
Process/Thread/Task Scheduling
Hung-Wei Tseng

Recap: Each process has a separate virtual memory space

!2

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Processor
Virtually, every process seems to have a

processor, but only a few of them are
physically executing.

They are isolated from one
another. Each of them is not

supposed to know what
happens to another one

Recap: Threads

!3

Virtual memory

heap

code

static data

code

stack

Task #1

0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memory

heap

code

static data

code

stack

Task #2

0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

1. Mutual exclusion — at most one process/thread in its critical
section

2. Progress/Fairness — a thread outside of its critical section
cannot block another thread from entering its critical section

3. Progress/Fairness — a thread cannot be postponed
indefinitely from entering its critical section

4. Accommodate nondeterminism — the solution should work
regardless the speed of executing threads and the number of
processors

!4

Recap: Solving the “Critical Section Problem”

• Also referred to as “producer-consumer” problem
• Producer places items in shared buffer
• Consumer removes items from shared buffer

!5

Bounded-Buffer Problem

producer consumer

5 22 18 38 2 15buffer

Without synchronization, you may write

!6

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE; 
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0; 
 printf("child\n");
 while(TRUE) {
 int item = buffer[out];
 out = (out + 1) %
BUFF_SIZE;
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global

!7

Use locks
int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …; 
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE; 
 Pthread_mutex_unlock(&lock); 
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0; 
 printf("child\n");
 while(TRUE) { 
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE; 
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global 
volatile unsigned int lock = 0;

You cannot produce and consume simultaneously!

Semaphores

!8

• A synchronization variable
• Has an integer value — current value dictates if thread/process

can proceed
• Access granted if val > 0, blocked if val == 0
• Maintain a list of waiting processes

!9

Semaphores

• sem_wait(S)
• if S > 0, thread/process proceeds and decrement S
• if S == 0, thread goes into “waiting” state and placed in a special

queue
• sem_post(S)

• if no one waiting for entry (i.e. waiting queue is empty), increment S
• otherwise, allow one thread in queue to proceed

!10

Semaphore Operations

Semaphore Op Implementations

!11

sem_init(sem_t *s, int initvalue) {
 s->value = initvalue;
}

sem_wait(sem_t *s) {
 while (s->value <= 0)
 put_self_to_sleep(); // put self to sleep
 s->value--;
}

sem_post(sem_t *s) {
 s->value++;
 wake_one_waiting_thread(); // if there is one
}

• Semaphore operations must operate atomically
• Requires lower-level synchronization methods requires (test-and-

set, etc.)
• Most implementations still require on busy waiting in spinlocks

• What did we gain by using semaphores?
• Easier for programmers
• Busy waiting time is limited

!12

Atomicity in Semaphore Ops

• What variables to use for this problem?

!17

Using semaphores

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0; 
 Sem_init(&filled, 0);
 Sem_init(&empty, BUFF_SIZE); 
 while(TRUE) {
 int item = …; 
 Sem_wait(&W);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE; 
 Sem_post(&X); 
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0; 
 printf("child\n");
 while(TRUE) {
 Sem_wait(&Y); 
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 // do something w/ item 
 Sem_post(&Z);
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global 
sem_t filled, empty;

W X Y Z
A empty empty filled filled
B empty filled filled empty
C filled empty empty filled

• Mechanisms of changing processes
• Basic scheduling policies
• An experimental time-sharing system — The Multi-Level

Scheduling Algorithm
• Scheduler Activations

!18

Outline

The mechanisms of changing
processes

!19

• Cooperative Multitasking (non-preemptive multitasking)
• Preemptive Multitasking

!20

The mechanisms of changing the running processes

• How many of the following statements about cooperative multitasking is/are
correct?
က: The OS can change the running process if the current process give up the resource
က< The OS can change the running process if the current process traps into OS kernel
က> The OS can change the running process if the current process raise an exception

like divide by zero
က@ The OS can actively change the running process if the current process is running for

a long enough time
A. 0
B. 1
C. 2
D. 3
E. 4

!25

Cooperative multitasking

Unfortunately, the OS cannot — if the process never traps

Cooperative multitasking — processes
voluntarily yield control periodically or

when idle in order to enable multiple
applications to be run simultaneously

Anytime if we make a system call to the OS, the OS can potentially switch a process

• The OS controls the scheduling — can change the running
process even though the process does not give up the
resource

• But how?

!26

Preemptive Multitasking

• Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

!31

How to achieve preemptive multitasking

• System calls / trap instructions — raised by applications
• Display images, play sounds

• Exceptions — raised by processor itself
• Divided by zero, unknown memory addresses

• Interrupts — raised by hardware
• Keystroke, network packets

!32

Three ways to invoke OS handlers

add 0x1bad(%eax),%dh 
add %al,(%eax) 
decb 0x52(%edi) 
in $0x8d,%al 
mov %eax,0x101c 
lea -0x2bb84(%ebx),%eax 
mov %eax,-0x2bb8a(%ebx) 
lgdtl -0x2bb8c(%ebx) 
lea -0x2bf3d(%ebx),%eax 
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx) 
and %cl,(%rbx) 
xor $0x19,%al 
add %edx,(%rbx) 
add %al,(%rax) 
syscall 
add %al,(%rbx)
……  
……
……
div %ecx
……
……
……
……

trap

return-from-trap

exception

return from
exception handler

interrupt
return from

interrupt handler

• Setup a timer (a hardware feature by the processor)event
before the process start running

