
Cloud storage (II) — Google
(cont.), Microsoft

Hung-Wei Tseng

• Conventional file systems do not fit the demand of data centers
• Workloads in data centers are different from conventional

computers
• Storage based on inexpensive disks that fail frequently
• Many large files in contrast to small files for personal data
• Primarily reading streams of data
• Sequential writes appending to the end of existing files
• Must support multiple concurrent operations
• Bandwidth is more critical than latency

2

Recap: GFS: Why?

• Google Search (Web Search for a Planet: The Google Cluster Architecture, IEEE
Micro, vol. 23, 2003)

• MapReduce (MapReduce: Simplified Data Processing on Large Clusters, OSDI
2004)

• Large-scale machine learning problems
• Extraction of user data for popular queries
• extraction of properties of web pages for new experiments and products
• large-scale graph computations

• BigTable (Bigtable: A Distributed Storage System for Structured Data, OSDI
2006)

• Google analytics
• Google earth
• Personalized search

3

Recap: Data-center workloads for GFS

• Maintaining the same interface
• The same function calls
• The same hierarchical directory/files

• Files are decomposed into large chunks (e.g. 64MB) with
replicas

• Hierarchical namespace implemented with flat structure
• Master/chunkservers/clients

4

Recap: What GFS proposes?

• Storage based on inexpensive disks that fail frequently — ???
• Many large files in contrast to small files for personal data —

large chunk size
• Primarily reading streams of data — large chunk size
• Sequential writes appending to the end of existing files — large

chunk size
• Must support multiple concurrent operations — flat structure
• Bandwidth is more critical than latency — large chunk size

5

How does GFS achieve its goals?

Master/chunkserver architecture

• Google File System (cont.)
• Windows Azure Storage: A Highly Available Cloud Storage

Service with Strong Consistency
• f4: Facebook’s Warm BLOB Storage System

6

Outline

• Regarding the GFS architecture, how many of the following statements are
correct?
① The GFS cluster in the paper only has one active server to store and manipulate

metadata
② The chunkserver in GFS may contain data that can also be found on another

chunkserver
③ The chunkserver is dedicated for data storage and may not be used for other purpose
④ The client can cache file data to improve performance
A. 0
B. 1
C. 2
D. 3
E. 4

11

GFS architecture

— improve the machine utilization — saving money!

— simplify the design

— single failure point. They have shadow masters

— 3 replicas by default

GFS Architecture

12

Application

GFS Client

filename, size

Master

filename, chunk index

file namespace
/foo/bar, 2ef0

chunk location
chunk handle, chunk

locations

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

instructions to chunk servers
status from chunk servers

chunk handle, offset
data

data

decoupled data and control paths —
only control path goes through master

load balancing, replicas among chunkservers

• Single master
• maintains file system metadata including namespace, mapping, access control

and chunk locations.
• controls system wide activities including garbage collection and chunk migration.

• Chunkserver
• stores data chunks
• chunks are replicated to improve reliability (3 replicas)

• Client
• APIs to interact with applications
• interacts with masters for control operations
• interacts with chunkservers for accessing data
• Can run on chunkservers

13

Distributed architecture

Reading data in GFS

14

Application

GFS Client Master

filename, size
filename, chunk index

chunk handle, chunk
locations

Chunk server

Chunk server

Chunk server

chunk handle, byte
range

data from file

data

Writing data in GFS

15

Application

GFS Client Master

filename, data
filename, chunk index

chunk handle, primary
and secondary replicas

Chunk server

Chunk server

Chunk server

data

primary defines the
order of updates in

chunk servers

response

data

data

write command
primary

response

• Distributed, simple, efficient
• Filename/metadata updates/creates are atomic
• Consistency modes

• Consistent: all replicas have the same value
• Defined: replica reflects the mutation, consistent

• Applications need to deal with inconsistent cases themselves

16

GFS: Relaxed Consistency model

Write — write to a specific offset Append — write to the end of a
file

Serial success Defined
Defined with interspersed with

inconsistent
Concurrent success Consistent but undefined

Failure inconsistent

• Linux problems (section 7)
• Linux driver issues — disks do not report their capabilities honestly
• The cost of fsync — proportion to file size rather than updated

chunk size
• Single reader-writer lock for mmap
• Due to the open-source nature of Linux, they can fix it and

contribute to the rest of the community

17

Real world, industry experience

• GFS is not open-sourced

• GFS claims this will not be a bottleneck
• In-memory data structure for fast access
• Only involved in metadata operations — decoupled data/

control paths
• Client cache
• What if the master server fails?

