Design philosophy of operating
systems (lll)

Hung-Wel Tseng

Recap: impact of UNIX

Clean abstraction — everything as a file

File system — will discuss in detail after midterm

Portable OS

- Written in high-level C programming language
- The unshakable position of C programming language

We are still using it!

Perhaps paradoxically, the success of uvix js Jargely
due to the fact that it was not designed to meet any
predefined objectives. The first version was written
whe one of us (Thompson), dissatishied with rthe
available computer facilities, discovered a little-used
PDP-7 and scl oul to create 2 more hospitable environ-
ment. This essertielly personul cffort was sufficiently
successful to pain the mterest of the remaining author
and others. and laler (o justifv the acguisition of the
rpr-11720, specifically to support a text editing and
formatting svstem. Whean in turn the 11,20 vwas out-
grown, UNIX had proved useful enough to persuade
manzgement to invest in the voe-[1/45. Our goals
throughout the efort, when articulzted at all, have
always concerncd themsclves with building a camfort-
uble relationship with the machine and with exploring
ideas znd mventions in operaung systems. We have
not been faced with the nead to satisfy someone else’s
requirements, and for this freedom we are grateful.

Recap: Protection mechanisms

- UNIX

- Protection is associated with each file — described in the metadata
of a file

- Each file contains three (only two in the original paper) types of users
- Each type of users can have read, write, execute permissions
- setuid to promote right amplifications

- Mach

- Protection is associated with each “object” — embedded in the
memory space of each object — capability

- Each object can set permissions on functions individually

3

Outline

- Mach: A New Kernel Foundation For UNIX Development
- The process interface in UNIX

Tasks/processes

Task #1 Task #2 Task #3 Task #4
CPU
5o CPU 5C o CPU oo
Memory

/0

/O

/O

Each process has its own unique virtual memory address
space, its own states of execution, i[s, own set of I/Os

static data static data

static data static data

heap

heap

heap

heap

a = 0x01234567 a = OxDEADBEEF

a = Ox87654321

a = Ox952733160

Intel Sandy Bridge

. 21 S | uu-- |
&+ Core|Core|Core Core !

Q

!

l

{

3’

|

ShareL3 $

Core|Core|Core|Core

Concept of chip multiprocessors

Processor

Core Core Core Core
Registers Registers Registers Registers

L1-$ L1-$ L1-$ L1-$
LY LY LY LY
L2-$ L2-$ L2-$ L2-$

SR SR SR SR

Main memory is eventually shared among processor
cores

11

Threads

Task #1 Task #2

Thread #1 Thread #2 Thread #3 Thread #1 Thread #2 Thread #3

mm m—pc‘ = IEE c I

Each process has its own unique virtual memory address
space, its own states of execution,its.own.set.of 1/Os
Each thread has its own PC, states of execution, but shares
memory address spaces, |/Os without threads withinthe -
same process

a = @x01234567 Ry il o S

12

Why Threads?

- Process is an abstraction of a computer

- When you create a process, you duplicate everything

- However, you only need to duplicate CPU abstraction to parallelize
computation tasks

- Threads as lightweight processes

- Thread is an abstraction of a CPU in a computer
- Maintain separate execution context

- Share other resources (e.g. memory)

13

The cost of creating processes

- Measure process creation overhead using Imbench http://
www.bitmover.com/Imbench/

14

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

The cost of creating processes

- Measure process creation overhead using Imbench http://
www.bitmover.com/Imbench/

- Ona 3./GHz intel Core i5-9600K Processor
- Process fork+exit ~ 57 microseconds

- More than 16K cycles

15

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

What should threads share?

- How many of the following memory elements should be shared by
two threads in the same process?

(® Stack section — each function call, local variables should still be independent

@ Data section — global variables should be visible to every thread
® Text/code section — each thread are running instructions from the same process

@ Pagetable —allthreads share the same address space
A. O

m|o| O w
DlWOIN -

20

The virtual memory of single-threaded applications

static data

heap

The virtual memory of multithreaded applications

static data

heap

stack #1
stack

Tasks/Processes and threads

- How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?

® The context switch and creation overhead of processes is higher

— you have to change doa e tables, warm up TLBs, warm up caches, create a new memory space ...
at f

@ The overhead of exchanging data among ditferent computing tasks for the
same applications is higher in process model

cannot directly share data without leveraging other mechanisms

® The demand of memory usage isTm?’é’ er when using processes

. . —— each process heeds its own address space even if mast data are potentially identical
@ The security and isolation guaran’?ees are better achieved using processes

A O — separate address, it's not easy to access data from another process

OO W
w N S

rm
I

24

Case study: Chrome v.s. Firefox

o @)

W A
-each of these is a process

806 ¥ 4 M Home of theMozill . * | @ Moalla Frefex Sur. .~ | +

Welcome to Chrome | QO oo o rssie:

You're using a fast new browser. Mouse over the markers below for three quick tips.

each of these is a thread

e 7 K

Sti“ reed help’) Learn More

Memory usage?

