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• BSD’s Fast File System 
• Log-structured File System

!7

Outline



A Fast File System for UNIX 
Marshall K. McKusick, William N. Joy, Samuel J. Leffler and Robert S. 

Fabry
Computer Systems Research Group
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• We want better performance!!! 
• We want new features!

!9

Why do we care about fast file system

Let’s make file systems great again!



• Lots of seeks when accessing a file 
• inodes are separated from data locations 
• data blocks belong to the same file can be spread out 

• Low bandwidth utilization 
• only the very last is retrieving data 
• 1 out 11 in our previous example — less than 10% if files are small 

• Limited file size 
• Crash recovery 
• Device oblivious
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Problems in the “old” file system



• Cylinder groups 
• Larger block sizes 
• Fragments 
• Allocators 
• New features 

• long file names 
• file locking 
• symbolic links 
• renaming 
• quotas
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What does fast file system propose?



• Consists of one or more consecutive cylinders on a disk 
• Each cylinder group contains the following 

• redundant copy of the superblock 
• what’s the benefit? 
• why not a cylinder group for all superblocks? 

• inode space 
• bitmap of free blocks within the cylinder group 
• summary of block usage 
• data 

• Improves average disk access time 
• Allocating blocks within the same cylinder group for the same file 
• Placing inode along with data within the same cylinder group 
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Cylinder groups



How FFS use disk blocks

!23

tracksector

cylinder

0 7
8 15
16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks
File System Metadata (Superblock)

File Metadata

Data

Data
cylinder group



• The block size of the old file system is aligned with the block 
(sector) size of the disk 
• Each file can only contain a fixed number of blocks 
• Cannot fully utilize the I/O interface bandwidth 

• The new file system supports larger block sizes 
• Supports larger files 
• Each I/O request can carry more data to improve bandwidth 

• However, larger block size leads to internal fragments
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Larger block sizes



• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8 
ms. Assume the controller overhead is 0.2ms. What’s the 
bandwidth of accessing 512B sectors and 4MB consecutive 
sectors?
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How larger block sizes improves bandwidth

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time
= 8 ms + 4.17 ms + 13.33 ms + 0.2 ms = 25.69 ms

= 4MB
25.69ms = 155.7 MB/sec

= 8 ms + 4.17 ms + 0.00167 us + 0.2 ms = 12.36 ms
= 0.5KB

12.36ms = 40.45KB/sec



• Addressable units within a block 
• Allocates fragments from a block with free fragments if the 
writing file content doesn’t fill up a block
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Fragments



• Global allocators 
• Try to allocate inodes belong to same file together 
• Spread out directories across the disk to increase the successful rate 
of the previous 

• Local allocators — allocate data blocks upon the request of the 
global allocator 
• Rotationally optimal block in the same cylinder 
• Allocate a block from the cylinder group if global allocator needs one 
• Search for blocks from other cylinder group if the current cylinder 
group is exhausted
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Allocators



• Larger overheads than the old file system as the new file 
system allocates blocks after write requests occur — Why not 
optimize for writes? 
• 10% of overall time 
• writes are a lot faster already 

• Writing metadata is synchronous rather than asynchronous — 
What’s the benefit of synchronous writes? 
• Consistency
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Writes



• Cylinder groups 
• Larger block sizes 
• Fragments 
• Allocators 
• New features 

• long file names 
• file locking 
• symbolic links 
• renaming 
• quotas
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What does fast file system propose?
— improve spread-out data locations
— improve bandwidth and file sizes

— improve low space utilization due to large blocks
— address device oblivious 



The design and implementation of a 
log-structured file system

Mendel Rosenbaum and John K. Ousterhout
Univ. of California, Berkeley
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• Writes will dominate the traffic between main memory and 
disks — Unix FFS is designed under the assumption that only 
10% of the traffic are writes 
• Who is wrong? 
• As system memory grows, frequently read data can be cached 
efficiently 

• Every modern OS aggressively caches — use “free” in Linux to 
check 

• Gaps between sequential access and random access 
• Conventional file systems are not RAID aware
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Why LFS?

UFS is published in 1984 



• How many of the following problems is/are Log-structured file 
systems trying address? 
က: The performance of small random writes 
က< The efficiency of large file accesses 
က> The space overhead of metadata in the file system 
က@ Reduce the main memory space used by the file system 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why LFS?



• Data are spread out the whole disk 
• Can achieve sequential access within each file, but the distance between files can be 
far 

• An inode needs a standalone I/O in addition to file content 
• Creating files take at least five I/Os with seeks — can only use 5% bandwidth for data 

• 2 for file attributes 
• You have to check if the file exists or not 
• You have to update after creating the file 

• 1 for file data 
• 1 for directory data 
• 1 for directory attributes 

• Writes to metadata are synchronous 
• Good for crash recovery, bad for performance
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Problems with BSD FFS



• Buffering changes in the system main memory and commit 
those changes sequentially to the disk with fewest amount of 
write operations

!50

What does LFS propose?



LFS in motion
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• Checkpointing 
• Create a redundant copy of important file system metadata 
periodically 

• Roll-forward 
• Scan through/replay the log after checkpointing
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Crash recovery



LFS v.s. crash
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LFS v.s. write failed
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• Reclaim invalidated segments in the log once the latest 
updates are checkpointed 

• Rearrange the data allocation to make continuous segments 
• Must reserve enough space on the disk  

• Otherwise, every writes will trigger garbage collection 
• Sink the write performance
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Segment cleaning/Garbage collection



Modern file system design — 
Extent File Systems
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• Basically optimizations over FFS + Extent + Journaling (write-
ahead logs)
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Extent file systems — ext2, ext3, ext4



• Contiguous: the file resides in continuous addresses
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How do we allocate space?

a.txt

• Non-contiguous: the file 
can be anywhere

a.txt

• Extents: the file resides in 
several group of smaller 
continuous address

a.txt



• Contiguous blocks only need a pair <start, size> to represent 
• Improve random seek performance 
• Save inode sizes 
• Encourage the file system to use contiguous space allocation
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Using extents in inodes



How ExtFS use disk blocks
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• Basically, an idea borrowed from LFS to facilitate writes and 
crash recovery 

• Write to log first, apply the change after the log transaction 
commits 
• Update the real data block after the log writes are done 
• Invalidate the log entry if the data is presented in the target location 
• Replay the log when crash occurs
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Write-ahead log


