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Abstract

In this work, the conjugated heat transfer characteristics of a thin vertical strip of finite length, placed in a porous
has been studied using numerical and asymptotic techniques. The nondimensional temperature distribution in the
the reduced Nusselt number at the top of the strip are obtained as a function of the thermal penetration parametes, which
measures the thermal region where the temperature of the strip decays to the ambient temperature of the surroun
The numerical values of this nondimensional parameter permits to classify the different physical regimes, showing
solutions: a thermally long behaviour, an intermediate transition and a short strip limit.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

In this work we deal with the problem of the coupled conjugate conduction-natural convective heat transfer in a verti
strip totally embedded in a porous medium. The book by Pop and Ingham [1] presents abundant theoretical evidence
the importance of the thermal interaction with different heat transfer mechanisms in practical systems. In the same
the book of Sundén and Heggs [2] shows that this simple geometrical configuration is found in a broad range of scie
engineering problems associated with different industrial applications. Additional examples on this and other relate
can be obtained in the books by Ingham and Pop [3], Nield and Bejan [4] and Vafai [5]. Lock and Gunn [6] did th
theoretical study dealing with the conjugate conduction-free convection problem of a long vertical thin strip or fin em
in a porous medium. They obtained self-similar solutions for the vertical fin geometry. Cheng and Minkowycz [7], Kueh
[8] and Sparrow and Acharya [9] developed equivalent analyses for the same type of problems. Based on these stu
et al. [10] obtained a set of similarity solutions for a long vertical plate projecting downward from a heated horizonta
base at uniform temperature, for the case of the thermal conductivity-fin thickness product varying as a power of dista
a certain specified origin. Later, Pop et al. [11], improved the above analysis by developing a finite-difference numerica
for the case of uniform thickness and thermal conductivity of the fin. Pop and Nakayama [12] reviewed the problem of c
convective heat transfer from a vertical fin embedded in a fluid-saturated porous media.

The above mentioned authors mainly consider an infinitely long fin in order to formulate the thermally coupled go
equations. For instance, Pop and Nakayama [12] introduced an unknown characteristic lengthxb (Eq. (14) in [12]) in order
to nondimensionalize the governing equations and selected an appropriate origin of coordinates. However, the
interpretation to choose this length scale was not enough clarified. One of the objectives of the present work is to show
length scale, called in this paperL∗, can be easily estimated using an order of magnitude analysis of the governing equ
Furthermore, we avoid the unnecessary condition to assume an infinitely long fin by considering a vertical strip or fin
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lengthL. Therefore, we introduce a nondimensional parameterL∗/L, which identifies all possible physical regimes for this
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Using order of magnitude estimates of the coupled governing equations, we identify the characteristic thermal pe

lengthL∗, where the temperature of an infinitely long fin would decay to the ambient temperature of the surrounding
medium. As was previously mentioned, the ratio ofL∗ to the actual lengthL of the fin is a fundamental parameter that ser
to classify the possible thermal regimes. Additional nondimensional parameters in the problem are the Rayleigh num
defined below) and the aspect ratio of the strip. Perturbation and numerical methods are employed, together with the
boundary layer approximations for the free convection flow, to analyze the transition from a thermally short fin (s = L∗/L � 1)
to a thermally long fin (s � 1) and to ascertain the influence of the thermal properties of the strip and porous medium
overall heat transfer rate. Finally, the analytical solutions obtained using perturbation techniques are compared with n
results.

2. Basic equations

The physical model and a suitable coordinate system are given in Fig. 1. A vertical heated conducting strip of lengL and
thickness 2h � L, is totally embedded in a fluid-saturated porous medium with a temperatureT∞. The upper surface of th
strip is assumed to have a uniform temperatureT0 > T∞, whilst the lower surface is assumed to be adiabatic. Heat is transf
from the top of the strip to the fluid-saturated porous medium through the strip. Consider first an infinitely long strip. O
the heat loss to the surrounding fluid-saturated porous medium, the temperature of the strip decreases downward fr
decaying towards the ambient temperature of the fluid in a thermal penetration region, with a characteristic lengthL∗ which
can be estimated from the balance of heat transfer to the fluid-saturated porous medium and heat conduction along
Assuming that the Rayleigh number Ra∗ = gKβ(T0−T∞)L∗/αmν is very large compared with unity (whereg, K, β, αm and
ν are the gravity acceleration, the specific permeability of the porous medium, the thermal expansion coefficient, the
diffusivity of the fluid-saturated porous medium and the kinematic viscosity, respectively), the flow around the strip is c
to a natural convection boundary layer of characteristic thicknessδ∗ = L∗/Ra∗1/2. The total heat lost by conduction to th
fluid-saturated porous medium per unit time and unit width of the strip is of the order ofL∗k�T/δ∗, while the heat conducte
along the strip is of orderhks�T/L∗, wherek andks are the thermal conductivity of the porous medium and the strip mate
respectively (k = φkf + (1 − φ)km [4], whereφ is the porosity,kf andkm are the thermal conductivities of the fluid and t
porous matrix, respectively).The balance of these two fluxes yields

