
Design philosophy of operating
systems (III)

Hung-Wei Tseng

!2

Recap: impact of UNIX
• Clean abstraction — everything as a file
• File system — will discuss in detail after midterm
• Portable OS

• Written in high-level C programming language
• The unshakable position of C programming language

• We are still using it!

• UNIX
• Protection is associated with each file — described in the metadata
of a file

• Each file contains three (only two in the original paper) types of users
• Each type of users can have read, write, execute permissions
• setuid to promote right amplifications

• Mach
• Protection is associated with each “object” — embedded in the
memory space of each object — capability

• Each object can set permissions on functions individually
!3

Recap: Protection mechanisms

• Mach: A New Kernel Foundation For UNIX Development
• The process interface in UNIX

!4

Outline

Tasks/processes

!9

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #1

PC

a = 0x01234567

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #2

PC

a = 0xDEADBEEF

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #3

PC

a = 0x87654321

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #4

PC

a = 0x95273310

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Intel Sandy Bridge

!10

Core Core Core Core

Core Core Core Core

Share L3 $

Concept of chip multiprocessors

!11

Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Main memory
Main memory is eventually shared among processor

cores

Threads

!12

Virtual memoryheap

code

static data

code

stack

Task #1

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memoryheap

code

static data

code

stack

Task #2

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Each thread has its own PC, states of execution, but shares
memory address spaces, I/Os without threads within the

same process

• Process is an abstraction of a computer
• When you create a process, you duplicate everything
• However, you only need to duplicate CPU abstraction to parallelize
computation tasks

• Threads as lightweight processes
• Thread is an abstraction of a CPU in a computer
• Maintain separate execution context
• Share other resources (e.g. memory)

!13

Why Threads?

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

!14

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

• On a 3.7GHz intel Core i5-9600K Processor
• Process fork+exit ~ 57 microseconds
• More than 16K cycles

!15

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• How many of the following memory elements should be shared by
two threads in the same process?
က: Stack section
က< Data section
က> Text/code section
က@ Page table
A. 0
B. 1
C. 2
D. 3
E. 4

!20

What should threads share?

— each function call, local variables should still be independent

— all threads share the same address space

— global variables should be visible to every thread
— each thread are running instructions from the same process

The virtual memory of single-threaded applications

!21

Virtual memory

heap

code

static data

stack

The virtual memory of multithreaded applications

!22

Virtual memory

heap

code

static data

stackstack #1

stack #2

stack #3

• How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
က: The context switch and creation overhead of processes is higher
က< The overhead of exchanging data among different computing tasks for the

same applications is higher in process model
က> The demand of memory usage is higher when using processes
က@ The security and isolation guarantees are better achieved using processes
A. 0
B. 1
C. 2
D. 3
E. 4

!24

Tasks/Processes and threads

— you have to change page tables, warm up TLBs, warm up caches, create a new memory space …

— you cannot directly share data without leveraging other mechanisms
— each process needs its own address space even if most data are potentially identical

— separate address, it’s not easy to access data from another process

Case study: Chrome v.s. Firefox

!25

each of these is a process

each of these is a thread

Memory usage?
Stability?
Security?
Latency?

Chrome

!26

Virtual memory

heap

code

static data

stack

Tab #1

Virtual memory

heap

code

static data

stack

Tab #2

Virtual memory

heap

code

static data

stack

Tab #3

Virtual memory

heap

code

static data

stack

Tab #4

Firefox

!27

Virtual memory

heap

code

static data

stackTab #1

Tab #2

Tab #3

Everything here is shared/
visible among all threads
within the same process!

• How many of the following Mach features/functions are
implemented in the kernel?
က: I/O device drivers
က< File system
က> Shell
က@ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

!32

What’s in the kernel?

• How many pairs of the “why” and the “what” in Mach are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

!33

Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Microkernel/Object-oriented design

• What type of kernels does the UNIX described in Dennis M. Ritchie’s
paper belong to?
A. Microkernel — the kernel only provides a minimal set of services

including memory management, multitasking and inter-process
communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

!38

Types of kernels

Hydra, Mach

Old UNIX

Linux, Windows, MacOS, FreeBSD
THE

!39

Types of Kernels

Virtual File Systems, System
calls, IPC, File systems,

scheduler, virtual memory,
device drivers, dispatcher. Basic IPC, Virtual Memory,

Scheduling

Application
IPC

Server
programs

Device
Drivers

File
Server

Applications

Application
IPC

Server programs

Device
Drivers

File Server

kernel
mode

kernel
mode

operating
system

dynamically
loadable
kernel

modules
Monolithic Micro Modular

Hydra, MachOriginal
UNIX

Linux,
Windows,
MacOS

user
mode

user
mode

HardwareHardware Hardware

Applications Applications

Basic IPC, Virtual Memory,
Scheduling

user
mode

• Although Mach’s design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?
A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

!44

Why not microkernels?

Context switches!

• Threads
• Extensible operating system kernel design
• Strongly influenced modern operating systems

• Windows NT/2000/XP/7/8/10
• MacOS

!45

The impact of Mach

!46

Experiencing processes and
threads
Hung-Wei Tseng

The interface of managing
processes

!50

• fork
• wait
• exec
• exit

!51

The basic process API of UNIX

• pid_t fork();
• fork used to create processes (UNIX)
• What does fork() do?

• Creates a new address space (for child)
• Copies parent’s address space to child’s
• Points kernel resources to the parent’s resources (e.g. open files)
• Inserts child process into ready queue

• fork() returns twice
• Returns the child’s PID to the parent
• Returns “0” to the child

!52

fork()

• What happens if we execute the following code?
int main() {
 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0; 
}

•

!57

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

!58

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

!59

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

!60

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Output:
My pid is 7

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

!61

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Child pid is 0
Output:
My pid is 7

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

!62

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Child pid is 0

Output:
My pid is 7

Child pid is 7

Assume
the parent’s PID is 2;
child’s PID is 7.

• What happens if we execute the following code?
int main() {
 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0; 
}

!63

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

• Reading quizzes due next Tuesday
• We do announce after each lecture — you should be aware of that
• Please also check course webpage for schedule — iLearn doesn’t
always generate announcements

• Preview v.s. release slides
• Preview: uploaded right before the lecture — no PI questions, for
note-taking

• Release slides: upload after the lecture — with complete content
• Check your clicker grades in iLearn
• Podcast is up. Access through iLearn

!64

Announcement

