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Recap: Demand paging
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Recap: Demand paging
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• How many of the following statements is/are correct regarding 
segmentation and demand paging? 
က: Segments can cause more external fragmentations than demand paging 
က< Paging can still cause internal fragmentations 
က> The overhead of address translation in segmentation is higher 
က@ Consecutive virtual memory address may not be consecutive in physical 

address if we use demand paging 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Segmentation v.s. demand paging

— you need to provide finer-grained mapping in paging — you may need to handle page faults!

— within a page— the main reason why we love paging!

We haven’t seen pure/true implementation of 
segmentations for a while, but we still use segmentation 

fault errors all the time!



Virtual memory

0x0000000000000000

0xFFFFFFFFFFFFFFFF

Recap: Hierarchical page table
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Each of these nodes occupies exactly a page
Why?

Otherwise, you always need to 
find more than one consecutive 

pages — difficult!



Case study: Address translation in x86-64
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Recap: If we expose memory directly to the processor
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What if both programs 
need to use memory?

Simply segmentation or paging helps on 
this
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Recap: If we expose memory directly to the processor (I)
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But how about this?



!10

Recap: If we expose memory directly to the processor (II)
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• Swapping 
• VAX/VMS Design 
• Mach VM
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Outline



Physical memory

0x000000000000

0xFFFFFFFFFFFF

Demand Paging + Swapping
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Virtual memory

Code
Static Data

Data

Heap

Stack

CPU

(1) an instruction accesses virtual 
address 0xDEADBEEF

page
table

(2) page fault! — exception

(3) running out of space on DRAM

(4) kick some page out and store it in the 
secondary storage

(5) map the requesting page to the freed space 



• Divide physical & virtual memory spaces into fix-sized units — pages 
• Allocate a physical memory page whenever the virtual memory page 

containing your data is absent 
• In case if we are running out of physical memory — 

• Reserve space on disks 
• Disks are slow: the access time for HDDs is around 10 ms, the access time for SSDs 

is around 30us - 1 ms 
• Disks are orders of magnitude larger than main memory 

• When you need to make rooms in the physical main memory, allocate a page 
in the swap space and put the content of the evicted page there 

• When you need to reference a page in the swap space, make a room in the 
physical main memory and swap the disk space with the evicted page
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The mechanism: demand paging + swapping



Latency Numbers Every Programmer Should Know
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Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5   ns
L2 cache reference 7   ns 14x L1 cache
Mutex lock/unlock 25   ns
Main memory reference 100   ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000   ns 3 us
Send 1K bytes over 1 Gbps 
network

10,000   ns 10 us

Read 4K randomly from SSD* 150,000   ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from 
memory

250,000   ns 250 us

Round trip within same datacenter 500,000   ns 500 us
Read 1 MB sequentially from SSD* 1,000,000   ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000   ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000   ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms



• How much slower (approximately) is your average memory access time in 
a system when the probability of a page fault/swapping is 0.1% 
comparing with the case when there is no page fault/swapping?
(Assume you swap to a hard disk) 
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The swapping overhead

• Memory (i.e. RAM) access time: 100ns 
• Disk access time: 10ms 
• Pf: probability of a page fault 
• Effective Access Time = 100 ns + Pf * 107 ns
• When Pf = 0.001:

Effective Access Time = 10,100ns

• Takeaway: disk accesses are tolerable only 
when they are extremely rare

• When Pf = 0.001, even with an SSD
Effective Access Time = 100 ns + 10-3 * 105 
ns = 200 ns

Operations Latency (ns)
L1 cache reference 0.5 ns
Branch mispredict 5   ns
L2 cache reference 7   ns
Mutex lock/unlock 25   ns
Main memory reference 100   ns
Compress 1K bytes with Zippy 3,000   ns
Send 1K bytes over 1 Gbps network 10,000   ns
Read 4K randomly from SSD* 150,000   ns
Read 1 MB sequentially from memory 250,000   ns
Round trip within same datacenter 500,000   ns
Read 1 MB sequentially from SSD* 1,000,000   ns
Disk seek 10,000,000   ns
Read 1 MB sequentially from disk 20,000,000   ns
Send packet CA-Netherlands-CA 150,000,000   ns



• How much slower (approximately) is your average memory 
access time in a system when the probability of a page fault/
swapping is 0.1% comparing with the case when there is no 
page fault/swapping?
(Assume you swap to a hard disk)  

A. 10x 
B. 100x 
C. 1000x 
D. 10000x 
E. 100000x
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The swapping overhead

Operations Latency (ns)
L1 cache reference 0.5 ns
Branch mispredict 5   ns
L2 cache reference 7   ns
Mutex lock/unlock 25   ns
Main memory reference 100   ns
Compress 1K bytes with Zippy 3,000   ns
Send 1K bytes over 1 Gbps network 10,000   ns
Read 4K randomly from SSD* 150,000   ns
Read 1 MB sequentially from memory 250,000   ns
Round trip within same datacenter 500,000   ns
Read 1 MB sequentially from SSD* 1,000,000   ns
Disk seek 10,000,000   ns
Read 1 MB sequentially from disk 20,000,000   ns
Send packet CA-Netherlands-CA 150,000,000   ns



• Goal: Identify page to remove that will avoid future page faults (i.e. utilize 
locality as much as possible) 

• Implementation Goal: Minimize the amount of software and hardware 
overhead 
• Example: 

• Memory (i.e. RAM) access time: 100ns 
• Disk access time: 10ms 
• Pf: probability of a page fault 
• Effective Access Time = 10-7 + Pf * 10-3 

