
Virtual Machines & Revisiting
Computer System Designs

Hung-Wei Tseng

Taxonomy of virtualization

2

system virtualizationprocess virtualization

Operating
Systems (e.g.,

process)

same ISA

Java VM

different ISA
same ISA different ISA

Xen
VMWare Server

Virtual
Machine
Monitor

VMWare
Workstation,
VirtualBox

Hosted
Virtual

Machine
Monitor

Virtual PC,
Emulator,
Binary

Translator

software
based

Transmeta
Crusoe

hardware
based

We are focusing on
these today

We’ve learned
quite a lot of

these
Most of them are

gone…

Virtual machine architecture

3

Virtual Machine Monitor

Guest OS

Applications

The Machine

• A robot may not injure a human being or, through inaction, allow
a human being to come to harm.

• A robot must obey orders given it by human beings except
where such orders would conflict with the First Law.

• A robot must protect its own existence as long as such
protection does not conflict with the First or Second Law.

4

Three Laws of Robotics

https://s3-ap-southeast-1.amazonaws.com/cloud-skcript/wp-content/
uploads/2014/05/25090337/robots.jpg

Back to 1974…

5

Fidelity

Performance

Safety and isolation

Operating System

Recap: virtualization

6

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

API API API API API API API API

However, we don’t want everything to pass
through this API!

Too slow!!!
Do you really need to track all

intermediate states?

• The processor provides
normal instructions and privileged
instructions
• Normal instructions: ADD, SUB, MUL, and
etc …

• Privileged instructions: HLT, CLTS, LIDT,
LMSW, SIDT, ARPL, and etc…

• The processor provides different modes
• User processes can use normal
instructions

• Privileged instruction can only be used if
the processor is in proper mode

7

Recap: privileged instructions

Kernel

Ring 3

Ring 2

Ring 1

Ring 0

Device Drivers

Device Drivers

Applications
Least privileged

Most privileged

• Through the API: System calls
• Implemented in “trap” instructions

• Raise an exception in the processor
• The processor saves the exception
PC and jumps to the corresponding
exception handler in the OS kernel

8

Recap: How applications can use privileged operations?

add 0x1bad(%eax),%dh
add %al,(%eax)
decb 0x52(%edi)
in $0x8d,%al
mov %eax,0x101c
lea -0x2bb84(%ebx),%eax
mov %eax,-0x2bb8a(%ebx)
lgdtl -0x2bb8c(%ebx)
lea -0x2bf3d(%ebx),%eax
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx)
and %cl,(%rbx)
xor $0x19,%al
add %edx,(%rbx)
add %al,(%rax)
syscall
add %al,(%rbx)
……
……
……
……
……
……
……
……

trap

return-from-trap

Hosted virtual machine

9

Virtualized
CPU

Hosted virtual machine monitor

OSOSOS

ApplicationsApplicationsApplications

Hosted operating system

Virtualized
memory

Virtualized
storage

Virtualized
network

Virtualized
…

device emulation,
virtualization

device emulation,
virtualization

Virtual machine monitors on bare machines

10

Virtualized
CPU

Virtual machine monitor

OSOSOS

ApplicationsApplicationsApplications

Virtualized
memory

Virtualized
storage

Virtualized
network

Virtualized
…

device emulation,
virtualization

• De-privileging
• Primary and shadow structures
• Tracing

11

Three main ideas to classical VMs

reduced
privileged

mode

CPU Virtualization: Trap-and-emulate

12

Virtual Machine Monitor

Guest OS

Applications

The Machine

user
mode

privileged
mode

unprivileged
instruction
(e.g., add) syscall

handling
update
vCPU
states

call trap
handler

executing trap
handler in reduced
privileged modeprivileged

instruction return

handling
update
vCPU
states

return

• This is called virtually
indexed, physically
tagged cache

• TLB hit: the translation is
in the TLB, no penalty

• TLB miss: fetch the
translation from the page
table in main memory

13

Recap: address translation with TLB

Processor

$

main memory

1.
VA

PA
2.

