File system basics

Hung-Wel Tseng

Recap: von Neumman Architecture

X “‘

509cbd23;

00020800
-

By Ioadlng different programs Into memory,
your computer can perform different functions

ddddddd

’—-
d N

00003d24 00c30000

S 2case2b3 00000008

00005024 c ©0c2feee
0000bd24 4+ 00000008
2ca42220 Eg 00c2f800
130020¢e4 00000008
00003d24 00c30000
2cake2b3)eoooeoes

0
r—
Q
-
-
s
/p)
=

. Storage

Outline

- How our systems interact with 1/O

- The basics of storage devices
- File

The computer is now like a small nhetwork

GPU
® Accelerator

W\ v,-..«' v

Processor

processor-memory bus

Physical main memory is not directly linking to
o n. '.”.:.'; 3.9l.::.$i . A

:;:.‘ ._!f.".‘ '_') ﬁ :’(

g

the system interconnect
PO &b By
it |55 Froa/asic B8
EXPRESS Lo

N_IMeSSD

|

I Ay
Wireless NIC
e .

What's in each device?

Registers

- Command: receiving commands from host
- Status: tell the host the status of the device

- Data: the location of exchanging data
. Registers Microcontroller
Microcontroller

Memory
ASICs

— ASIC (e.g.NAND) o

Controller + Registers

Interrupt

- The device signals the processor only when
the device requires the processor/OS System Memory
handle some tasks/data

- The processor only signals the device when
necessary

Microcontroller

Polling

. The processor/OS constantly asks if the
device (e.g. examine the status register of
the device) is ready to or requires the

processor/OS handle some tasks/data (M]14)

- The OS/processor executes corresponding System Interconnect

handler if the device can handle demand (2)U(3)
tasks/data or has tasks/data ready
egisters icrocontroller

How vour application interact with peripherals

User

1/0O libraries m

Kernel

Device Driver Device Driver

Device Controller [l Device Controller Device Controller
Hardware

8

Device Driver

Case study: interacting with hard
disk drives

sector

Hard Disk Drive

Each sector is identified, locate by an “block address” * POSItION the head to proper track
track

(seek time)

- Rotate to desired sector.

(rotational delay)

- Read or write data from/to disk to

In the unit of sectors (e.g. 512B)

- Takes at least bms for each

10

dCCEeSS

Seagate Barracuda 12

- SATA Il (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What's the
latency and bandwidth of accessing a 512B sector?

Latency = seek time + rotational delay + transfer time + controller overhead

0.5
1 1 . 1024

8 ms ; X@ 200 +0.2 ms

=8 ms+4.17 ms + 0.00167 us + 0.2 ms = 12.36 ms

Bandwidth = volume_of_data over period_of_time

_ 05KB _
= e = 40.45KB/sec

1

Seagate Barracuda 12

- SATA Il (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What's the
latency of accessing a consecutive 4MB data?

Latency = seek time + rotational delay + transfer time + controller overhead

1 1 4

8 ms X — +0.2 ms

2 % 300

=8 ms+4.17 ms + 13.33 ms + 0.2 ms = 25.69 ms

Bandwidth = volume_of_data over period_of_time

__ 4AMB
" 25.69ms

= 155.7 MB/sec Trading latencies with bandwidth

12

Numbering the disk space with block addresses

Disk blocks

of { 1 I 1 | 1 |
s | 4 | s
el 4 0 s
23 I I A A A A N N
32| | 0 b s

ag| |\ | 1 | |5 sector

cylinder

How vour application interact with peripherals

User
1/0O libraries m
.................................. PR AR SR LL LR UL PYO LT LR R Pt SELXEIRNS
The application needs tp be tightly coupled with the underlyjng device —
Not generic
Kernel Not portable

Device Driver Device Driver

Device Controller [l Device Controller Device Controller
Hardware

14

Device Driver

All problems in computer science can be solved by
another level of indirection

—David Wheeler

15

The file & file system abstraction

How vour application interact with peripherals

User data fread/Twrite open/close
open/fclose P
I/O libraries m
File system
Device independent I/O interface (e.g.ioctl)
Kernel

Device Driver Device Driver Device Driver

Device Controller 8 Device Controller Device Controller
Hardware

17

How vour application reaches H.D.D.

User data - fread/fwrite — input.bin/output.bin

1/0O libraries m

= p—— The application only needs

read/write — @, 512, 4096, to interact with files!
Device independent I/O interface (e.g.ioctl)
read/write — block addresses

Device Driver Device Driver Device Driver

Buffer

Device Controller [Device Controller Device Controller
Hardware

18

What we've learned in the past...

'The most important role ol UNIX i1s to provide @
file system. From the point of view of the user, there
are three kinds of files: ordinary disk files, directones,

and special files.

3.1 Ordinary Files

A file contains whatever information the user places
on it, for example symbolic or binary (object} progrums.
No particular structuring is expected by the system.
Files of text consist simply of a string of characters,
with lincs demarcated by the new-line character. Binary
programs are sequences of words as they will appear
in core memory when the program starts executing. A
few user programs manipulate files with more structure:
the assembler generates and the loader expects an
object file in a particular format. However, the structure
of files is controlled by the programs whisch sica than

not by the system. 3.2 Dircctorics .

