties of the material, appearing in the definitiab*gblay no role in the heat transfer at the leading order,

e 2 ] + O(s*7/2), for s — oo. (40)
)
because Ra'* /s1/2 = Rai/2 and is independent df*.

5. Numerical results

Egs. (24) to (27) have been numerically solved for different values of param@tehe thermally short strip regime. The
boundary value problem, represented by Eg. (24) has been transformed to an initial value problem by introducing the new
nondimensional longitudinal coordinate= x /s. Therefore, Egs. (24) and (26), take the form
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Fig. 3. Numerical results for the nondimensional temperature in the strip as a function of the normalized nondimensional longitudinal coordinate
x, for different values of. For a value of = 0.05, the asymptotic solution for long strips, given by Eq. (20), is also plotted.

d%6 1 92

i A (41)

de2  Y2an?l,0

AL S XLy .

a3 29n2  Llanacan oc an? |
with the boundary conditions at the top and bottom of the strip given by

do

Os=1 atf=¢y and§=0 atc =0, (43)

Wherecf =1/s. Close to the bottom of the strip,—~ 0, 65 behaves like
4
0y =a+ §a3/200§3/2 +0(c77?), (44)

wherea < 1 is a constant to be given a priori. For a given value: 0& value of;y ands is obtained. For values of > 1,

Eq. (39) is used in order to have a preliminary nondimensional temperature profile at the strip. The nondimensional heat flux
azf/an2|o as a function of is obtained by integrating Eq. (42) and the corresponding boundary conditions. This equation has
been decomposed in one first order and one second order equations and solved using central difference discretization. Once
the nondimensional heat flux at eachposition has been obtained, the new nondimensional temperature profile in the strip

is obtained after solving Eq. (41), with the starting behavior (44), using a fourth-order Runge—Kutta technique. The process
is repeated until a convergence criterion is fulfilled. Fig. 3 shows the numerical results of the nondimensional temperature
profiles for the strip as a function of the nondimensional longitudinal coordinate, for different valsesnahis figure, the
nondimensional temperature of the strip has been plotted by using the long strip approximation for a vaiue.@b. The

reduced Nusselt number NllRafkl/z is plotted in Fig. 4 as a function of parameteicovering the full transition from the short

to long strips. The numerical results are plotted with open circles. The one and two terms asymptotic solutions given by Eq. (40),
obtained for large values of(short strips) are plotted, together with the asymptotic solution for long strips Q), given by

Eqg. (21). This figure shows that the short strip approximation is practically valid for values-&f, whereas the long strip
approximation holds for values of< 0.4.

6. Conclusions
In this paper, we have extended previous results for the conjugated heat transfer in a vertical strip with a prescribed

temperature at its top and immersed in a fluid-saturated porous medium, using analytical and numerical techniques. For large
values of the Rayleigh number, the problem depends on one nondimensional parametér:L. We show that the existing
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Fig. 4. Reduced Nusselt number, NRa* / as a function ofs. The open circles correspond to the numerical solution and the broken lines
correspond to asymptotic solutions for long and short strips.

regimes are well classified by the assumed values of the nondimensional parameatging from the limit of a thermally long

strip to the limit of a thermally short strip. In addition, the temperature of the strip, which depends on the thermal properties
of the strip and the porous medium as well as on the thickness of the strip, decreases to the temperature of the porous medium
in a thermal penetration lengit. This is defined as the length needed to reach the ambient temperature of the fluid-saturated
porous medium. Due to the finite thermal conductivity of the strip material, the heat transfer by conduction along the strip is a
relevant mechanism that modifies the previous estimations of the reduced Nusselt number with prescribed boundary conditions.
In particular, we identify that the limit of « 1, corresponds to the case of an infinitely long strip [12]. In this case, the problem

has a self-similar closed form solution for small values,ajiving an overall Nusselt number strongly dependent on the thermal
conductivity of the strip material and its thickness. For long strips, the actual length of the strip plays no role on the heat transfer
process, resulting heat flux at the top of the strip given by

gK,B]’l]l/S

oam v

0 =0.755252/313(1y — Too)¥ 3[

(45)

In the opposite case of large valuessofthermally short strip), the reduced Nusselt number depends weakly on the thermal
properties of the strip material, as given by the first term in Eq. (40). The leading order behavior is in fact independent on the
thermal conductivity of the strip. A two-term asymptotic solution is derived for the limit-ef co. We have shown that the

short strip approximation is valid for values of- 4, whereas the long strip approximation [7,10] holds for values-©f0.4.

In this work, the full transition from short strip (low heat transfer rates) to long strip (large heat transfer rates) has been treated
using numerical and asymptotic techniques.
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