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Recap: von Neumman Architecture
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By loading different programs into memory, 
your computer can perform different functions



What happens when creating a process
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Virtual memory

heap

stack

Dynamic allocated data: malloc()

Local variables, 
arguments

code

static data
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Linux contains a .bss section 
for uninitialized global variables

R0
R1
R2

R3
1

...
...
..

registers

The operating system 
needs to track all of these for 

each process!



• Most operations can directly execute on the processor without OS’s 
intervention 

• The OS only takes care of protected resources,  change running processes 
or anything that the user program cannot handle properly 

• Divide operations into two modes 
• User mode 

• Restricted operations 
• User processes 

• Kernel mode 
• Can perform privileged operations 
• The operating system kernel 

• Requires architectural/hardware supports
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Recap: Restricted operations



• The processor provides 
normal instructions and privileged 
instructions 
• Normal instructions: ADD, SUB, MUL, and 
etc … 

• Privileged instructions: HLT, CLTS, LIDT, 
LMSW, SIDT, ARPL, and etc…  

• The processor provides different modes 
• User processes can use normal instructions 
• Privileged instruction can only be used if the 
processor is in proper mode — otherwise, it 
incurs an exception and the OS handler 
needs to deal with it
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Recap: Architectural support: privileged instructions
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• Through the API: System calls 
• Implemented in “trap” instructions 

• Raise an exception in the processor 
• The processor saves the exception 
PC and jumps to the corresponding 
exception handler in the OS kernel
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Recap: How applications can use privileged operations?

add    0x1bad(%eax),%dh 
add    %al,(%eax) 
decb   0x52(%edi) 
in     $0x8d,%al 
mov    %eax,0x101c 
lea    -0x2bb84(%ebx),%eax 
mov    %eax,-0x2bb8a(%ebx) 
lgdtl  -0x2bb8c(%ebx) 
lea    -0x2bf3d(%ebx),%eax 
push   $0x10 
…… 
…… 
…… 
…… 
…… 
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb    %ecx,0x13(%rcx) 
and    %cl,(%rbx) 
xor    $0x19,%al 
add    %edx,(%rbx) 
add    %al,(%rax) 
syscall 
add    %al,(%rbx) 
……  
…… 
…… 
…… 
…… 
…… 
…… 
……

trap

return-from-trap



• The OS kernel only get involved when necessary 
• System calls 
• Hardware interrupts 
• Exceptions 

• The OS kernel works on behave of the requesting process — 
not a process 
• Somehow like a function call to a dynamic linking library 
• Preserve the current architectural states and update the PCB 
• As a result — overhead of copying registers, allocating local 
variables for kernel code and etc…
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Recap: Kernel



• On a 3.7GHz intel Core i5-9600K Processor, please make a 
guess of the overhead of switching from user-mode to kernel 
mode. 
A. a single digit of nanoseconds 
B. tens of nanoseconds 
C. hundreds of nanoseconds 
D. a single digit of microseconds 
E. tens of microseconds
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Recap: The overhead of kernel switches/system calls

Operations Latency (ns)

L1 cache reference 0.5 ns

Branch mispredict 5   ns

L2 cache reference 7   ns

Mutex lock/unlock 25   ns

Main memory reference 100   ns

Compress 1K bytes with Zippy 3,000   ns

Send 1K bytes over 1 Gbps network 10,000   ns

Read 4K randomly from SSD* 150,000   ns

Read 1 MB sequentially from memory 250,000   ns

Round trip within same datacenter 500,000   ns

Read 1 MB sequentially from SSD* 1,000,000   ns

Disk seek 10,000,000   ns

datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000   ns

Send packet CA-Netherlands-CA 150,000,000   ns



–RICK WARREN

"A lie doesn't become truth, wrong doesn't become right and evil doesn't 
become good, just because it is accepted by a majority."
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• How to read research papers 
• The Structure of the 'THE'-Multiprogramming System 
• HYDRA: The Kernel of a Multiprocessor Operating System
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Outline



How to read research papers
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• For each paper, you should identify the followings: 
• Why? 

• Why should we care about this paper? 
• What’s the problem that this paper is trying to address? 

• What? 
• What has been proposed? 
• Contributions of the paper 

• How? 
• How does the paper accomplish the proposed idea? 
• How does the result perform?
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How to read research papers
The most important thing when you’re reading/writing a paper

The second most important thing when  you’re reading/writing a paper

They are important only if you want to implement the proposed idea



• What are those related papers that you read before? 
• Compare with those related papers and re-exam their whys, 
whats and hows 

• What will you propose if you’re solving the same “why”?
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Recap & Brainstorm



• As a researcher 
• You want to identify important problems 
• You want to know what has been accomplished 

• As an engineer 
• You want to know if there is a solution of the design problems of 
your systems, applications 

• You want to know if you can apply the proposed mechanism 
• You want to know how to do it
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Why is reading papers important



The Structure of the 'THE'-
Multiprogramming System 

Edsger W. Dijkstra 
Technological University, Eindhoven, The Netherlands
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• 11 May 1930 – 6 August 2002 
• Dijkstra's algorithm (single-source shortest path problem) 
• Synchronization primitive, Mutual exclusion, Critical sections — 
appendix of this paper 

• Dining philosophers problem 
• Program verification 
• Multithreaded programming 
• Concurrent programming 
• Dijkstra–Scholten algorithm 
• ……
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Edsger W. Dijkstra



Where is why?
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Usually, you should be able to identify the why in the 
very beginning part of a paper



• CPU utilization — how busy we keep the CPU to be 
• Latency — the time between start execution and completion 
• Throughput — the amount of “tasks/processes/threads” that we can finish 
within a given amount of time 

