
File system basics
Hung-Wei Tseng

Recap: von Neumman Architecture

!2

Processor

Memory
Storage

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

• How our systems interact with I/O
• The basics of storage devices
• File

!3

Outline

The computer is now like a small network

!4

SATA SSD

HDD

Wireless NIC

NIC

Processor

DRAM

processor-memory bus

GPU
Accelerator

NVMe SSD
FPGA/ASIC

Physical main memory is not directly linking to
the system interconnect

• Registers
• Command: receiving commands from host
• Status: tell the host the status of the device
• Data: the location of exchanging data

• Microcontroller
• Memory
• ASICs

!5

What’s in each device?

Registers Microcontroller

MemoryASICs

ASIC (e.g. NAND)
DRAM

Controller + Registers

• The device signals the processor only when
the device requires the processor/OS
handle some tasks/data

• The processor only signals the device when
necessary

!6

Interrupt

System Interconnect

CPU System Memory

(3)

(4) (1)

(2)

Registers Microcontroller

MemoryASICs

System Interconnect

• The processor/OS constantly asks if the
device (e.g. examine the status register of
the device) is ready to or requires the
processor/OS handle some tasks/data

• The OS/processor executes corresponding
handler if the device can handle demand
tasks/data or has tasks/data ready

!7

Polling

(2) (3)

CPU System Memory

Registers Microcontroller

MemoryASICs

(1) (4)

How your application interact with peripherals

!8

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

Case study: interacting with hard
disk drives

!9

• Position the head to proper track
(seek time)

• Rotate to desired sector.
(rotational delay)

• Read or write data from/to disk to
in the unit of sectors (e.g. 512B)

• Takes at least 5ms for each
access

!10

Hard Disk Drive
tracksector

cylinder

Each sector is identified, locate by an “block address”

head

• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What’s the
latency and bandwidth of accessing a 512B sector?

!11

Seagate Barracuda 12

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+
0.5

1024
300 +0.2 ms

= 8 ms + 4.17 ms + 0.00167 us + 0.2 ms = 12.36 ms

= 0.5KB
12.36ms = 40.45KB/sec

• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What’s the
latency of accessing a consecutive 4MB data?

!12

Seagate Barracuda 12

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+ 4
300 +0.2 ms

= 8 ms + 4.17 ms + 13.33 ms + 0.2 ms = 25.69 ms

= 4MB
25.69ms = 155.7 MB/sec

Numbering the disk space with block addresses

!13

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks

How your application interact with peripherals

!14

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

The application needs to be tightly coupled with the underlying device —
Not generic
Not portable

read/write — 0, 512, 4096, … (block address)

–David Wheeler

All problems in computer science can be solved by
another level of indirection

!15

The file & file system abstraction

!16

How your application interact with peripherals

!17

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite/
fopen/fclose open/close

How your application reaches H.D.D.

!18

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite — input.bin/output.bin

fread/fwrite — input.bin/output.bin

Buffer
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses

read/write — block addresses

The application only needs
to interact with files!

What we’ve learned in the past…

!20

• Namespace has tree-like structure
• Root directory (/) with subdirectories, each containing its own

subdirectories
• Links break the tree analogy

!22

Hierarchical File System Structure

/

usr home var

local bin hungwei tyler spool logsrc

tylervim

• The “/“ on storage device A will become /backup now!

!23

Mount

Storage Device A

/

usr home var

local bin hungwei tyler spool logsrc

tylervim

Storage Device B
/

usr home var backup

int fd, nr, nw;
void *in_buff;
in_buff = malloc(BUFF_SIZE);

fd1 = open(“infile.txt”, O_RDONLY);
fd2 = open(“outfile.txt”, O_RDWR | O_CREAT);
nr = read(fd1, in_buff, BUFF_SIZE);
nw = write(fd2, in_buff, BUFF_SIZE);
lseek(fd1, -8, SEEK_END);
nr = read(fd1, in_buff, 8); // read last 8 bytes
// more fancy stuff here…
close(fd1);
close(fd2);

!24

How you access files in C

Kernel

File System

open

!25

infile.txt

fd PIDs Location
0 8,12
1
2
3

fd = open(“infile.txt”); 22

file descriptor table

1

Kernel

File System

read

!26

infile.txt

fd PIDs Location
0 8,12
1
2
3

read(fd, buff, n); 22

file descriptor table

1

buff:

The design of a file system

!28

Recap: Numbering the disk space with block addresses

!29

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks

• How do we locate files?
• How do we manage hierarchical namespace?
• How do we manage file and file system metadata?

• How do we allocate storage space?
• How do we make the file system fast?
• How do we ensure file integrity?

!30

Questions for file systems

How the original UNIX file system use these blocks

!31

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks
File System Metadata (Superblock)

Information about the “file system” itself.
(e.g. free blocks)

File Metadata Information about the
“files”. e.g. inodes

Data

Data

• Contains critical file system information
• The volume size
• The number of nodes
• Pointer to the head of the free list

• Located at the very beginning of the file system

!32

Superblock — metadata of the file system

• File types: directory, file
• File size
• Permission
• Attributes

!33

inode — metadata of each file

• File types: directory, file
• File size
• Permission
• Attributes
• Types of pointers:

• Direct: Access single data block
• Single Indirect: Access n data blocks
• Double indirect: Access n2 data blocks
• Triple indirect: Access n3 data blocks

• inode has 15 pointers: 12 direct, 1 each
single-, double-, and triple-indirect

• If data block size is 512B and n = 256:
max file size =
(12+256+2562+2563)*512 = 8GB

!34

Unix inode

• Scenario: User wants to access
/home/hungwei/CS202/foo.c

• Procedure: File system will…
• Open “/” file (This is in known from superblock.)
• Locate entry for “home,” open that file
• Locate entry for “hungwei”, open that file
• …
• Locate entry for “foo.c” and open that file

• Let’s use “strace” to see what happens

!36

What must be done to reach your files

• Contiguous: the file resides in continuous addresses

!38

How do we allocate space?

a.txt

• Non-contiguous: the file
can be anywhere

a.txt

• Extents: the file resides in
several group of smaller
continuous address

a.txt

• Need to track location of blocks on per file basis
• Contiguous only needs a pair <start, size>
• Extents requires a table of pairs
• Non-contiguous requires either a linked list of blocks OR a

table of block pointers (i.e. a map)

!40

Space overhead for storage allocation strategies

• Disk accesses are slow!
• Memory access: 100ns
• Disk access: 5-12ms
• Flash SSD: 30-120us

• Can reduce average access time by clustering data together…
but still slow!

• Ideas: Reduce the number of disk accesses using:
• Read-ahead: Bring in multiple blocks when reading a single

block (locality!)

!41

Now, what about performance?

• Buffer cache is a cache of recently used disk blocks resides in
DRAM-based main memory

• Modern OSs aggressively use free DRAM space for buffer
caches

• When accessing disk (read/write), we follow these steps:
• Check if block is in cache; stop if in cache
• If not in cache, access disk and place block in the cache
• Replacement Policy: LRU implemented with a linked list
• Head of list is next to replace
• Tail of list is last to replace

!42

Buffer Cache

