
Virtual memory design in
operating systems

Hung-Wei Tseng

Virtual Memory

!2Physical memory

Virtual
memory

CPU

address mapping

0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Process A
0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Process B

Recap: Demand paging

!3

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Virtual Address Space for Apple MusicVirtual Address Space for Chrome

Memory

00c2e800
00000008
00c2f000
00000008

instruction
0x0

0f00bb27 
509cbd23
00005d24
0000bd24

data
0x80000000 instruction

0x0

0f00bb27 
509cbd23
00005d24
0000bd24

00c2f800  
00000008
00c30000  
00000008

data
0x80008000

Page fault!
Page fault! Page fault! Page fault!

Recap: Demand paging

!4

Application A0

X

Application B

X

0
Physical memory of the

machine0

each of these cells
is a page

• How many of the following statements is/are correct regarding
segmentation and demand paging?
က: Segments can cause more external fragmentations than demand paging
က< Paging can still cause internal fragmentations
က> The overhead of address translation in segmentation is higher
က@ Consecutive virtual memory address may not be consecutive in physical

address if we use demand paging
A. 0
B. 1
C. 2
D. 3
E. 4

!5

Segmentation v.s. demand paging

— you need to provide finer-grained mapping in paging — you may need to handle page faults!

— within a page— the main reason why we love paging!

We haven’t seen pure/true implementation of
segmentations for a while, but we still use segmentation

fault errors all the time!

Virtual memory

0x0000000000000000

0xFFFFFFFFFFFFFFFF

Recap: Hierarchical page table

!6

heap 
 
 
 
 
 
 
 

 
 
 
 
 

stack

Dynamic allocated
data: malloc()

Local variables,
arguments

code

static data

1
1
1
0
0
0
0
0
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid
1
1
1
1
1
1
1
1
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid

Each of these nodes occupies exactly a page
Why?

Otherwise, you always need to
find more than one consecutive

pages — difficult!

Case study: Address translation in x86-64

!7

63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
SignExt L4 index L3 index L2 index L1 index page offset

X86
Processor

CR3 Reg.

…
…

…
512 entries

…
…

…

512 entries

…
…

…

512 entries

…
…

…

512 entries

11:0 (12 bits)
physical page # page offset

!8

Recap: If we expose memory directly to the processor

Memory

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

?

What if both programs
need to use memory?

Simply segmentation or paging helps on
this

!9

Recap: If we expose memory directly to the processor (I)

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Memory

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008 
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Da
ta

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008  
00c2e800
00000008
00c2f000
00000008

00c2e800
00000008
00c2f000
00000008

00c2f800  
00000008
00c30000  
00000008

? What if my program
needs more memory?

But how about this?

!10

Recap: If we expose memory directly to the processor (II)

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Memory

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Memory

?

What if my program
runs on a machine

with a different
memory size?

and this?

• Swapping
• VAX/VMS Design
• Mach VM

!11

Outline

Physical memory

0x000000000000

0xFFFFFFFFFFFF

Demand Paging + Swapping

!12

Virtual memory

Code
Static Data

Data

Heap

Stack

CPU

(1) an instruction accesses virtual
address 0xDEADBEEF

page
table

(2) page fault! — exception

(3) running out of space on DRAM

(4) kick some page out and store it in the
secondary storage

(5) map the requesting page to the freed space

• Divide physical & virtual memory spaces into fix-sized units — pages
• Allocate a physical memory page whenever the virtual memory page

containing your data is absent
• In case if we are running out of physical memory —

• Reserve space on disks
• Disks are slow: the access time for HDDs is around 10 ms, the access time for SSDs

is around 30us - 1 ms
• Disks are orders of magnitude larger than main memory

• When you need to make rooms in the physical main memory, allocate a page
in the swap space and put the content of the evicted page there

• When you need to reference a page in the swap space, make a room in the
physical main memory and swap the disk space with the evicted page

!13

The mechanism: demand paging + swapping

Latency Numbers Every Programmer Should Know

!14

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps
network

10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from
memory

250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

• How much slower (approximately) is your average memory access time in
a system when the probability of a page fault/swapping is 0.1%
comparing with the case when there is no page fault/swapping?
(Assume you swap to a hard disk)

!19

The swapping overhead

• Memory (i.e. RAM) access time: 100ns
• Disk access time: 10ms
• Pf: probability of a page fault
• Effective Access Time = 100 ns + Pf * 107 ns
• When Pf = 0.001:

Effective Access Time = 10,100ns

• Takeaway: disk accesses are tolerable only
when they are extremely rare

• When Pf = 0.001, even with an SSD
Effective Access Time = 100 ns + 10-3 * 105
ns = 200 ns

Operations Latency (ns)
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 1K bytes over 1 Gbps network 10,000 ns
Read 4K randomly from SSD* 150,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from SSD* 1,000,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA-Netherlands-CA 150,000,000 ns

• How much slower (approximately) is your average memory
access time in a system when the probability of a page fault/
swapping is 0.1% comparing with the case when there is no
page fault/swapping?
(Assume you swap to a hard disk)

A. 10x
B. 100x
C. 1000x
D. 10000x
E. 100000x

!20

The swapping overhead

Operations Latency (ns)
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 1K bytes over 1 Gbps network 10,000 ns
Read 4K randomly from SSD* 150,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from SSD* 1,000,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA-Netherlands-CA 150,000,000 ns