—~Stability?
Security?
Latency?

25

static data static data static data static data

heap heap heap heap

Firefox

static data

Everything here is shared/
visible among all threads

within the same process!

What's in the kernel?

- How many of the following Mach features/fun

Implemented in the kernel?
® 1/O device drivers
@ File system
® Shell
@ Virtual memory management
A. O
B.

S

O
N

m o
oW

32

User processes

1]
i Mach Network

0OS b NI (et ST
P : : UNIX Compatibility
L unctionality: ‘ : 1 lunctionality: '
1 Scoure netwerk IFC ' ' UNIX File Svstem -
i Distributed fike system s a UNIX Pro:c‘ss Manazement
1 Autherntication S otc. ;

1
1
1
1 Autherizaton 1o :
L} 1
' Network resource 5 = '
: manazement T 8 N '
1 Network paging 5 !
]]
1
: etc. ’ . 1

Mach-1 Kernel Layer

“unctionality:

Virtual memeory manazement
[nterprocess communication
Low-level device drivers
Multiprocessor scheduling
Redirectdor of UNIX traps

Whys v.s. whats

- How many pairs of the “why" and the "what" in Mach are correct?

Support for multiprocessors Threads
Networked computing Messages/Ports
OS Extensibility Microkernel/Object-oriented design
Repetitive but confusing mechanisms Messages/Ports
A. O
B.
C. 2

Ul
w

rm
I

33

Types of kernels
- What type of kernels does the UNIX described in Dennis M. Ritchie's

paper belong to?

A. Microkernel — the kernel only provides a minimal set of services
iIncluding memory management, multitasking and inter-process

communication

Hydra, Mach

. Monolithic — the kernel implements every function that cannot be in a

user-space library:

device drivers, scheduler, memory handling, file

systems, network stacks Old UNIX
C. Modular — the kernel provides a basic set of functions like

microkernels, but a
D. Layered kernel —1

lows load/unload kernel modules If necessar
reeBSD

ne kernel follows strlcttfayer ofl 3e3|gn at ower-

order module cannot interact with higher-order modules THE

38

Types of Kernels

user
. . . mode dynamically
Monolithic Micro Modular loadable
kernel

modules

] Virtual File Systems, System ppl;fgm“ pz‘;rl:;er;s il . .
operating calls, IPC, File systems, ge.Vlce Appll::gtlon
I rivers
system scheduler, virtual memory, | |

device drivers, dispatcher. kernel Basic IPC, Virtual Memory, Basic IPC, Virtual Memory,
mode Scheduling Scheduling

Hardware

Hardware Hardware

Original Linux,
UNIX Hydra, Mach Windows,

MacOS

39

Why not microkernels?

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

E. Microkernels are less flexible than monolithic kernels

44

The impact of Mach

- Threads
- Extensible operating system kernel design

. Strongly influenced modern operating systems
- Windows NT/2000/XP/7/8/10
- MacOS

45

Documentation Archive

g & developer.apple.com

Kernel Programming Cuide

¥ Tabhke of Contenis

About This Document
Keep Out

Kernel Architecturas
Overview

The Early Boot Frocess
Security Considerations
Performance Considerations
Kernel Programming Style
Mach Overview

Memory and Virtual Memory

Mach Scheduling and Thread

Interfaces

Bootstrap Contexts

1,0 Kit Overview

BSD Overview

File Systems Overview
Network Architecture
Boundary Crossings
Synchronization Primitives
Miscellancous Kernel
Services

Kernel Extension Overview

Building and Debugging
Kernels

Bibliography
Revision History
Glossary

Mach Overview

The fundamental services and primitives of the OS X kernel are based on Mach 3.0. Apple has mod fied and extercded Mach to better meet OS X functional and p

Mzch 3 0 was anginally conreived as a simple, extensihle, communications microkernel tis capable of running a< a stand-a one <ernel, with athar traditianal o
networking stacks rurring as user-mode servers.

Hawever, in OS5 X, Mach is 'inked with other kernel components into a single kernel address space. This is primarily for performance; it is much faster ta make a
messayges o1 do remole procedure calls (RPC) belween sepdrate tasks. This modular structure results in @ more robust and extensible system than a monolithic |
microkerrel.