• After a certain period of time, the timer generates interrupt
to force the running process transfer the control to OS
kernel

• The OS kernel code decides if the system wants to
continue the current process
• If not — context switch
• If yes, return to the process

!33

How preemptive multitasking works

Scheduling Policies from
Undergraduate OS classes

!34

• Virtualizing the processor
• Multiple processes need to share a single processor
• Create an illusion that the processor is serving my task by rapidly

switching the running process
• Determine which process gets the processor for how long

!35

CPU Scheduling

• Non-preemptive/cooperative: the task runs until it finished
• FIFO/FCFS: First In First Out / First Come First Serve
• SJF: Shortest Job First

• Preemptive: the OS periodically checks the status of processes
and can potentially change the running process
• STCF: Shortest Time-to-Completion First
• RR: Round robin

!36

What you learned before

• Assume that we have the following 3 processes

which of the following scheduling policy yields the best average turn-around time?
(assume we prefer not to switch process if two process have the same criteria)

A. FIFO/FCFS: First In First Out / First Come First Serve
B. SJF: Shortest Job First
C. STCF: Shortest Time-to-Completion First
D. RR: Round robin
E. Two of the above

!41

Best for turn-around time
Arrival time Task length

P1 0 5
P2 1 4
P3 4 1

0 1 2 3 4 5 6 7 8 9 10
P1 P3P2 (5-0)+(9-1)+(10-4)=6.33

0 1 2 3 4 5 6 7 8 9 10
P1 P2P3 (5-0)+(6-4)+(10-1)=5.33

0 1 2 3 4 5 6 7 8 9 10
P1 P2P3 (5-0)+(6-4)+(10-1)=5.33

0 1 2 3 4 5 6 7 8 9 10
P1 P2 P1 P2 P3 P1 P2 P1 P2 P1 (10-0)+(9-1)+(5-4)=6.33

!41

• How many of the following scheduling policies require knowledge of
process run times?
က: FIFO/FCFS: First In First Out / First Come First Serve
က< SJF: Shortest Job First
က> STCF: Shortest Time-to-Completion First
က@ RR: Round robin
A. 0
B. 1
C. 2
D. 3
E. 4

These policies are not realistic
— forget about them in real implementation

!46

Parameters for policies

An experimental time-sharing system
Fernando J. Corbató, Marjorie Merwin-Daggett and Robert C. Daley
Massachusetts Institute of Technology, Cambridge, Massachusetts

!47

• Why MIT’s experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the following
က: Optimize for the average response time of tasks
က< Optimize for the average turn-around time of tasks
က> Optimize for the performance of long running tasks
က@ Guarantee the fairness among tasks
A. 0
B. 1
C. 2
D. 3
E. 4

!52

Why Multi-level scheduling algorithm

• System saturation — the demand of computing is larger than
the physical processor resource available

• Service level degrades
• Lots of program swap ins-and-outs (known as context switches

in our current terminology)
• User interface response time is bad

— you have to wait until your turn
• Long running tasks cannot make

good progress — frequent
swap in-and-out

!53

What happens to round robin when the system is saturated?Why Multi-level scheduling algorithm?

Context Switch Overhead

!54

You think round robin should act like this —

0 1 2 3 4 5 6 7 8 9 10
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1

But the fact is —
P1 P2 P3Overhead

P1 -> P2
Overhead
P2 -> P3

Overhead
P3 -> P1

0 1 1 2 2 3
P1 P2Overhead

P1 -> P2
Overhead
P2 -> P3

3 4 4 5

•Your processor utilization can be very low if you switch frequently
•No process can make sufficient amount of progress within a given period of time
•It also takes a while to reach your turn

• Place new process in the one of the queue
• Depending on the program size

• Schedule processes in one of N queues
• Start in initially assigned queue n
• Run for 2n quanta (where n is current depth)
• If not complete, move to a higher queue (e.g. n +1)

• Level m is run only when levels 0 to m-1 are empty
!55

The Multilevel Scheduling Algorithm

wp is the program memory size — smaller ones are
assigned to lower numbered queues

• Smaller tasks are given higher priority in the beginning
Why?

• Larger process will execute longer before switch

• Smaller process, newer process are given higher priority

• Not optimized for anything — it’s never possible to have an
optimized scheduling algorithm without prior knowledge
regarding all running processes

• It’s practical — many scheduling algorithms used in modern
OSes still follow the same idea

!56

The Multilevel Scheduling Algorithm

• Which of the following can disabling interrupts guarantee on
multicore processors?

A. At most one process/thread in its critical section
B. A thread outside of its critical section cannot block another

thread from entering its critical section
C. A thread cannot be postponed indefinitely from entering its

critical section
D. The solution should work regardless the speed of executing

threads and the number of processors
E. None of the above

!83

Correction: disable interrupts?

What if the thread hold the critical section crashes?

What if we have multiple processors?

What if we have multiple processors?

• Reading quiz due next Tuesday
• Project due date 3/3

• In about a month
• Please come to our office hours if you need help for your projects

!85

Announcement