• Goal: Identify page to remove that will avoid future page faults (i.e. utilize
locality as much as possible)

• Implementation Goal: Minimize the amount of software and hardware
overhead
• Example:

• Memory (i.e. RAM) access time: 100ns
• Disk access time: 10ms
• Pf: probability of a page fault
• Effective Access Time = 10-7 + Pf * 10-3

• When Pf = 0.001:
Effective Access Time = 10,100ns

• Takeaway: Disk access tolerable only when it is extremely rare
!21

Page replacement policy

Virtual Memory Management in the VAX/
VMS Operating System

H. M. Levy and P. H. Lipman
Digital Equipment Corporation

!22

• The system needs to execute various types of applications
efficiently

• The system runs on different types of hardware
• As a result, the memory management system has to be

capable of adjusting the changing demands characteristic of
time sharing while allowing predictable performance required
by real-time and batch processes

!23

The “Why” behind VAX/VMS VM

• How many of the following statements is/are true regarding the
optimization goals of VAX/VMS?
က: Reducing the disk load of paging
က< Reducing the startup cost of a program
က> Reducing the overhead of page tables
က@ Reducing the interference from heavily paging processes
A. 0
B. 1
C. 2
D. 3
E. 4

!28

The goals of VAX/VMS

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

!33

What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

Virtual Memory Space for Process #1

What happens on a fork?

!34

virtual
page #1

virtual
page #2

virtual
page #3

Virtual Memory Space for Process #2

fork()

virtual
page #1

virtual
page #2

virtual
page #3

• Copy the page content to different locations before the new process can start

copy

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

copy copy

Virtual Memory Space for Process #1

Copy-on-write

!35

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

virtual
page #1

virtual
page #2

virtual
page #3

Virtual Memory Space for Process #2

fork()

virtual
page #1

virtual
page #2

virtual
page #3

write

• The modified bit of a writable page will be set when it’s loaded from the executable file
• The process eventually will have its own copy of that page

Demand zero

!36

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

Virtual Memory Space for Process #2virtual
page #1

virtual
page #2

virtual
page #3

write

• The linker does not embed the pages with all 0s in the compiled program
• When page fault occurs, allocate a physical page fills with zeros
• Set the modified bit so that the page can be written back

page
with “0”s

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

!37

What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

Physical Memory

Virtual Memory Space for Process A

• Each process has a maximum size of memory
• When the process exceeds the maximum size, replaces from its own set of memory

pages
• Control the paging behavior within each process

!38

Local page replacement policy

Page for
Process

A

Page for
Process

A

Page for
Process

A

Page for
Process

B
Page for
Process

B

Page for
Process

C

Virtual
page #1

Virtual
page #2

Virtual
page #3

Page for
Process

C

Virtual
page #4

Virtual page #4 can only
go one of these if 3 is the

maximum memory size of
the process

swap
out

What’s the policy? FIFO! Low overhead!

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

!39

What VAX/VMS proposed to achieve these goals?

• Read or write a cluster of pages that are both consecutive in
virtual memory and the disk

• Combining consecutive writes into single writes

!40

Page clustering

Latency Numbers Every Programmer Should Know

!41

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps
network

10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from
memory

250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

for a 512B sector

Physical Memory

• Evicted pages will be put into one of the lists in DRAM
• Free list: clean pages
• Modified list: dirty pages — needs to copy data to the disk

• Page fault to any of the page in the lists will bring the page back
• Reduces the demand of accessing disks

!42

Page caching to cover the performance loss

RS of Process B FreelistModified
List

PagePage PagePage

RS of Process A

Page Page Page PagePage Page

2 pages 2 pages4 pages 4 pages

page fault!

Page Page

page fault!

PagePage

page fault!

PagePage

Page caching

!43

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

!44

What VAX/VMS proposed to achieve these goals?

also helps reduce disk loads

Process memory layout

!45

P0 (Program) Region

P1 (Control) Region

System Region

Reserved

Code
Heap

Stack
Other data

System: software vectors, hardware data structures,
executive data, executive procedures, record

management, dynamic storage

The VAX/VMS allows the OS code to
access user-space memory

• Each segment has its own page table
• Entries between stack and heap boundaries do not need to be

allocated — reduce the size of page table

!46

Why segmented layout?

P0 (Program) Region

P1 (Control) Region
Only need just enough

entries

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

!47

What VAX/VMS proposed to achieve these goals?

also helps reduce disk loadssegmented memory layout

• VAX is popular in universities and UNIX is later ported to VAX
— a popular OS research platform

• Affect the UNIX virtual memory design
• Affect the Windows virtual memory design

!48

The impact of VAX/VMS

Other physical
memory

64-bit Linux process memory layout

!49

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

Physical memory
reserved for kernel

Kernel logical address Kernel logical address

B B

A A

• Reading quiz due next Tuesday
• Project due 3/3

• We highly recommend you to fresh install a Ubuntu 16.04.6
Desktop version within a VirtualBox
• Virtual box is free
• If you crash the kernel, just terminate the instance and

restart virtual box
• Use office hours to discuss projects

!66

Announcement

