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Taxonomy of virtualization
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Virtual machine architecture
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• A robot may not injure a human being or, through inaction, allow 
a human being to come to harm.  

• A robot must obey orders given it by human beings except 
where such orders would conflict with the First Law. 

• A robot must protect its own existence as long as such 
protection does not conflict with the First or Second Law.
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Three Laws of Robotics

https://s3-ap-southeast-1.amazonaws.com/cloud-skcript/wp-content/
uploads/2014/05/25090337/robots.jpg



Back to 1974…
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Operating System

Recap: virtualization
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Too slow!!!
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• The processor provides 
normal instructions and privileged 
instructions 
• Normal instructions: ADD, SUB, MUL, and 
etc … 

• Privileged instructions: HLT, CLTS, LIDT, 
LMSW, SIDT, ARPL, and etc…  

• The processor provides different modes 
• User processes can use normal 
instructions 

• Privileged instruction can only be used if 
the processor is in proper mode
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Recap: privileged instructions
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• Through the API: System calls 
• Implemented in “trap” instructions 

• Raise an exception in the processor 
• The processor saves the exception 
PC and jumps to the corresponding 
exception handler in the OS kernel
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Recap: How applications can use privileged operations?

add    0x1bad(%eax),%dh 
add    %al,(%eax) 
decb   0x52(%edi) 
in     $0x8d,%al 
mov    %eax,0x101c 
lea    -0x2bb84(%ebx),%eax 
mov    %eax,-0x2bb8a(%ebx) 
lgdtl  -0x2bb8c(%ebx) 
lea    -0x2bf3d(%ebx),%eax 
push   $0x10 
…… 
…… 
…… 
…… 
…… 
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb    %ecx,0x13(%rcx) 
and    %cl,(%rbx) 
xor    $0x19,%al 
add    %edx,(%rbx) 
add    %al,(%rax) 
syscall 
add    %al,(%rbx) 
…… 
…… 
…… 
…… 
…… 
…… 
…… 
……

trap

return-from-trap



Hosted virtual machine
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Virtual machine monitors on bare machines
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• De-privileging 
• Primary and shadow structures 
• Tracing
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Three main ideas to classical VMs
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• This is called virtually 
indexed, physically 
tagged cache 

• TLB hit: the translation is 
in the TLB, no penalty 

• TLB miss: fetch the 
translation from the page 
table in main memory
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Recap: address translation with TLB
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Address translation in VM
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Address translation in VM
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• You need to make the shadow page table consistent with guest 
OS page table 

• Protect these structures with write-protected 
• If anyone tries to modify the protected PTE — trigger a segfault 
handler 

• The segfault handler will deal with these write-protected locations 
and consistency issues for both tables
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Tracing



• The classical x86 architectures cannot allow the VMM to use the classical trap-and-
emulation for virtualizing guest operating systems. How many of the following best 
describes the reasons? 
① The guest OS can be aware that it’s not running in a privileged mode 
② A privileged instruction in the guest OS may not trigger a trap 
③ x86 does not provide a mechanism to set write-protected pages and handlers for tracing 
④ x86’s hardware-walk hierarchical page table structure prevents the use of shadow page 

tables. 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why this doesn’t work with x86



A Comparison of Software and Hardware 
Techniques for x86 Virtualization 

Keith Adams and Ole Agesen 
VMware
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• Binary 
• Dynamic 
• On demand 
• System level 
• Subsetting 
• Adaptive
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Binary translator



• If the virtualized CPU is in user mode 
• Instructions execute directly 

• If the virtualized CPU is in kernel mode 
• VMM examines every instruction that the guest OS is about to 
execute in the near future by prefetching and reading instructions 
from the current program counter 

• Non-special instructions run natively 
• Special instructions (those instruction may have missing flags set) 
are “translated” into equivalent instructions with flags set
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Binary translation on x86
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• VMCB (Virtual machine control block) 
• Settings that determine what actions cause the guest to exit to host 
• All CPU state for a guest is located in VMCB data-structure 

• A new, less privileged execution mode, guest mode 
• vmrun instruction to enter VMX mode 
• Many instructions and events cause VMX exits 
• Control fields in VMCB can change VMX exit behavior
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Hardware virtualization in modern x86



• VMM fills in VMCB exception table for Guest OS 
• Sets bit in VMCB not exit on syscall exception 

• VMM executes vmrun 
• Application invokes syscall 
• CPU —> CPL #0, does not trap, vectors to VMCB exception 
table
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How hardware VM works