L∗ = h
(ks/k)

2/3

Ra1/3
h

, (1)

Fig. 1. Sketch of the studied problem.
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where Rah = gKβ(T0 − T∞)h/αmν is the Rayleigh number based on the half-thickness of the strip. The boundary layer
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approximation is then valid for values of the ratio of thermal conductivitiesks/k � L /h � 1. For values ofL � L , the
actual length of the strip is irrelevant andL∗ is the appropriate characteristic length in the heat transfer process. This r
corresponds to the thermally long strip. A parameter relating both characteristic lengths is defined bys = L∗/L. The thermally
long strip corresponds to values ofs � 1. Using the estimate of the thermal penetration length, the total heat flux trans
at the top of the strip per unit time and unit width of the strip is of order,Q ∼ hks(T0 − T∞)/L∗, or in nondimensiona
form, NuLong = Q/k(T0 − T∞) ∼ Ra∗1/2. The order of magnitude of the heat flux going from the solid to the fluid in

porous medium isks�Tsh/h ∼ k�T Ra∗1/2/L∗, where�Tsh denotes the variation of the solid temperature in the transv
direction. From this relationship we obtain�Tsh/�T ∼ (k/ks)(h/L

∗)Ra∗1/2 ∼ (h/L∗)2. Therefore, for values ofh � L∗,
the temperature variation in the transverse direction of the strip is very small compared with the overall temperature d

(thermally thin solid). This approximation is valid for values ofks/k � Ra1/2
h .

In the opposite case of short strips withh � L � L∗, that iss � 1, the longitudinal temperature variation from the t
to the bottom of the strip,�TsL say, can be estimated from the energy balanceQ ∼ hks�TsL/L ∼ Lk�T/δ, whereδ is

the characteristic thermal boundary layer thickness,δ ∼ L/Ra1/2
L

. This balance gives�TsL ∼ �T/s3/2. This means tha
the temperature of the strip is almost uniform and equal to its top temperature for values ofs large compared with unity

In this regime,ks�Tsh/h ∼ k�T Ra1/2
L /L, and then�Tsh/�T ∼ (h/L∗)3/2(h/L)1/2 ∼ (h/L∗)2s1/2. The thermally thin

approximation is valid for values ofs � (L∗/h)4, as long as RaL � 1. In the limit of short strips, the overall Nusselt numb
is then Nushort∼ Ra∗1/2/s1/2, for values ofs � 1. The advantages of the long strip regime is clearly seen when the o
Nusselt numbers for both regimes are compared .

Using the Darcy–Boussinesq and boundary-layer approximations, the natural convection flow in the fluid-saturate
medium is described by the following governing equations [4]

∂u

∂x
+ ∂v

∂y
= 0, (2)

u = gKβ

ν
(T − T∞), (3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
, (4)

for the mass conservation, momentum and energy, respectively. The heat equation for the strip is given by

∂2Ts

∂x2
+ ∂2Ts

∂y2
= 0. (5)

In the above equations,u,v are the velocity components along thex, y axes,T andTs are the temperatures of the fluid-satura
porous medium and the solid plate, respectively. Eqs. (2)–(5) are to be solved with the following boundary conditions:

v = 0, T = Ts, k
∂T

∂y
= ks

∂Ts

∂y
ony = 0, (6)

∂Ts

∂y

∣∣∣∣
y=−h

= 0, Ts(L,y) = 1, (7)

∂Ts

∂x

∣∣∣∣
x=0

= 0, (8)

u → 0, T → T∞ asy → ∞ andx = 0 with y 
= 0. (9)

If the aspect ratio of the striph/L∗ is assumed to be very small compared with unity, Eq. (4) can be integrated
transverse direction, resulting

h
d2Ts

dx2
+ k

ks

∂T

∂y

∣∣∣∣
0

= 0. (10)