TLB

1.
VA

PA
2.

=

miss

Operating system

ApplicationsVirtual Address

Physical Address

page table

Address translation in VM

14

Processor

$

main memory

1.
VA

PA
2.

TLB

1.
VA

PA
2.

=

miss

Guest Operating system

ApplicationsVirtual Address

Physical Address

page table

Virtual Machine Monitor

Machine Address

VMM page table

?

Address translation in VM

15

Processor

$

main memory

1.
VA

PA
2.

TLB

1.
VA

PA
2.

=

miss

Guest Operating system

ApplicationsVirtual Address

Physical Address

page table

Virtual Machine Monitor

Machine Address

VMM page table

shadow
page table

MAMA

• You need to make the shadow page table consistent with guest
OS page table

• Protect these structures with write-protected
• If anyone tries to modify the protected PTE — trigger a segfault
handler

• The segfault handler will deal with these write-protected locations
and consistency issues for both tables

16

Tracing

• The classical x86 architectures cannot allow the VMM to use the classical trap-and-
emulation for virtualizing guest operating systems. How many of the following best
describes the reasons?
① The guest OS can be aware that it’s not running in a privileged mode
② A privileged instruction in the guest OS may not trigger a trap
③ x86 does not provide a mechanism to set write-protected pages and handlers for tracing
④ x86’s hardware-walk hierarchical page table structure prevents the use of shadow page

tables.
A. 0
B. 1
C. 2
D. 3
E. 4

21

Why this doesn’t work with x86

A Comparison of Software and Hardware
Techniques for x86 Virtualization

Keith Adams and Ole Agesen
VMware

22

• Binary
• Dynamic
• On demand
• System level
• Subsetting
• Adaptive

23

Binary translator

• If the virtualized CPU is in user mode
• Instructions execute directly

• If the virtualized CPU is in kernel mode
• VMM examines every instruction that the guest OS is about to
execute in the near future by prefetching and reading instructions
from the current program counter

• Non-special instructions run natively
• Special instructions (those instruction may have missing flags set)
are “translated” into equivalent instructions with flags set

24

Binary translation on x86

reduced
privileged

mode

Trap-and-emulate with Binary Translation

25

Virtual Machine Monitor

Guest OS

Applications

The Machine

user
mode

privileged
mode

unprivileged
instruction
(e.g., add) syscall

handling
update
vCPU
states

call trap
handler

executing trap
handler in reduced
privileged modeprivileged

instruction return

handling
update
vCPU
states

return

privileged
instruction
(if special) return

translate &
update
vCPU
states

• VMCB (Virtual machine control block)
• Settings that determine what actions cause the guest to exit to host
• All CPU state for a guest is located in VMCB data-structure

• A new, less privileged execution mode, guest mode
• vmrun instruction to enter VMX mode
• Many instructions and events cause VMX exits
• Control fields in VMCB can change VMX exit behavior

26

Hardware virtualization in modern x86

• VMM fills in VMCB exception table for Guest OS
• Sets bit in VMCB not exit on syscall exception

• VMM executes vmrun
• Application invokes syscall
• CPU —> CPL #0, does not trap, vectors to VMCB exception
table

27

How hardware VM works

• How many of the following situations can x86 VMX/VT-X instruction
set extensions help improve the performance of VMM?
① Executing system calls
② Handling page faults
③ Modifying a page table entry
④ Calling a function
A. 0
B. 1
C. 2
D. 3
E. 4

32

When to use hardware support for VM

Virtualization overhead

33

Nanobenchmarks

34

Macrobenchmarks

35

• How many of the following situations can x86 VMX/VT-X instruction
set extensions help improve the performance of VMM?
① Executing system calls
② Handling page faults
③ Modifying a page table entry
④ Calling a function
A. 0
B. 1
C. 2
D. 3
E. 4