18

Single master design

• Mentioned in “Spanner: Google's Globally-Distributed
Database”, OSDI 2012 — “tablet’s state is stored in set of B-
tree-like files and a write-ahead log, all on a distributed file
system called Colossus (the successor to the Google File
System)”

• Single master

19

The evolution of GFS

• Support for smaller chunk size — gmail

20

The evolution of GFS

• snapshots
• namespace locking
• replica placement
• create, re-replication, re-balancing
• garbage collection
• stable replica detection
• data integrity
• diagnostic tools: logs are your friends

21

Lots of other interesting topics

• Storage based on inexpensive disks that fail frequently —
replication, distributed storage

• Many large files in contrast to small files for personal data —
large chunk size

• Primarily reading streams of data — large chunk size
• Sequential writes appending to the end of existing files — large

chunk size
• Must support multiple concurrent operations — flat structure
• Bandwidth is more critical than latency — large chunk size

22

Do they achieve their goals?

• Conventional file systems do not fit the demand of data centers
• Workloads in data centers are different from conventional

computers
• Storage based on inexpensive disks that fail frequently
• Many large files in contrast to small files for personal data
• Primarily reading streams of data
• Sequential writes appending to the end of existing files
• Must support multiple concurrent operations
• Bandwidth is more critical than latency

23

Why we care about GFS

— MapReduce is fault tolerant

— MapReduce aims at processing large amount of data once
— MapReduce reads chunks of large files

— Output file keep growing as workers keep writing

—MapReduce has thousands of workers simultaneously

—MapReduce only wants to finish tasks within “reasonable” amount of time

• GFS only supports consistency models
• Scalability — single master
• Only efficient in dealing with large data
• No geo-redundancy

24

What’s missing in GFS?

25

Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav,
Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,

Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas Rigas

Microsoft

26

Data center workloads for WAS

27

• A cloud service platform for social network search, video streaming,
XBOX gaming, records management, and etc. in M$.
• Must tolerate many different data abstractions: blobs, tables and queues
• Data types:

• Blob(Binary Large OBjects) storage: pictures, excel files, HTML files, virtual
hard disks (VHDs), big data such as logs, database backups -- pretty much
anything.

• Table: database tables
• Queue: store and retrieve messages. Queue messages can be up to 64 KB in

size, and a queue can contain millions of messages. Queues are generally
used to store lists of messages to be processed asynchronously.

28

Why Windows Azure Storage

Large

Large

Small

• Learning from feedbacks in existing cloud storage
• Strong consistency
• Global and scalable namespace/storage
• Disaster recovery
• Multi-tenancy and cost of storage

29

Why Windows Azure Storage (cont.)

–David Wheeler

All problems in computer science can be solved by another level of
indirection

30

What WAS proposes?

31

Client

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Virtual IP Virtual IP

Location
Service

DNS (Domain Name
Service)

locations

Application

data

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Virtual IP

inter-stamp
replication

inter-stamp
replication

• Stamp is the basic granularity of storage
provisioning, fault domain, geo-replication.

• A stamp can contain 10—20 racks with 18
disk-heavy storage node per rack.

• You may consider each stamp is similar to a
“GFS”

What WAS proposes?