In this case, the temperature at the strip is assumed to depend only on the longitudinal coordinate alone. In the follo
sections we present the asymptotic solutions for long and short strips, respectively.
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3. Long strips

l
For thermally long strips,L � L∗ (s � 1), the appropriate characteristic length isL∗. The following nondimensiona
variables are introduced for this regime

σ = L0 − x

L∗ , Z = y

L∗ Ra∗1/2, U = u

uc
,

V = v

uc
Ra∗1/2, θ = T − T∞

T0 − T∞
, θs = Ts − T∞

T0 − T∞
,

(11)

whereL0 is a length to be computed later anduc is the characteristic flow velocity, defined byuc = gKβ(T0 − T∞)/ν. The
nondimensional form of the governing Eqs. (2)–(5), are now for this regime

∂U

∂σ
+ ∂V

∂Z
= 0, (12)

U = −θ, (13)

U
∂θ

∂σ
+ V

∂θ

∂Z
= ∂2θ

∂Z2
, (14)

d2θs

dσ2
+ ∂θ

∂Z

∣∣∣∣
0

= 0, (15)

with the corresponding nondimensional boundary conditions

V = 0, θ = θs atZ = 0, U, θ → 0 for Z,σ → ∞,

θs = 1 atσ = σ0, θs → 0 for σ → ∞.
(16)

Here,σ0 = (L0 − L)/L∗.
This problem, as shown by [7,10], has a self-similar solution of the form

θ = θs(σ )
dh

dξ
, V = −σ

3/2
0

σ2

[
h+ 2ξ

dh

dξ

]
, ξ = σ

3/2
0

Z

σ2
, (17)

whereθs is found to beθs = (σ0/σ )3. The functionh(ξ) satisfies the ordinary differential equation

d3h

dξ3
− 3

(
dh

dξ

)2
+ h

d2h

dξ2
= 0 (18)

with the boundary conditions

h(0) = dh

dξ

∣∣∣∣
ξ=0

− 1 = dh

dξ

∣∣∣∣
ξ→∞

= 0. (19)

Fig. 2. Numerical solution of functionh(ξ), obtained by solving Eqs. (18) and (19) in the long strip regime.
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The value ofσ0 can be obtained by introducing Eqs. (17) into the energy equation for the strip (15), resultingσ0 =
2 2 2/3 ∗

ue. The

n

8)
(12/d h/dξ |η=0) � 3.9722. The lengthL0 is thenL0 = L + 3.9722L . Fig. 2 shows the functionh(ξ), obtained after
solving numerically Eqs. (18), (19), using a central difference scheme with the aid of a quasi-linearization techniq
nondimensional temperature of the strip then is given by

θs =
(

σ0s

σ0s + 1− x/L

)3
for s → 0. (20)

Finally, the nondimensional heat flux or Nusselt number at the bottom of the strip is given by

Nu

Ra∗1/2
=

∣∣∣∣dθs
dσ

∣∣∣∣
σ=σ0

= 3

σ0
� 0.75525, for s → 0. (21)

4. Short strips

For large values ofs compared with unity (L � L∗), the appropriate characteristic length isL. The heat transfer problem i
this regime can be studied using the nondimensional variables

χ = x

L
, θs = Ts(x) − T∞

T0 − T∞
, η = Ra1/2

L
y

L1/2x1/2
, (22)

and

θ = T (x, y) − T∞
T0 − T∞

= u

uc
= ∂f

∂η
, V = −vx1/2 RaL

L1/2uc

[
χ
∂f

∂χ
+ f

2
− η

2

∂f

∂η

]
, (23)

where RaL is the Rayleigh number based on the length of the strip. In nondimensional variables, Eq. (10) becomes

s3/2 d2θs

dχ2
= − 1

χ1/2
∂2f

∂η2

∣∣∣∣
η=0

, (24)

with the boundary conditions at the top and bottom of the strip given by

θs = 1 atχ = 1 and
dθs
dχ

= 0 atχ = 0. (25)

The nondimensional governing equations for the fluid immersed in the porous medium reduces to

∂3f

∂η3
+ f

2

∂2f

∂η2
= χ

[
∂f

∂η

∂2f

∂χ∂η
− ∂f

∂χ

∂2f

∂η2

]
. (26)