36

When to use hardware support for VM

— guest OS runs in VM mode, no VMM intervention

— software VMM doesn’t need to use vmrun and exit

— hardware VMM doesn’t need BT

• Binary Translation VMM:
• Converts traps to callouts

• Callouts faster than trapping
• Faster emulation routine

• VMM does not need to reconstruct state
• Avoids callouts entirely

• Hardware VMM:
• Preserves code density
• No precise exception overhead
• Faster system calls

37

Side-by-side comparison

• Solution to issues with x86 instruction set
• Don’t allow guest OS to issue sensitive instructions
• Replace those sensitive instructions that don’t trap to ones that will trap

• Guest OS makes “hypercalls” (like system calls) to interact with system
resources
• Allows hypervisor to provide protection between VMs

• Exceptions handled by registering handler table with Xen
• Fast handler for OS system calls invoked directly
• Page fault handler modified to read address from replica location

• Guest OS changes largely confined to arch-specific code
• Compile for ARCH=xen instead of ARCH=i686
• Original port of Linux required only 1.36% of OS to be modified

38

Paravirtualization

Hints for computer system design
Butler W. Lampson

Computer Science Laboratory Xerox Palo Alto Research Center

39

Hints for computer system design

40

• How many of the following cloud storage system represents the idea
of “Separate normal and worst case”
① Facebook’s f4
② Google’s GFS
③ Microsoft’s Window Azure Storage
④ NetApp’s NFS
A. 0
B. 1
C. 2
D. 3
E. 4

45

Cloud storage and Lampson’s paper

• Separate normal and worst case
• Make normal case fast
• The worst case must make progress

• Saturation
• Thrashing

46

Completeness

• Do one thing at a time or do it well
• Don’t generalize
• Example

• Interlisp-D stores each virtual page on a dedicated disk page
• 900 lines of code for files, 500 lines of code for paging
• fast — page fault needs one disk access, constant computing cost

• Pilot system allows virtual pages to be mapped to file pages
• 11000 lines of code
• Slower — two disk accesses in handling a page fault, under utilize the disk

speed
• Get it right

47

Interface — Keep it simple, stupid

• Make it fast, rather than general or powerful
• CISC v.s. RISC

• Don’t hide power
• Are we doing all right with FTL?

• Use procedure arguments to provide flexibility in an interface
• Thinking about SQL v.s. function calls

• Leave it to the client
• Monitors’ scheduling
• Unix’s I/O streams

48

More on Interfaces

• Keep basic interfaces stable
• What happen if you changed something in the header file?

• Keep a place to stand if you do have to change interfaces
• Mach/Sprite are both compatible with existing UNIX even though they completely rewrote
the kernel

• Plan to throw one away
• Keep secrets of the implementation — make no assumption other system
components
• Don’t assume you will definitely have less than 16K objects!

• Use a good idea again
• Caching!
• Replicas

• Divide and conquer
49

Implementation

• Split resources in a fixed way if in doubt, rather than sharing them
• Processes
• VMM: Multiplexing resources Guest OSs aren’t even aware that they’re sharing

• Use static analysis — compilers
• Dynamic translation from a convenient (compact, easily modified or easily
displayed) representation to one that can be quickly interpreted is an
important variation on the old idea of compiling
• Java byte-code
• LLVM

• Cache answers to expensive computations, rather than doing them over
• Use hints to speed up normal execution

• The Ethernet: carrier sensing, exponential backoff
50

Speed

• When in doubt, use brute force
• Compute in background when possible

• Free list instead of swapping out on demand
• Cleanup in log structured file systems: segment cleaning could be scheduled at nighttime.