• Turnaround time — the time between submission/arrival and completion 
• Response time — the time between submission and the first time when 
the job is scheduled 

• Wait time — the time between the job is ready (not including the overhead 
of queuing, command processing) and the first time when the job is 
scheduled 

• Fairness — every process should get a fair chance to make progress
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Scheduling Metrics



• How many of the following statements fulfill the reasons of having 
“THE” system in addition to the computer and the application 
က: Improves the latency of executing a program 
က< Improves the utilization of peripherals 
က> Provides a multiaccess system 
က@ Supports data sharing among user programs 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why “THE”

latency: start execution until the end 
turn-around time: submission until the end



• How many of the following statements fulfill the reasons of having 
“THE” system in addition to the computer and the application 
က: Improves the latency of executing a program 
က< Improves the utilization of peripherals 
က> Provides a multiaccess system 
က@ Supports data sharing among user programs 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why “THE”

latency: start execution until the end 
turn-around time: submission until the end



• Why should people care about this paper in 1968? 
• Turn-around time of short programs 
• Economic use of peripherals 
• Automatic control of backing storage 
• Economic use of the machine 
• Designing a system is difficult in 1968 

• Difficult to verify soundness 
• Difficult to prove correctness 
• Difficult to deal with the complexities
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THE



The computer in the era of “THE”
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Memory

Processor

Storage

Core memory

Processor

Drum

now the era of “THE”

cycle time: 2.5 us
(clock rate: 400KHz)

32K

512KWords
response time: 40ms

1000 chars/sec
1+ TB

response time: 20us - 10ms 
100MB/sec-2.4GB/sec

cycle time: 0.5 ns 
(clock rate: 2 GHz)

8GB+



Where is what?
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processes

strict layered design
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What has been proposed?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized 
peripherals

virtualized 
processor

virtualized console

Each layer has a different privilege mode — your 
processor needs to provide 5 levels of execution modes



• How many the following is/are true regarding the proposed hierarchical 
design 
က: Hierarchical design facilitates debugging 
က< Hierarchical design makes verification of system components easier 
က> Hierarchical design reduces the overhead of running a single process 
က@ The proposed hierarchical design allows layer 0 to schedule 

I/O & peripherals 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why layered/hierarchical design?

— function calls/syscalls, memory copying, and etc…
— what a potential problem is this?
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Potential problems?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized 
peripherals

virtualized 
processor

virtualized console

What if the program of processor 
allocation/scheduling needs more memory?

Careful layout of levels: 
The peripherals always need to go 

through message interpreter. 
Why?



Where is how?
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• Built the layered system to facilitate debugging 
• Priority scheduling to improve turn-around time  
• Mutual synchronization for sharing resource among processes 

• Processor allocation for processes 
• Access of the physical console among virtual consoles 
• Access peripherals among user programs 
• Keep this in mind, we will discuss mutual exclusion in detail later
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How they achieved these goals?



Where else do you see hierarchical designs?
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Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

TCP/UDP…

IEEE 802.3, IEEE 802.11

IPv4, IPv6

Optical Fiber, Cooper wires, Air



• Process abstraction 
• Hierarchical system design 
• Virtual memory 
• Mutual Synchronization
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Impacts of THE



HYDRA: The Kernel of a 
Multiprocessor Operating System
W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.

Carnegie-Mellon University
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Let’s talk about HYDRA’s whats 
first
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Where is the “what”?
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• Supporting multiple processors 
• Separation of mechanism and policy 
• Integration of the design with implementation methodology 
• Rejection of strict hierarchical layering 
• Protection 
• Reliability
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What HYDRA proposed

• Rejection of strict hierarchical layering



• What’s the main reason why HYDRA rejects the layering idea 
proposed in Dijkstra’s THE? 
A. Enhance functionality 
B. Support concurrency 
C. Facilitate debugging 
D. Improve flexibility 
E. Boost performance
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Rejection of layering



• Why should we care about HYDRA? 
• Hardware efficiency/utilization 
• Facilitate construction of an environment for flexible & secure 
operating systems
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HYDRA



• Supporting multiple processors 
• Flexibility of using multiprocessor hardware 

• Separation of mechanism and policy 
• Flexibility of leaving complex decisions to high-level system designer 

• Integration of the design with implementation methodology 
• Learned from Dijkstra’s paper 

• Rejection of strict hierarchical layering 
• Strict hierarchical design limits the flexibility of high-level system designer 

• Protection 
• Capability: another important point of the paper — security 

• Reliability 
• Correctness, recovery
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What HYDRA proposed



“Kernel”
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THE v.s. Hydra
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layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

THE Hydra

Kernel

privilege boundary

privilege boundary

privilege boundary

privilege boundary

privilege boundary



• Supporting multiple processors 
• Separation of mechanism and policy 
• Integration of the design with implementation methodology 
• Rejection of strict hierarchical layering 
• Protection 
• Reliability
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What HYDRA proposed
• Separation of mechanism and policy



• How many of the following terms belongs to “policies”? 
က: Least-recently used (LRU) 
က< First-in, first-out 
က> Paging 
က@ Preemptive scheduling 
ကB Capability 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Who’s policy?
— Policy
— Policy
— Mechanism
— Mechanism
— Mechanism



• Hierarchical 
• Ease of debugging/verification/testing 
• Lack of flexibility — you can only interact with neighbor layers 
• Overhead in each layer — not so great for performance 

• Flat 
• Flexibility 
• Lower overhead — great for performance 
• Debugging is not easy
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Hierarchical design v.s. flat structure



• Reading quizzes due this Thursday 
• Check your clicker grades in iLearn 
• Podcast is up. Access through iLearn
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Announcement