The associated nondimensional boundary conditions are then

f = ∂f

∂η
− θs atη = 0 and

∂f

∂η
→ 0 for η → ∞, (27)

plus conditions of regularity at the origin of the boundary layerχ = 0.
An asymptotic solution of problem (24)–(27) for large values ofs can be sought as a regular expansion in powers ofs−3/2,

which is the small parameter dictated by Eq. (24). The solution can then be written as
{
θs

f

}
=

{
θs0

f0(η)

}
+

∞∑
j=1

1

s3j/2

{
θsj (χ)

fj (χ,η)

}
. (28)

The leading term for the nondimensional temperature in the strip is clearlyθs0 = 1. Carrying expansions given in Eqs. (2
into the nondimensional Eqs. (24) and (26) with the associated boundary conditions, and keeping terms up to orders−3, the
following set of equations are obtained.

For the solid:

d2θsj

dχ2
= − 1

χ1/2

∂2fj−1

∂η2

∣∣∣∣
η=0

for j � 1, (29)

with the boundary conditions

dθsj
dχ

∣∣∣∣
χ=0

= θsj (1) = 0, for j � 1. (30)
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For the fluid immersed in the porous medium:
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d3f0

dη3
+ 1

2
f0

d2f0

dη2
= 0, (31)

∂3f1

∂η3
+ 1

2

(
f0

∂2f1

∂η2
+ d2f0

dη2
f1

)
− χ

[
df0

dη

∂2f1

∂χ∂η
− d2f0

dη2
∂f1

∂χ

]
= 0, (32)

etc., with the boundary conditions valid forj � 0

fj = ∂fj

∂η
− θsj = 0 atη = 0 (33)

and

∂fj

∂η
= 0 for η → ∞. (34)

Eq. (31), with the boundary conditions (33) and (34) forj = 0, corresponds to the classical problem of convection in a po
medium adjacent to a heated isothermal vertical plate [7], giving d2f0/dη2|0 = −G0 = −0.444. The first order correction fo
the nondimensional temperature of the strip given by Eq. (29), can be obtained after integrating it twice to yield

θs1 =
∑

n=0,3/2

anχ
n = −4G0

3

(
1− χ3/2). (35)

Herea0 = −a3/2 = −4G0/3. The solution to the linear Eq. (32) with the corresponding boundary conditions must be
form f1(χ,η) = ∑

n=0,3/2anχ
ngn(η), wheregn(η) satisfies the ordinary differential equations

d3gn

dη3
+ 1

2
f0

d2gn

dη2
− n

df0

dη

dgn
dη

+
(

1

2
− n

)
d2f0

dη2
gn = 0, for n = 0,3/2. (36)

The associated boundary conditions forgn are

gn(0) = dgn
dη

∣∣∣∣
η=0

− 1 = dgn
dη

∣∣∣∣
η→∞

= 0. (37)

The solution of Eqs. (36) and (37), gives the valuesG1(n) = −d2gn/dη2|0. It can be easily shown, using the invarian
properties of the boundary layer equations, thatG1(0) = 3/2G0 = 0.666. The obtained numerical value ofG1(3/2) = 0.937.
Following the same procedure, the second order correction of the nondimensional temperature in the strip is given by

θs2 =
∑

n=0,3/2

anG1(n)

(n+ 1/2)(n + 3/2)

(
χn+1/2 − 1

)
. (38)

Summarizing, the nondimensional temperature of the plate for large values of the parameters, up to terms of orders−3, can be
written as

θs = 1− 4

3

G0

s3/2

(
1− χ3/2) + 2

9

G0

s3

[
12G0

(
1− χ3/2) − G1(3/2)

(
1− χ3)] + O

(
s−9/2). (39)

The reduced Nusselt number, Nu/Ra∗1/2 = s dθs/dχ |1 is then given by

Nu

Ra∗1/2 = 2G0

s1/2

[
1− 6G0 − G1(3/2)

3s3/2

]
+ O

(
s−7/2)

, for s → ∞. (40)

The thermal properties of the material, appearing in the definition ofL∗ play no role in the heat transfer at the leading ord

because Ra∗1/2
/s1/2 = Ra1/2

L and is independent ofL∗.