Thus in OS X, Mach is not primarily a communication hub between clients and servers. Instead, its value consists of its abstractions, its extensibility, and its flax
* gbjact-based AP's with communication channels (for example, ports) as object references

« higny parallel execution, including preemptvely scheduled threads and support for SMP

« a flaxible scheduling framework, with sunoort for real-time usage

= a comglete set of JPC primitives, including messaging, RPC, synchronization, and notificaticn

» support for large virtual address spaces, shared memory regions, and memory objects backec by persistent store

« provan extensibility and portability, for examp e across instruction set architactures and in distributed environments

- security and resource management as a fundamental principle of design; all rescurces are virtualized

Mach Kernel Abstractions

Mach provides a small set of abstracticns that have been designed tc be both simp'e and powarful. Thase ara the main kernal abstractions:

e Tasks. The units of resource ownership, each task consists of a virtual address space. a port rigint narnespdce, and one or more threads. (Similar W0 a process.
o Threads. The units ¢f CPU execution within a task.

e Address space. In canjunction with memory managers, Mach implements the notion of a sparse virrua' address space and shared memory.

e Memory objects. The internal units of memory management. Memory chjects include named entries and regions; they are representations of potentizlly parsi
e FPorts. Secure, simplex commurication channels, accessible on'y via send and receive capabilities (known as port rights).

« JPC. Message queues, remote procedure calls, notifications, semaphores, and lock sets.

« Time. Clocks, timers, anc waiting. 46

Experiencing processes and
threads

Hung-Wel Tseng

The interface of managing
processes

The basic process API of UNIX

e fork
e walt
e eXeC
e ex1t

fork()

epid t fork():
- Tork used to create processes (UNIX)

- What does fork () do?

- Creates a new address space (for child)

. Copies parent’s address space to child's

- Points kernel resources to the parent’s resources (e.g. open files)
- Inserts child process into ready queue

- fork () returns twice
- Returns the child’s PID to the parent
- Returns "0" to the child

52

What will happen?

What happens if we execute the following code?
int main() {
int pid;
if ((pid = fork()) == 0) {

printf (”"My pid is %d\n", getpid());

Assume
the parent's PID is 2;
child's PID is 7.

7,0
7,0
7
7,2

7

ks

printf (”Child pid is %d\n", pid);

return 0;
Iy
‘III 1 7 2
‘I:I 1 2 2
I!il 2 7,2 1
IHI 1 0 2
IEI 1 7 1

57

Assume

the parent's PID is 2; f oY k ()
child's PID is 7.

int pid: code

if ((pid = fork()) == 0) {
printf(“My pid is %d\n"”, getpid());

}
printf(”Child pid is %d\n”, pid);

static data

Virtual memory

58

Assume
the parent's PID is 2;
child's PID is 7.

int pid: code int pid: code
if ((pid = fork()) == 0) { if ((pid = fork()) == @) {
printf(“My pid is %d\n", getpid()); printf(“My pid is %d\n"”, getpid());

¥ ¥
printf(”Child pid is %d\n"”, pid): printf(”Child pid is %d\n"”, pid):

static data static data

Virtual memory Virtual memory

Assume
the parent's PID is 2;
child's PID is 7.

int pid: code

if ((pid = fork()) == 0) {
printf(“My pid is %d\n"”, getpid());
¥

printf(”Child pid is %d\n”, pid);

static data

Virtual memory

Output:
My pid is 7

int pid: code
if ((pid = fork()) == 0) {
printf(“My pid is %d\n"”, getpid());

}
printf(”Child pid is %d\n"”, pid);

static data

Virtual memory

Assume
the parent's PID is 2;
child's PID is 7.

int pid: code
if ((pid = fork()) == 0) {
printf(“My pid is %d\n"”, getpid());

}
printf(”Child pid is %d\n”, pid);

static data

Virtual memory

Output:
My pid is 7
Child pid is O

int pid: code
if ((pid = fork()) == 0) {
printf(“My pid is %d\n"”, getpid());

}
printf(”Child pid is %d\n"”, pid);

static data

Virtual memory

Assume
the parent's PID is 2;
child's PID is 7.

int pid: code
if ((pid = fork()) == 0) {
printf(“My pid is %d\n"”, getpid());

}
printf(”Child pid is %d\n”, pid);

static data

Virtual memory

Output:
My pid is 7
Child pid is O

int pid:
if ((pid = fork()) == 0) {
printf(“My pid is %d\n"”, getpid());

}
printf(”Child pid is %d\n"”, pid);

static data

Virtual memory

What will happen?

- What happens if we execute the following code?

int main() { Assume ' .
int pid: the parent's PID Is 2;
if ((pid = fork()) == 0) { child’'s PIDis 7.
printf (”"My pid is %d\n", getpid());
¥
printf (”"Child pid is %d\n", pid);
return 0;
¥
A 1 7 7,0
o 1 : :
I!il 2 7,2 1 7
‘I:I 1 0 2 7,2
IEI 1 7 1 7

63

Announcement

- Reading quizzes due next Tuesday

- We do announce after each lecture — you should be aware of that

- Please also check course webpage for schedule — iLearn doesn't
always generate announcements

- Preview v.s. release slides

- Preview: uploaded right before the lecture — no Pl questions, for
note-taking

- Release slides: upload after the lecture — with complete content
. Check your clicker grades iniLearn
- Podcast is up. Access through iLearn

64