• How many of the following situations can x86 VMX/VT-X instruction 
set extensions help improve the performance of VMM? 
① Executing system calls 
② Handling page faults 
③ Modifying a page table entry 
④ Calling a function 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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When to use hardware support for VM



Virtualization overhead
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Nanobenchmarks
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Macrobenchmarks
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• How many of the following situations can x86 VMX/VT-X instruction 
set extensions help improve the performance of VMM? 
① Executing system calls 
② Handling page faults 
③ Modifying a page table entry 
④ Calling a function 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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When to use hardware support for VM

— guest OS runs in VM mode, no VMM intervention

— software VMM doesn’t need to use vmrun and exit

— hardware VMM doesn’t need BT



• Binary Translation VMM: 
• Converts traps to callouts 

• Callouts faster than trapping 
• Faster emulation routine 

• VMM does not need to reconstruct state 
• Avoids callouts entirely 

• Hardware VMM: 
• Preserves code density 
• No precise exception overhead 
• Faster system calls
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Side-by-side comparison



• Solution to issues with x86 instruction set 
• Don’t allow guest OS to issue sensitive instructions 
• Replace those sensitive instructions that don’t trap to ones that will trap 

• Guest OS makes “hypercalls” (like system calls) to interact with system 
resources 
• Allows hypervisor to provide protection between VMs 

• Exceptions handled by registering handler table with Xen 
• Fast handler for OS system calls invoked directly 
• Page fault handler modified to read address from replica location 

• Guest OS changes largely confined to arch-specific code 
• Compile for ARCH=xen instead of ARCH=i686 
• Original port of Linux required only 1.36% of OS to be modified
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Paravirtualization



Hints for computer system design
Butler W. Lampson 

Computer Science Laboratory Xerox Palo Alto Research Center
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Hints for computer system design
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• How many of the following cloud storage system represents the idea 
of “Separate normal and worst case” 
① Facebook’s f4 
② Google’s GFS 
③ Microsoft’s Window Azure Storage 
④ NetApp’s NFS 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Cloud storage and Lampson’s paper



• Separate normal and worst case 
• Make normal case fast 
• The worst case must make progress 

• Saturation 
• Thrashing
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Completeness



• Do one thing at a time or do it well 
• Don’t generalize 
• Example 

• Interlisp-D stores each virtual page on a dedicated disk page 
• 900 lines of code for files, 500 lines of code for paging 
• fast — page fault needs one disk access, constant computing cost 

• Pilot system allows virtual pages to be mapped to file pages  
• 11000 lines of code 
• Slower — two disk accesses in handling a page fault, under utilize the disk 

speed 
• Get it right
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Interface — Keep it simple, stupid



• Make it fast, rather than general or powerful 
• CISC v.s. RISC 

• Don’t hide power 
• Are we doing all right with FTL? 

• Use procedure arguments to provide flexibility in an interface 
• Thinking about SQL v.s. function calls 

• Leave it to the client 
• Monitors’ scheduling 
• Unix’s I/O streams

48

More on Interfaces



• Keep basic interfaces stable 
• What happen if you changed something in the header file? 

• Keep a place to stand if you do have to change interfaces 
• Mach/Sprite are both compatible with existing UNIX even though they completely rewrote 
the kernel 

• Plan to throw one away 
• Keep secrets of the implementation — make no assumption other system 
components 
• Don’t assume you will definitely have less than 16K objects! 

• Use a good idea again 
• Caching! 
• Replicas 

• Divide and conquer
49

Implementation



• Split resources in a fixed way if in doubt, rather than sharing them 
• Processes 
• VMM: Multiplexing resources Guest OSs aren’t even aware that they’re sharing 

• Use static analysis — compilers 
• Dynamic translation from a convenient (compact, easily modified or easily 
displayed) representation to one that can be quickly interpreted is an 
important variation on the old idea of compiling 
• Java byte-code 
• LLVM 

• Cache answers to expensive computations, rather than doing them over 
• Use hints to speed up normal execution 

• The Ethernet: carrier sensing, exponential backoff
50

Speed



• When in doubt, use brute force 
• Compute in background when possible 

• Free list instead of swapping out on demand 
• Cleanup in log structured file systems: segment cleaning could be scheduled at nighttime. 