5. Numerical results

Eqs. (24) to (27) have been numerically solved for different values of parameters in the thermally short strip regime. Th
boundary value problem, represented by Eq. (24) has been transformed to an initial value problem by introducing
nondimensional longitudinal coordinateζ = χ/s. Therefore, Eqs. (24) and (26), take the form
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Fig. 3. Numerical results for the nondimensional temperature in the strip as a function of the normalized nondimensional longitudinal c
χ , for different values ofs. For a value ofs = 0.05, the asymptotic solution for long strips, given by Eq. (20), is also plotted.

d2θs

dζ2
= − 1

ζ1/2
∂2f

∂η2

∣∣∣∣
η=0

, (41)

∂3f

∂η3
+ f

2

∂2f

∂η2
= ζ

[
∂f

∂η

∂2f

∂ζ∂η
− ∂f

∂ζ

∂2f

∂η2

]
, (42)

with the boundary conditions at the top and bottom of the strip given by

θs = 1 atζ = ζf and
dθs
dζ

= 0 atζ = 0, (43)

whereζf = 1/s. Close to the bottom of the strip,ζ → 0, θs behaves like

θs = a + 4

3
a3/2G0ζ

3/2 + O
(
ζ7/2), (44)

wherea � 1 is a constant to be given a priori. For a given value ofa, a value ofζf and s is obtained. For values ofs > 1,
Eq. (39) is used in order to have a preliminary nondimensional temperature profile at the strip. The nondimensional
∂2f/∂η2|0 as a function ofζ is obtained by integrating Eq. (42) and the corresponding boundary conditions. This equat
been decomposed in one first order and one second order equations and solved using central difference discretiza
the nondimensional heat flux at eachζ position has been obtained, the new nondimensional temperature profile in th
is obtained after solving Eq. (41), with the starting behavior (44), using a fourth-order Runge–Kutta technique. The
is repeated until a convergence criterion is fulfilled. Fig. 3 shows the numerical results of the nondimensional tem
profiles for the strip as a function of the nondimensional longitudinal coordinate, for different values ofs. In this figure, the
nondimensional temperature of the strip has been plotted by using the long strip approximation for a value ofs = 0.05. The

reduced Nusselt number Nu/Ra∗1/2
is plotted in Fig. 4 as a function of parameters, covering the full transition from the sho

to long strips. The numerical results are plotted with open circles. The one and two terms asymptotic solutions given by
obtained for large values ofs (short strips) are plotted, together with the asymptotic solution for long strips (s → 0), given by
Eq. (21). This figure shows that the short strip approximation is practically valid for values ofs > 4, whereas the long stri
approximation holds for values ofs < 0.4.

6. Conclusions

In this paper, we have extended previous results for the conjugated heat transfer in a vertical strip with a pr
temperature at its top and immersed in a fluid-saturated porous medium, using analytical and numerical techniques.
values of the Rayleigh number, the problem depends on one nondimensional parameter:s = L∗/L. We show that the existin
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Fig. 4. Reduced Nusselt number, Nu/Ra∗1/2
as a function ofs. The open circles correspond to the numerical solution and the broken

correspond to asymptotic solutions for long and short strips.

regimes are well classified by the assumed values of the nondimensional parameters, ranging from the limit of a thermally long
strip to the limit of a thermally short strip. In addition, the temperature of the strip, which depends on the thermal pr
of the strip and the porous medium as well as on the thickness of the strip, decreases to the temperature of the porou
in a thermal penetration lengthL∗. This is defined as the length needed to reach the ambient temperature of the fluid-sa
porous medium. Due to the finite thermal conductivity of the strip material, the heat transfer by conduction along the
relevant mechanism that modifies the previous estimations of the reduced Nusselt number with prescribed boundary c
In particular, we identify that the limit ofs � 1, corresponds to the case of an infinitely long strip [12]. In this case, the pro
has a self-similar closed form solution for small values ofs, giving an overall Nusselt number strongly dependent on the the
conductivity of the strip material and its thickness. For long strips, the actual length of the strip plays no role on the hea
process, resulting heat flux at the top of the strip given by

Q = 0.75525k2/3k
1/3
s (T0 − T∞)4/3

[
gKβh

αmν

]1/3
. (45)

In the opposite case of large values ofs (thermally short strip), the reduced Nusselt number depends weakly on the th
properties of the strip material, as given by the first term in Eq. (40). The leading order behavior is in fact independen
thermal conductivity of the strip. A two-term asymptotic solution is derived for the limit ofs → ∞. We have shown that th
short strip approximation is valid for values ofs > 4, whereas the long strip approximation [7,10] holds for values ofs < 0.4.
In this work, the full transition from short strip (low heat transfer rates) to long strip (large heat transfer rates) has bee
using numerical and asymptotic techniques.
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