• When Pf = 0.001:
Effective Access Time = 10,100ns 

• Takeaway: Disk access tolerable only when it is extremely rare
!21

Page replacement policy



Virtual Memory Management in the VAX/
VMS Operating System 

H. M. Levy and P. H. Lipman
Digital Equipment Corporation
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• The system needs to execute various types of applications 
efficiently 

• The system runs on different types of hardware 
• As a result, the memory management system has to be 

capable of adjusting the changing demands characteristic of 
time sharing while allowing predictable performance required 
by real-time and batch processes
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The “Why” behind VAX/VMS VM



• How many of the following statements is/are true regarding the 
optimization goals of VAX/VMS? 
က: Reducing the disk load of paging 
က< Reducing the startup cost of a program 
က> Reducing the overhead of page tables 
က@ Reducing the interference from heavily paging processes 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The goals of VAX/VMS



• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is 
incorrect?
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What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching



Virtual Memory Space for Process #1

What happens on a fork?
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virtual 
page #1

virtual 
page #2

virtual 
page #3

Virtual Memory Space for Process #2

fork()

virtual 
page #1
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• Copy the page content to different locations before the new process can start

copy
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physical 
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physical 
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physical 
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physical 
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physical 
page #6

physical 
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copy copy



Virtual Memory Space for Process #1

Copy-on-write
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physical 
page #1
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page #1
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Virtual Memory Space for Process #2

fork()

virtual 
page #1

virtual 
page #2

virtual 
page #3

write

• The modified bit of a writable page will be set when it’s loaded from the executable file 
• The process eventually will have its own copy of that page



Demand zero

!36

physical 
page #1

physical 
page #2

physical 
page #3

physical 
page #4

physical 
page #5

physical 
page #6

physical 
page #7

Virtual Memory Space for Process #2virtual 
page #1

virtual 
page #2

virtual 
page #3

write

• The linker does not embed the pages with all 0s in the compiled program 
• When page fault occurs, allocate a physical page fills with zeros 
• Set the modified bit so that the page can be written back

page 
with “0”s



• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is 
incorrect?
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What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching



Physical Memory

Virtual Memory Space for Process A

• Each process has a maximum size of memory 
• When the process exceeds the maximum size, replaces from its own set of memory 

pages 
• Control the paging behavior within each process
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Local page replacement policy

Page for 
Process 

A

Page for 
Process 

A

Page for 
Process 

A

Page for 
Process 

B
Page for 
Process 

B

Page for 
Process 

C

Virtual 
page #1

Virtual 
page #2

Virtual 
page #3

Page for 
Process 

C

Virtual 
page #4

Virtual page #4 can only 
go one of these if 3 is the 

maximum memory size of 
the process

swap 
out

What’s the policy? FIFO! Low overhead!



Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is 
incorrect?
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What VAX/VMS proposed to achieve these goals?



• Read or write a cluster of pages that are both consecutive in 
virtual memory and the disk 

• Combining consecutive writes into single writes
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Page clustering



Latency Numbers Every Programmer Should Know
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Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5   ns
L2 cache reference 7   ns 14x L1 cache
Mutex lock/unlock 25   ns
Main memory reference 100   ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000   ns 3 us
Send 1K bytes over 1 Gbps 
network

10,000   ns 10 us

Read 4K randomly from SSD* 150,000   ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from 
memory

250,000   ns 250 us

Round trip within same datacenter 500,000   ns 500 us
Read 1 MB sequentially from SSD* 1,000,000   ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000   ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000   ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms

for a 512B sector



Physical Memory

• Evicted pages will be put into one of the lists in DRAM 
• Free list: clean pages 
• Modified list: dirty pages — needs to copy data to the disk 

• Page fault to any of the page in the lists will bring the page back 
• Reduces the demand of accessing disks
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Page caching to cover the performance loss

RS of Process B FreelistModified 
List

PagePage PagePage

RS of Process A

Page Page Page PagePage Page

2 pages 2 pages4 pages 4 pages

page fault!

Page Page

page fault!

PagePage

page fault!

PagePage



Page caching
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Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is 
incorrect?
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What VAX/VMS proposed to achieve these goals?

also helps reduce disk loads



Process memory layout
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P0 (Program) Region

P1 (Control) Region

System Region

Reserved

Code 
Heap

Stack 
Other data

System: software vectors, hardware data structures, 
executive data, executive procedures, record 

management, dynamic storage

The VAX/VMS allows the OS code to 
access user-space memory



• Each segment has its own page table 
• Entries between stack and heap boundaries do not need to be 

allocated — reduce the size of page table
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Why segmented layout?

P0 (Program) Region

P1 (Control) Region
Only need just enough 

entries



• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is 
incorrect?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching
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What VAX/VMS proposed to achieve these goals?

also helps reduce disk loadssegmented memory layout



• VAX is popular in universities and UNIX is later ported to VAX 
— a popular OS research platform 

• Affect the UNIX virtual memory design 
• Affect the Windows virtual memory design

!48

The impact of VAX/VMS



Other physical 
memory

64-bit Linux process memory layout
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User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

Physical memory 
reserved for kernel

Kernel logical address Kernel logical address

B B

A A



• Reading quiz due next Tuesday 
• Project due 3/3 

• We highly recommend you to fresh install a Ubuntu 16.04.6 
Desktop version within a VirtualBox 
• Virtual box is free 
• If you crash the kernel, just terminate the instance and 

restart virtual box 
• Use office hours to discuss projects
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Announcement