• Use batch processing if possible 
• Soft timers: uses trigger states to batch process handling events to avoid trashing the cache more 
often than necessary 

• Write buffers 
• Safety first 
• Shed load to control demand, rather than allowing the system to become overloaded 

• Thread pool 
• MLQ scheduling 
• Working set algorithm 
• Xen v.s. VMWare
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Speed



• End-to-end 
• Network protocols 

• Log updates 
• Logs can be reliably written/read 
• Logs can be cheaply forced out to disk, which can survive a crash 

• Log structured file systems 
• RAID5 in Elephant 

• Make actions atomic or restartable 
• NFS 
• atomic instructions for locks
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Fault-tolerance 



Final
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• Two of the questions are considered as comprehensive exam 
• Final is cumulative 
• Final exam will be online for any three hours you pick (starting 
from 3/14 8am — 3/15 4pm) 

• If you help others, you’re hurting yourself — since grades are 
given according to your relative rank in the class.
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Logistics



• Short answer questions on papers and Lampson’s paper * 10  — limits 
your answer to 20 words — it’s a strict policy this time. You won’t get 
“any” point if you have more than 20 words  

• Free answer question (2) — you need to know how to write code or what 
functions to use in designing a system module 

• Brainstorming questions (4 or 5)— research questions, design decisions. 
Not actually a standard answer 
• Keep it short 
• If you’re asked to make a design decision, make sure you cover the following 
aspects 
• Why your choice makes sense to the problem asked/needs to be addressed 
• Why other listed options are not competitive as your choice
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It’s a 3-hour long test



• What is thrashing? Which paper addresses this problem? 
• What is saturation? Which paper addresses this problem? 
• Which paper is about microkernel design? 
• Which paper talks about capability? 
• What’s TLB? What’s hardware-assisted TLB? What’s software-
assisted TLB? Pros and cons for each? Which paper can you 
find the x86 TLB, page table design? 

• What is garbage collection? Which paper uses that? 
• What is free list? Which paper contains free list?
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Short answer questions (20-word limit)



• Which paper is designing FS for read-intensive data access? 
• Which paper is designing FS for write-intensive data access? 
• Which paper is designing FS for MapReduce? 
• Which paper talks about diskless system design? What design 
decisions they made? 

• What are the three important properties that virtual machines 
need to hold? 

• Can you relate papers with Butler Lampson’s “Hints for 
Computer System Design”?
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Short answer questions (20-word limit)



• Xen and the Art of Virtualization 
• How to implement Balloon driver? 
• How to implement the circular queue for sharing devices in Xen? 

• Simultaneous multithreading: maximizing on-chip parallelism 
• If you have an SMT processor like intel Core i7 or AMD RyZen, how does 
this architecture change your scheduling policies/mechanisms to 
maximize throughput? 

• Machine-Independent Virtual Memory Management for Paged 
Uniprocessor and Multiprocessor Architectures 
• Giving a few reasons why Mach’s VM is designed in this way? 
• Pros? Cons?
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Reading more papers and see if …



• How are multithreaded programs different from multi-process 
programs? How can we use them to generate desired results? 

• How can we use semaphores to achieve similar goals of 
monitors? 

• How is kernel programming different from user-space 
programming? 

• If you want to implement binary translator in C on Linux, what 
functions do you need?
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Programming



• Revisiting ideas from papers you’ve read and think if those 
ideas work in modern scenarios 
• Segmentation 

• If you’re designing a file system for MapReduce, which of the 
file systems we learned in class will be a best fit? Why? 

• If you can design a new interface for flash-based SSD, what 
this interface would look like?
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Brainstorming



• What kind of application behavior is especially bad for flash 
SSDs? What kind of mechanism/optimization can you provide 
to mitigate that? 

• What’s the problem in the current Linux driver implementation 
in terms of system stability? What is potential solution to 
address that problem? 

• What’s log-on-log problem? Can you give an example of 
similar problems in modern system design? 

• Comparison of UNIX FFS, LFS, GoogleFS, WAS. Under what 
scenario will you use each?
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Brainstorming



• iEVAL 
• We highly value your opinions 
• Submit your screenshot of confirmation, equivalent to a full-credit 
reading quiz 

• Check your grades on iLearn as soon as possible 
• We drop 2 of your lowest reading quizzes 
• We allow 4 absences through out the whole quarter 
• Midterm grade is up. One week regrading policy applies — check 
the website regarding how to initiate that 

• “Weighted Total” is your current total.
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Announcement



Thank you all for this great quarter!
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