• Use batch processing if possible
• Soft timers: uses trigger states to batch process handling events to avoid trashing the cache more
often than necessary

• Write buffers
• Safety first
• Shed load to control demand, rather than allowing the system to become overloaded

• Thread pool
• MLQ scheduling
• Working set algorithm
• Xen v.s. VMWare

51

Speed

• End-to-end
• Network protocols

• Log updates
• Logs can be reliably written/read
• Logs can be cheaply forced out to disk, which can survive a crash

• Log structured file systems
• RAID5 in Elephant

• Make actions atomic or restartable
• NFS
• atomic instructions for locks

52

Fault-tolerance

Final

53

• Two of the questions are considered as comprehensive exam
• Final is cumulative
• Final exam will be online for any three hours you pick (starting
from 3/14 8am — 3/15 4pm)

• If you help others, you’re hurting yourself — since grades are
given according to your relative rank in the class.

54

Logistics

• Short answer questions on papers and Lampson’s paper * 10 — limits
your answer to 20 words — it’s a strict policy this time. You won’t get
“any” point if you have more than 20 words

• Free answer question (2) — you need to know how to write code or what
functions to use in designing a system module

• Brainstorming questions (4 or 5)— research questions, design decisions.
Not actually a standard answer
• Keep it short
• If you’re asked to make a design decision, make sure you cover the following
aspects
• Why your choice makes sense to the problem asked/needs to be addressed
• Why other listed options are not competitive as your choice

55

It’s a 3-hour long test

• What is thrashing? Which paper addresses this problem?
• What is saturation? Which paper addresses this problem?
• Which paper is about microkernel design?
• Which paper talks about capability?
• What’s TLB? What’s hardware-assisted TLB? What’s software-
assisted TLB? Pros and cons for each? Which paper can you
find the x86 TLB, page table design?

• What is garbage collection? Which paper uses that?
• What is free list? Which paper contains free list?

56

Short answer questions (20-word limit)

• Which paper is designing FS for read-intensive data access?
• Which paper is designing FS for write-intensive data access?
• Which paper is designing FS for MapReduce?
• Which paper talks about diskless system design? What design
decisions they made?

• What are the three important properties that virtual machines
need to hold?

• Can you relate papers with Butler Lampson’s “Hints for
Computer System Design”?

57

Short answer questions (20-word limit)

• Xen and the Art of Virtualization
• How to implement Balloon driver?
• How to implement the circular queue for sharing devices in Xen?

• Simultaneous multithreading: maximizing on-chip parallelism
• If you have an SMT processor like intel Core i7 or AMD RyZen, how does
this architecture change your scheduling policies/mechanisms to
maximize throughput?

• Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures
• Giving a few reasons why Mach’s VM is designed in this way?
• Pros? Cons?

58

Reading more papers and see if …

• How are multithreaded programs different from multi-process
programs? How can we use them to generate desired results?

• How can we use semaphores to achieve similar goals of
monitors?

• How is kernel programming different from user-space
programming?

• If you want to implement binary translator in C on Linux, what
functions do you need?

59

Programming

• Revisiting ideas from papers you’ve read and think if those
ideas work in modern scenarios
• Segmentation

• If you’re designing a file system for MapReduce, which of the
file systems we learned in class will be a best fit? Why?

• If you can design a new interface for flash-based SSD, what
this interface would look like?

60

Brainstorming

• What kind of application behavior is especially bad for flash
SSDs? What kind of mechanism/optimization can you provide
to mitigate that?

• What’s the problem in the current Linux driver implementation
in terms of system stability? What is potential solution to
address that problem?

• What’s log-on-log problem? Can you give an example of
similar problems in modern system design?

• Comparison of UNIX FFS, LFS, GoogleFS, WAS. Under what
scenario will you use each?

61

Brainstorming

• iEVAL
• We highly value your opinions
• Submit your screenshot of confirmation, equivalent to a full-credit
reading quiz

• Check your grades on iLearn as soon as possible
• We drop 2 of your lowest reading quizzes
• We allow 4 absences through out the whole quarter
• Midterm grade is up. One week regrading policy applies — check
the website regarding how to initiate that

• “Weighted Total” is your current total.

62

Announcement

Thank you all for this great quarter!

63

