
File systems: case studies
Hung-Wei Tseng

• BSD’s Fast File System
• Log-structured File System

!7

Outline

A Fast File System for UNIX
Marshall K. McKusick, William N. Joy, Samuel J. Leffler and Robert S.

Fabry
Computer Systems Research Group

!8

• We want better performance!!!
• We want new features!

!9

Why do we care about fast file system

Let’s make file systems great again!

• Lots of seeks when accessing a file
• inodes are separated from data locations
• data blocks belong to the same file can be spread out

• Low bandwidth utilization
• only the very last is retrieving data
• 1 out 11 in our previous example — less than 10% if files are small

• Limited file size
• Crash recovery
• Device oblivious

!10

Problems in the “old” file system

• Cylinder groups
• Larger block sizes
• Fragments
• Allocators
• New features

• long file names
• file locking
• symbolic links
• renaming
• quotas

!16

What does fast file system propose?

• Consists of one or more consecutive cylinders on a disk
• Each cylinder group contains the following

• redundant copy of the superblock
• what’s the benefit?
• why not a cylinder group for all superblocks?

• inode space
• bitmap of free blocks within the cylinder group
• summary of block usage
• data

• Improves average disk access time
• Allocating blocks within the same cylinder group for the same file
• Placing inode along with data within the same cylinder group

!22

Cylinder groups

How FFS use disk blocks

!23

tracksector

cylinder

0 7
8 15
16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks
File System Metadata (Superblock)

File Metadata

Data

Data
cylinder group

• The block size of the old file system is aligned with the block
(sector) size of the disk
• Each file can only contain a fixed number of blocks
• Cannot fully utilize the I/O interface bandwidth

• The new file system supports larger block sizes
• Supports larger files
• Each I/O request can carry more data to improve bandwidth

• However, larger block size leads to internal fragments

!29

Larger block sizes

• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What’s the
bandwidth of accessing 512B sectors and 4MB consecutive
sectors?

!30

How larger block sizes improves bandwidth

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time
= 8 ms + 4.17 ms + 13.33 ms + 0.2 ms = 25.69 ms

= 4MB
25.69ms = 155.7 MB/sec

= 8 ms + 4.17 ms + 0.00167 us + 0.2 ms = 12.36 ms
= 0.5KB

12.36ms = 40.45KB/sec

• Addressable units within a block
• Allocates fragments from a block with free fragments if the
writing file content doesn’t fill up a block

!31

Fragments

• Global allocators
• Try to allocate inodes belong to same file together
• Spread out directories across the disk to increase the successful rate
of the previous

• Local allocators — allocate data blocks upon the request of the
global allocator
• Rotationally optimal block in the same cylinder
• Allocate a block from the cylinder group if global allocator needs one
• Search for blocks from other cylinder group if the current cylinder
group is exhausted

!32

Allocators

• Larger overheads than the old file system as the new file
system allocates blocks after write requests occur — Why not
optimize for writes?
• 10% of overall time
• writes are a lot faster already

• Writing metadata is synchronous rather than asynchronous —
What’s the benefit of synchronous writes?
• Consistency

!39

Writes

• Cylinder groups
• Larger block sizes
• Fragments
• Allocators
• New features

• long file names
• file locking
• symbolic links
• renaming
• quotas

!40

What does fast file system propose?
— improve spread-out data locations
— improve bandwidth and file sizes

— improve low space utilization due to large blocks
— address device oblivious

The design and implementation of a
log-structured file system

Mendel Rosenbaum and John K. Ousterhout
Univ. of California, Berkeley

!41

• Writes will dominate the traffic between main memory and
disks — Unix FFS is designed under the assumption that only
10% of the traffic are writes
• Who is wrong?
• As system memory grows, frequently read data can be cached
efficiently

• Every modern OS aggressively caches — use “free” in Linux to
check

• Gaps between sequential access and random access
• Conventional file systems are not RAID aware

!47

Why LFS?

UFS is published in 1984

• How many of the following problems is/are Log-structured file
systems trying address?
က: The performance of small random writes
က< The efficiency of large file accesses
က> The space overhead of metadata in the file system
က@ Reduce the main memory space used by the file system
A. 0
B. 1
C. 2
D. 3
E. 4

!48

Why LFS?

• Data are spread out the whole disk
• Can achieve sequential access within each file, but the distance between files can be
far

• An inode needs a standalone I/O in addition to file content
• Creating files take at least five I/Os with seeks — can only use 5% bandwidth for data

• 2 for file attributes
• You have to check if the file exists or not
• You have to update after creating the file

• 1 for file data
• 1 for directory data
• 1 for directory attributes

• Writes to metadata are synchronous
• Good for crash recovery, bad for performance

!49

Problems with BSD FFS

• Buffering changes in the system main memory and commit
those changes sequentially to the disk with fewest amount of
write operations

!50

What does LFS propose?

LFS in motion

!51

Disk Space

disk space (log)

inode
mapdisk

write
buffer Data chuck

#1
Data chuck

#1

inode
#1

Data chuck
#1

Data chuck
#2

Data chuck
#2

Data chuck
#2

inode
#2

Updated Data
chuck #1

Updated Data
chuck #1

Updated Data
chuck #1

inode
#1invalidated

• Checkpointing
• Create a redundant copy of important file system metadata
periodically

• Roll-forward
• Scan through/replay the log after checkpointing

!53

Crash recovery

LFS v.s. crash

!54

Disk Space

disk space (log)

inode
mapdisk

write
buffer

inode
#1

Data chuck
#1

Data chuck
#2

inode
#2

Updated Data
chuck #1

Updated Data
chuck #1

Updated Data
chuck #1

crash occursYou still have a copy of
data at some point

Updated Data
chuck #1

LFS v.s. write failed

!55

Disk Space

disk space (log)

inode
mapdisk

write
buffer

inode
#1

Data chuck
#1

Data chuck
#2

inode
#2

Updated Data
chuck #1

Updated Data
chuck #1

Updated Data
chuck #1

write failedYou still have a copy of
data at some point

Updated Data
chuck #1

You can try again!

• Reclaim invalidated segments in the log once the latest
updates are checkpointed

• Rearrange the data allocation to make continuous segments
• Must reserve enough space on the disk

• Otherwise, every writes will trigger garbage collection
• Sink the write performance

!56

Segment cleaning/Garbage collection

Modern file system design —
Extent File Systems

!57

• Basically optimizations over FFS + Extent + Journaling (write-
ahead logs)

!58

Extent file systems — ext2, ext3, ext4

• Contiguous: the file resides in continuous addresses

!59

How do we allocate space?

a.txt

• Non-contiguous: the file
can be anywhere

a.txt

• Extents: the file resides in
several group of smaller
continuous address

a.txt

• Contiguous blocks only need a pair <start, size> to represent
• Improve random seek performance
• Save inode sizes
• Encourage the file system to use contiguous space allocation

!60

Using extents in inodes

How ExtFS use disk blocks

!61

tracksector

cylinder

0 7
8 15
16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks
File System Metadata (Superblock)
File Metadata

Data
Data

File System Metadata (Superblock)
File Metadata

Data
Data

File System Metadata (Superblock)
File Metadata

Data
Data

block group

• Basically, an idea borrowed from LFS to facilitate writes and
crash recovery

• Write to log first, apply the change after the log transaction
commits
• Update the real data block after the log writes are done
• Invalidate the log entry if the data is presented in the target location
• Replay the log when crash occurs

!62

Write-ahead log

