File systems: case studies

Hung-Wel Tseng

Outline

- BSD's Fast File System
- Log-structured File System

A Fast File System for UNIX

Marshall K. McKusick, William N. Joy, Samuel J. Leffler and Robert S.
Fabry
Computer Systems Research Group

Why do we care about fast file system

- We want better performance!!!
- We want new features!

Let's make file systems great again!

Problems in the “old" file system

- Lots of seeks when accessing a file

- Inodes are separated from data locations
- data blocks belong to the same file can be spread out

- Low bandwidth utilization
- only the very last Is retrieving data
- 71 out 11 in our previous example — less than 10% if files are small

- Limited file size
- Crash recovery
- Device oblivious

10

What does fast file system propose?

- Cylinder groups

- Larger block sizes
- Fragments

- Allocators

- New features

- long file names
- file locking

- symbolic links
. renaming

- guotas

16

Cylinder groups

- Consists of one or more consecutive cylinders on a disk

- Each cylinder group contains the following

- redundant copy of the superblock

- what's the benefit?
- why not a cylinder group for all superblocks?

- Inode space

- bitmap of free blocks within the cylinder group
- summary of block usage

- data

- Improves average disk access time
- Allocating blocks within the same cylinder group for the same file
- Placing inode along with data within the same cylinder group

22

How FFS use disk blocks

Disk blocks

0 File System Metadata (Superblock)

s | 1 I 1 r 1 1 fw " cylindergroup

e | | |/ | | | | 23“‘»"}’

24 File Metadata | Data I

2| | 0 o)8e

40f | | | 4 | | | 47 track

a8 sector

56 -------- 63

23 cylinder

Larger block sizes

- The block size of the old file system is aligned with the block
(sector) size of the disk

- Each file can only contain a fixed number of blocks
- Cannot fully utilize the I/O interface bandwidth

- The new file system supports larger block sizes
- Supports larger files
- Each |/O request can carry more data to improve bandwidth

- However, larger block size leads to internal fragments

29

How larger block sizes improves bandwidth

- SATA Il (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What's the

bandwidth of accessing 512B sectors and 4MB consecutive
sectors?

Latency = seek time + rotational delay + transfer time + controller overhead
=8 ms+4.17 ms+ 13.33 ms + 0.2 ms = 25.69 ms

Bandwidth = volume_of_data over period_of_time
= 2;2492 = 155.7 MB/sec Trading latencies with bandwidth

8 ms+4.17 ms +0.00167 us + 0.2 ms = 12.36 ms

0.5KB
e = 40.45KB/sec
30

Fragments

. Addressable units within a block

- Allocates fragments from a block with free fragments if the
writing file content doesn't fill up a block

31

Allocators

- Global allocators
- [ry to allocate inodes belong to same file together

- Spread out directories across the disk to increase the successful rate
of the previous

- Local allocators — allocate data blocks upon the request of the
global allocator

- Rotationally optimal block in the same cylinder

- Allocate a block from the cylinder group if global allocator needs one

- Search for blocks from other cylinder group if the current cylinder
group is exhausted

32

Writes

- Larger overheads than the old file system as the new file
system allocates blocks after write requests occur — Why not

optimize for writes?

- 10% of overall time
- writes are a lot faster already

- Writing metadata is synchronous rather than asynchronous —
What's the benefit of synchronous writes?

- Consistency

39

What does fast file system propose?

- Cylinder groups — improve spread-out data locations

+ Larger block sizes — improve bandwidth and file sizes

- Fragments — improve low space utilization due to large blocks

. Allocators — address device oblivious

- New features
- long file names
- file locking
- symbolic links
- renaming
- quotas

40

The design and implementation of a
log-structured file system

Mendel Rosenbaum and John K. Ousterhout
Univ. of California, Berkeley

41

Why LFS?

- Writes will dominate the traffic between main memory and
disks — Unix FFS is designed under the assumption that only
10% of the traffic are writes

- Who is wrong? UFS is published in 1984

- As system memory grows, frequently read data can be cached
efficiently

- Every modern OS aggressively caches — use “free"” in Linux to
check

- Gaps between sequential access and random access
- Conventional file systems are not RAID aware

47

Why LFS?

- How many of the following problems is/are Log-structured file
systems trying address?
@ The performance of small random writes
@ The efficiency of large file accesses
® The space overhead of metadata in the file system
@ Reduce the main memory space used by the file system
A. O

moOoOw
hr W N-=-

48

Problems with BSD FFS

- Data are spread out the whole disk
- Can achieve sequential access within each file, but the distance between files can be
far
- An inode needs a standalone |/O in addition to file content
- Creating files take at least five |/Os with seeks — can only use 5% bandwidth for data

- 2 for file attributes
- You have to check if the file exists or not
- You have to update after creating the file

for file data
- 1 for directory data
for directory attributes

- Writes to metadata are synchronous
- Good for crash recovery, bad for performance

N\

N\

49

What does LFS propose?

- Buffering changes in the system main memory and commit
those changes sequentially to the disk with fewest amount of
write operations

50

LFS in motion

Data chuck | Data chuck Updated Data
chuck #1

buffer

Datachuck inode Updated Data inode

invalidated #9 #9 chuck #1 #1

di Sk ™M

1 Nap._
HEAMN N

disk space (log)

51

Crashrecovery

. Checkpointing

- Create a redundant copy of important file system metadata
periodically

- Roll-forward
- Scan through/replay the log after checkpointing

53

LFS v.s. crash

You still have a copy of

e

inode- Data chuck inode Datachuck inode Updatec
map #1 #1 #H2 #2 chucl

crash occurs

disk

disk space (log)

54

LFS v.s. write failed

You can try again!
g:’,rflft:r Updated Data
chuck #1
You still have a coPy of e

[e
| .

T inode Data chuck inode Datachuck inode Updatec
—-map- #1 #1 #2 #2 chucl

disk space (log)

55

Segment cleaning/Garbage collection

- Reclaim invalidated segments in the log once the latest
updates are checkpointed

- Rearrange the data allocation to make continuous segments

- Must reserve enough space on the disk

- Otherwise, every writes will trigger garbage collection
- Sink the write performance

56

Modern file system desigh —
Extent File Systems

Extent file systems — ext2, ext3, ext4

- Basically optimizations over FFS + Extent + Journaling (write-
ahead logs)

58

How do we allocate space?

- Contiguous: the file resides in continuous addresses
Non-contiguous: the file

can be anywhere

Extents: the file resides in «
3 txt several group of smaller
continuous address

.
.
-

atxt’

59

Using extents in iInodes

. Contiguous blocks only need a pair <start, size> to represent
- Improve random seek performance
. Save inode sizes

- Encourage the file system to use contiguous space allocation

60

How ExtFS use disk blocks

Disk blocks
0 File System Metadata (Superblock)
8 File Metadata Data " block group
16 Data 23 .
24 File System Metadata (Superblock) i
32 File Metadata Data)
40 DEF : . track

48 File System Metadata (Superblock) sector

56 File Metadata Data
Data

61 cylinder

Write-ahead log

- Basically, an idea borrowed from LFS to facilitate writes and
crash recovery
- Write to log first, apply the change after the log transaction

commits
- Update the real data block after the log writes are done

- Invalidate the log entry if the data is presented in the target location
- Replay the log when crash occurs

62

