
Design philosophy of operating
systems (I)

Hung-Wei Tseng

Recap: von Neumman Architecture

!2

Processor

Memory
Storage

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

What happens when creating a process

!3

Virtual memory

heap

stack

Dynamic allocated data: malloc()

Local variables,
arguments

code

static data

program

code

static data

Linux contains a .bss section
for uninitialized global variables

R0
R1
R2

R3
1

...
...
..

registers

The operating system
needs to track all of these for

each process!

• Most operations can directly execute on the processor without OS’s
intervention

• The OS only takes care of protected resources, change running processes
or anything that the user program cannot handle properly

• Divide operations into two modes
• User mode

• Restricted operations
• User processes

• Kernel mode
• Can perform privileged operations
• The operating system kernel

• Requires architectural/hardware supports
!4

Recap: Restricted operations

• The processor provides
normal instructions and privileged
instructions
• Normal instructions: ADD, SUB, MUL, and
etc …

• Privileged instructions: HLT, CLTS, LIDT,
LMSW, SIDT, ARPL, and etc…

• The processor provides different modes
• User processes can use normal instructions
• Privileged instruction can only be used if the
processor is in proper mode — otherwise, it
incurs an exception and the OS handler
needs to deal with it

!5

Recap: Architectural support: privileged instructions

Kernel

Ring 3
Ring 2
Ring 1
Ring 0

Device Drivers

Device Drivers

Applications
Least privileged

Most privileged

• Through the API: System calls
• Implemented in “trap” instructions

• Raise an exception in the processor
• The processor saves the exception
PC and jumps to the corresponding
exception handler in the OS kernel

!6

Recap: How applications can use privileged operations?

add 0x1bad(%eax),%dh 
add %al,(%eax) 
decb 0x52(%edi) 
in $0x8d,%al 
mov %eax,0x101c 
lea -0x2bb84(%ebx),%eax 
mov %eax,-0x2bb8a(%ebx) 
lgdtl -0x2bb8c(%ebx) 
lea -0x2bf3d(%ebx),%eax 
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx) 
and %cl,(%rbx) 
xor $0x19,%al 
add %edx,(%rbx) 
add %al,(%rax) 
syscall 
add %al,(%rbx)
……  
……
……
……
……
……
……
……

trap

return-from-trap

• The OS kernel only get involved when necessary
• System calls
• Hardware interrupts
• Exceptions

• The OS kernel works on behave of the requesting process —
not a process
• Somehow like a function call to a dynamic linking library
• Preserve the current architectural states and update the PCB
• As a result — overhead of copying registers, allocating local
variables for kernel code and etc…

!7

Recap: Kernel

• On a 3.7GHz intel Core i5-9600K Processor, please make a
guess of the overhead of switching from user-mode to kernel
mode.
A. a single digit of nanoseconds
B. tens of nanoseconds
C. hundreds of nanoseconds
D. a single digit of microseconds
E. tens of microseconds

!8

Recap: The overhead of kernel switches/system calls

Operations Latency (ns)

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 3,000 ns

Send 1K bytes over 1 Gbps network 10,000 ns

Read 4K randomly from SSD* 150,000 ns

Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns

Read 1 MB sequentially from SSD* 1,000,000 ns

Disk seek 10,000,000 ns

datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns

Send packet CA-Netherlands-CA 150,000,000 ns

–RICK WARREN

"A lie doesn't become truth, wrong doesn't become right and evil doesn't
become good, just because it is accepted by a majority."

!9

• How to read research papers
• The Structure of the 'THE'-Multiprogramming System
• HYDRA: The Kernel of a Multiprocessor Operating System

!10

Outline

How to read research papers

!11

• For each paper, you should identify the followings:
• Why?

• Why should we care about this paper?
• What’s the problem that this paper is trying to address?

• What?
• What has been proposed?
• Contributions of the paper

• How?
• How does the paper accomplish the proposed idea?
• How does the result perform?

!12

How to read research papers
The most important thing when you’re reading/writing a paper

The second most important thing when you’re reading/writing a paper

They are important only if you want to implement the proposed idea

• What are those related papers that you read before?
• Compare with those related papers and re-exam their whys,
whats and hows

• What will you propose if you’re solving the same “why”?

!13

Recap & Brainstorm

• As a researcher
• You want to identify important problems
• You want to know what has been accomplished

• As an engineer
• You want to know if there is a solution of the design problems of
your systems, applications

• You want to know if you can apply the proposed mechanism
• You want to know how to do it

!14

Why is reading papers important

The Structure of the 'THE'-
Multiprogramming System

Edsger W. Dijkstra
Technological University, Eindhoven, The Netherlands

!15

• 11 May 1930 – 6 August 2002
• Dijkstra's algorithm (single-source shortest path problem)
• Synchronization primitive, Mutual exclusion, Critical sections —
appendix of this paper

• Dining philosophers problem
• Program verification
• Multithreaded programming
• Concurrent programming
• Dijkstra–Scholten algorithm
• ……

!16

Edsger W. Dijkstra

Where is why?