Directories provide the mapping between the names
of files and the files themscelves, and thus incduce a
structurc on the file system as a whole. Each user has a

directory of his own files; he may also create subdirec-
tories ta contain groups of files conveniently treated
together. A directory behaves exuactly hke an ordinary
file except that it cannot be written on by unprivileged
programs, so that the system controls the contents
of directories. [lowever, anyone with appropriate per-
mission may read a directory just like any other file.

R

3.3 Special Files

Special files constitute the most unusual feature of
the uNix file system. Lach 1/0 device supported by
UNIX 13 associated with at least one such file. Special
files are read and written just like ordinary disk files,
but requests to read or write result in activation of the
associated device. An entry for each special file resides in
directory /dev, although a link may be made to one of
these files just like an ordinary file. Thus, for example,
to punch paper tape, one may write on the file /dev/ppi.
Special files exist for each communication line, each
disk, cach tape drive, and for physical core memory.
Of coursc, the active disks and the core special file arc
protected from indiscriminate access.

There is a threefold advantage in treating 1,/0 devices
this way: file and device 1/0 are as similar as possible;
filc and device names have the same syntax and mean-
ing, so that a program expecling a file name as a parame-
eter can be passed a device name; finally, special files
are subject to the same protection mechanism as regular
files.

Hierarchical File System Structure

- Namespace has tree-like structure

- Root directory (/) with subdirectories, each containing its own
subdirectories

- Links break the tree analogy

/

home var

hungwei tyler spool log
tyler |

22

bin

Cx

Mount

- The “/" on storage device A will become /backup now!

Storage Device B

A‘\

T - TR

usr home var

bin hungwei tyler

Storage Device A

How you access filesinC

int fd, nr, nw;
vold xin_buff;

in_buff = malloc(BUFF_SIZE);
fdl = open(”infile.txt”, O_RDONLY);
fd2 = open("outfile.txt”, O_RDWR | O_CREAT);

nr = read(fdl, in_buff, BUFF_SIZE);

nw = write(fd2, in_buff, BUFF_SIZE):

lseek(fdl, -8, SEEK_END):

nr = read(fdl, in_buff, 8); // read last 8 bytes
// more fancy stuff here..

close(fdl);

close(fd2);

24

1

4

fd = open(”infile.txt");

Location

infile.txt

file descriptor table

File System

Kernel

1
read(fd, buff, n):

Location

infile.txt

file descriptor table

buff:| | | | | | | |

File System

Kernel

The design of a file system

Recap: Numbering the disk space with block addresses

Disk blocks

of { 1 I 1 | 1 |
s | 4 | s
el 4 0 s
23 I I A A A A N N
32| | 0 b s

ag| |\ | 1 | |5 sector

29 cylinder

Questions for file systems

- How do we locate files?

- How do we manage hierarchical namespace?
- How do we manage file and file system metadata?

- How do we allocate storage space?
- How do we make the file system fast?
- How do we ensure file integrity?

30

How the original UNIX file system use these blocks

. Information about the “file system” itself.
Disk blocks (e.g. free blocks)

File System Metadata (Superblock)

File Metadata Information about the

“files". e.g.inodes

51 cylinder

Superblock — metadata of the file system

. Contains critical file system information

- The volume size
- The number of nodes
- Pointer to the head of the free list

- Located at the very beginning of the file system

32

iInode — metadata of each file

- File types: directory, file
- File size

.- Permission

- Attributes

33

Unix inode

- File types: directory, file

- File size
- Permission
mode
owners (2) - Attributes
timestamps (3) e - Types of pointers:
size block count . Direct: Access single data block
et - Single Indirect: Access n data blocks
B dafa . Double indirect: Access n2 data blocks
direct blocks - : - Triple indirect: Access n3 data blocks
» data - inode has 15 pointers: 12 direct, 1 each
— EiE - — single-, double-, and triple-indirect
—) JEE] e . If data block size is 512B and n = 256:
d . —+——»| data
ouble indirect > o max file size =
el Tl (124256+2562+2563)*512 = 8GB

» data
34

What must be done to reach your files

. Scenario:; User wants to access
/home/hungwei/CS202/foo.c

- Procedure: File system will...

- Open “/" file (This is in known from superblock.)
- Locate entry for “"home,"” open that file

- Locate entry for "hungwel”, open that file

- Locate entry for "foo.c” and open that file
- Let's use "strace” to see what happens

36

How do we allocate space?

- Contiguous: the file resides in continuous addresses
Non-contiguous: the file

can be anywhere

Extents: the file resides in «
3 txt several group of smaller
continuous address

.
.
-

atxt’

38

Space overhead for storage allocation strategies

- Need to track location of blocks on per file basis
- Contiguous only needs a pair <start, size>
- Extents requires a table of pairs

- Non-contiguous requires either a linked list of blocks OR a
table of block pointers (i.e. a map)

40

Now, what about performance?

. Disk accesses are slow!

- Memory access: 100ns
. Disk access: 5-12ms
.- Flash SSD: 30-120us

. Can reduce average access time by clustering data together...
but still slow!

- |deas: Reduce the number of disk accesses using:

- Read-ahead: Bring in multiple blocks when reading a single
block (locality!)

41

Buffer Cache

- Buffer cache is a cache of recently used disk blocks resides in
DRAM-based main memory

- Modern OSs aggressively use free DRAM space for buffer
caches

- When accessing disk (read/write), we follow these steps:

- Check if block is in cache; stop if in cache

- If not in cache, access disk and place block in the cache

- Replacement Policy: LRU implemented with a linked list

- Head of list is next to replace

- Tall of list is last to replace

42