32

Client

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Virtual IP Virtual IP

Location
Service

DNS (Domain Name
Service)

Application
URI:

data

http(s)://AccountName.<service>.core.windows.net/PartitionName/ObjectName

http(s)://AccountName.<service>.core.windows.net/

PartitionName/ObjectName

virtual IP of a stamp

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Virtual IP

inter-stamp
replication

inter-stamp
replication

AccountName
• Manages account namespace across

all storage stamps
• Manages all storage stamps
• Distributed across multiple geographic

locations

GFS v.s. stamp in WAS

33

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer

Stream ManagerStream ManagerStream Manager

Extent
node

replication

replication

filename, chunk index

chunk handle, primary
and secondary replicas

chunk handle, byte
range

data from file

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

create extentwrite

primary secondary secondary

allocate extent replica set

re
pl

ica
tio

n

re
pl

ica
tio

n

ack

Front-ends

Partition layer

Stream layer

Stream ManagerStream ManagerStream Manager

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

inter-stamp
replication

• Regarding a stream in WAS, please identify how many of the following
statements is/are true
① A stream is a list of extents, in which an extent consists of consecutive blocks
② Each block in the stream contains a checksum to ensure the data integrity
③ An update to a stream can only be appended to the end of the stream
④ Two streams can share the same set of extents
A. 0
B. 1
C. 2
D. 3
E. 4

38

What is a stream?

Similar to an extent-base file system. Shares the same benefits with EXT-based systems

As a result, we need to read a whole block every time…. But not a big issue because …

Improved bandwidth, data localityAppend only, copy-on-write … (Doesn’t this sound familiar?)
LogFS

Minimize the time when creating a new file De-duplication to save disk space

• In WAS, the stream is append only. The stamp will “seal” extents and extents will
become immutable once sealed. How many of the following can sealing
contribute to?
① Must tolerate many different data abstractions: blobs, tables and queues
② Strong consistency
③ Global and scalable namespace/storage
④ Disaster recovery
⑤ Multi-tenancy and cost of storage
A. 1
B. 2
C. 3
D. 4
E. 5

43

Why “append-only” and “sealing”?

• Consider the case where 1 of 3 nodes handling a write fails and
the current extent is sealed at latest commit boundary (end of
extent) — that data will be on failed node

• new extent created
• SM chooses three new replicas to store extents
• client retries via new primary among the three new replicas
• failed node, upon restart, will coord w/ SM to synchronize its

extent to the commit length decided upon

44

Write failure

GFS v.s. stamp in WAS

45

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer

Stream ManagerStream ManagerStream Manager

Extent
node

replication

replication

filename, chunk index

chunk handle, primary
and secondary replicas

chunk handle, byte
range

data from file

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

create extentwrite

primary secondary secondary

allocate extent replica set

re
pl

ica
tio

n

re
pl

ica
tio

n

ack

Front-ends

Partition layer

Stream layer

Stream ManagerStream ManagerStream Manager

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

inter-stamp
replication

• Managing high-level data abstractions
• Providing scalable object namespaces
• Providing transaction ordering and strong consistency for

objects
• Storing object data on top of the stream layer
• Cache object data to reduce disk I/O

51

Partition layer

52

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer

Stream ManagerStream ManagerStream Manager

Extent
node

replication

replication

filename, chunk index

chunk handle, primary
and secondary replicas

chunk handle, byte
range

data from file

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

create extentwrite

primary secondary secondary

allocate extent replica set

re
pl

ica
tio

n

re
pl

ica
tio

n

ack

Front-ends

Partition layer

Stream layer

Stream ManagerStream ManagerStream Manager

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

inter-stamp
replication

GFS v.s. stamp in WAS

• A set of stateless servers taking incoming requests
• Think about the benefits of stateless in NFS

• Keep partition maps to forward the request to the right server
• A stamp can contain 10—20 racks with 18 disk-heavy storage

node per rack
• Stream large objects directly from the stream layer and cache

frequently accessed data for efficiency

53

Front-end layer

Are they doing well?

54

Good scalability

Good scalability

GFS v.s. WAS

55

GFS (OSDI 2003) WAS (SOSP 2011)

File organizations
file

chunk
block

stream
extent
record

System architecture master
chunkserver

stream manager
extent nodes

Data updates append only updates

Consistency models relaxed consistency strong consistency

Data formats files multiple types of objects

Replications intra-cluster replication geo-replication

Usage of nodes chunk server can perform both separate computation and storage

• Reading quiz due this Thursday — last reading quiz of the
quarter!

• Project due tonight
• iEVAL
• Hung-Wei’s office hour this week

• Wednesday, Thursday 1p-2p

79

Announcement