!21

Usually, you should be able to identify the why in the
very beginning part of a paper

• CPU utilization — how busy we keep the CPU to be
• Latency — the time between start execution and completion
• Throughput — the amount of “tasks/processes/threads” that we can finish
within a given amount of time

• Turnaround time — the time between submission/arrival and completion
• Response time — the time between submission and the first time when
the job is scheduled

• Wait time — the time between the job is ready (not including the overhead
of queuing, command processing) and the first time when the job is
scheduled

• Fairness — every process should get a fair chance to make progress
!22

Scheduling Metrics

• How many of the following statements fulfill the reasons of having
“THE” system in addition to the computer and the application
က: Improves the latency of executing a program
က< Improves the utilization of peripherals
က> Provides a multiaccess system
က@ Supports data sharing among user programs
A. 0
B. 1
C. 2
D. 3
E. 4

!23

Why “THE”

latency: start execution until the end
turn-around time: submission until the end

• How many of the following statements fulfill the reasons of having
“THE” system in addition to the computer and the application
က: Improves the latency of executing a program
က< Improves the utilization of peripherals
က> Provides a multiaccess system
က@ Supports data sharing among user programs
A. 0
B. 1
C. 2
D. 3
E. 4

!24

Why “THE”

latency: start execution until the end
turn-around time: submission until the end

• Why should people care about this paper in 1968?
• Turn-around time of short programs
• Economic use of peripherals
• Automatic control of backing storage
• Economic use of the machine
• Designing a system is difficult in 1968

• Difficult to verify soundness
• Difficult to prove correctness
• Difficult to deal with the complexities

!25

THE

The computer in the era of “THE”

!26

Memory

Processor

Storage

Core memory

Processor

Drum

now the era of “THE”

cycle time: 2.5 us
(clock rate: 400KHz)

32K

512KWords
response time: 40ms

1000 chars/sec
1+ TB

response time: 20us - 10ms
100MB/sec-2.4GB/sec

cycle time: 0.5 ns
(clock rate: 2 GHz)

8GB+

Where is what?

!27

processes

strict layered design

!28

What has been proposed?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized
peripherals

virtualized
processor

virtualized console

Each layer has a different privilege mode — your
processor needs to provide 5 levels of execution modes

• How many the following is/are true regarding the proposed hierarchical
design
က: Hierarchical design facilitates debugging
က< Hierarchical design makes verification of system components easier
က> Hierarchical design reduces the overhead of running a single process
က@ The proposed hierarchical design allows layer 0 to schedule

I/O & peripherals
A. 0
B. 1
C. 2
D. 3
E. 4

!33

Why layered/hierarchical design?

— function calls/syscalls, memory copying, and etc…
— what a potential problem is this?

!34

Potential problems?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized
peripherals

virtualized
processor

virtualized console

What if the program of processor
allocation/scheduling needs more memory?

Careful layout of levels:
The peripherals always need to go

through message interpreter.
Why?

Where is how?

!35

!36

• Built the layered system to facilitate debugging
• Priority scheduling to improve turn-around time
• Mutual synchronization for sharing resource among processes

• Processor allocation for processes
• Access of the physical console among virtual consoles
• Access peripherals among user programs
• Keep this in mind, we will discuss mutual exclusion in detail later

!37

How they achieved these goals?

Where else do you see hierarchical designs?

!38

Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

TCP/UDP…

IEEE 802.3, IEEE 802.11

IPv4, IPv6

Optical Fiber, Cooper wires, Air

• Process abstraction
• Hierarchical system design
• Virtual memory
• Mutual Synchronization

!39

Impacts of THE

HYDRA: The Kernel of a
Multiprocessor Operating System
W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.

Carnegie-Mellon University

!40

Let’s talk about HYDRA’s whats
first

!41

Where is the “what”?

!42

• Supporting multiple processors
• Separation of mechanism and policy
• Integration of the design with implementation methodology
• Rejection of strict hierarchical layering
• Protection
• Reliability

!43

What HYDRA proposed

• Rejection of strict hierarchical layering

• What’s the main reason why HYDRA rejects the layering idea
proposed in Dijkstra’s THE?
A. Enhance functionality
B. Support concurrency
C. Facilitate debugging
D. Improve flexibility
E. Boost performance

!48

Rejection of layering

• Why should we care about HYDRA?
• Hardware efficiency/utilization
• Facilitate construction of an environment for flexible & secure
operating systems

!49

HYDRA

• Supporting multiple processors
• Flexibility of using multiprocessor hardware

• Separation of mechanism and policy
• Flexibility of leaving complex decisions to high-level system designer

• Integration of the design with implementation methodology
• Learned from Dijkstra’s paper

• Rejection of strict hierarchical layering
• Strict hierarchical design limits the flexibility of high-level system designer

• Protection
• Capability: another important point of the paper — security

• Reliability
• Correctness, recovery

!50

What HYDRA proposed

“Kernel”

!51

THE v.s. Hydra

!52

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

THE Hydra

Kernel

privilege boundary

privilege boundary

privilege boundary

privilege boundary

privilege boundary

• Supporting multiple processors
• Separation of mechanism and policy
• Integration of the design with implementation methodology
• Rejection of strict hierarchical layering
• Protection
• Reliability

!53

What HYDRA proposed
• Separation of mechanism and policy

• How many of the following terms belongs to “policies”?
က: Least-recently used (LRU)
က< First-in, first-out
က> Paging
က@ Preemptive scheduling
ကB Capability
A. 0
B. 1
C. 2
D. 3
E. 4

!58

Who’s policy?
— Policy
— Policy
— Mechanism
— Mechanism
— Mechanism

• Hierarchical
• Ease of debugging/verification/testing
• Lack of flexibility — you can only interact with neighbor layers
• Overhead in each layer — not so great for performance

• Flat
• Flexibility
• Lower overhead — great for performance
• Debugging is not easy

!65

Hierarchical design v.s. flat structure

• Reading quizzes due this Thursday
• Check your clicker grades in iLearn
• Podcast is up. Access through iLearn

!66

Announcement

