File Systems & The Era of Flash-
based SSD

Hung-Wel Tseng

Recap: Abstractions in operating systems

- Process — the abstraction of a von Neumann machine
- Thread — the abstraction of a processor
- Virtual memory — the abstraction of memory

- File system — the abstraction of space/location on a storage
device, the storage device itself, as well as other peripherals

Recap: How vour application reaches H.D.D.

User data - fread/fwrite — input.bin/output.bin

1/0O libraries m

File system
read/write — 0, 512, 4096, .. (block address)

Buffer Device independent I/O interface (e.g.ioctl)
read/write — block addresses

Device Driver Device Driver Device Driver

Device Controller 8 Device Controller Device Controller
Hardware

3

Recap: what BSD FFS proposes?

Cylinder groups — improve spread-out data locations
Larger block sizes — improve bandwidth and file sizes

Fragments — improve low space utilization due to large blocks

Allocators — address device oblivious

New features

- long file names
- file locking

- symbolic links
+ renaming

- guotas

Recap: Performance of FFS

Table I1a. Reading Rates of the Old and New UNIX File Systems

Type of Processor and Speed Read % CPU
file system bus measured (Kbytes/s) bandwidth %

01d 1024 750/UNIBUS 29 29/983 3 11
New 4096/1024 750/UNIBUS 221/983 22 43
New 8192/1024 750/UNIBUS 233/983 24 29
New 4096/1024 750/ MASSBI 466/983 47 73
New 8192/1024 750/MASSBUS 466/983 47 54

not the case for old F
Table IIb. Writing Rates

rites in FFS are slower

Type of Pracessor and Write % CPU
file system bus measured bandwidth % ?

Old 1024 750/UNIBUS 48/983 5 29
New 4096/1024 750/UNIBUS 142/983 14 43
New 8192/1024 750/UNIBUS 215/983 22 46
New 4096/1024 750/MASSBUS 323/983 33 94
New 8192/1024 750/MASSBUS 466/983 47 95

CPU load is fine given that UFS

is way too slow!

Recap: Why LFS?

- Writes will dominate the traffic between main memory and
disks — Unix FFS is designed under the assumption that a
majority of traffic is read

- Who is wrong? UFSis published in 1984

- As system memory grows, frequently read data can be cached
efficiently

- Every modern OS aggressively caches — use "“free"” in Linux to
check

. Gaps between sequential access and random access
- Conventional file systems are not RAID aware

6

Recap: What does LFS propose?

- Buffering changes in the system main memory and commit
those changes sequentially to the disk with fewest amount of
write operations

Recap: LFS in motion

Data chuck | Data chuck Updated Data
chuck #1

buffer

Datachuck inode Updated Data inode

invalidated #9 #9 chuck #1 #1

di Sk ™M

L Nap._
HEAMN N

disk space (log)

Segment cleaning/Garbage collection

- Reclaim invalidated segments in the log once the latest
updates are checkpointed

- Rearrange the data allocation to make continuous segments

- Must reserve enough space on the disk

- Otherwise, every writes will trigger garbage collection
- Sink the write performance

Lessons learned

- Performance is closely related to the underlying architecture
- Old UFS performs poorly as it ignores the nature of hard disk drives
- FFS allocates data to minimize the latencies of disk accesses

- As architectural/hardware changes the workload, so does the
design philosophy of the software

- FFS optimizes for reads

- LFS optimizes for writes — because we have larger memory now

10

Outline

- Modern file systems

- Flash-based SSDs and eNVy: A non-volatile, main memory
storage system

- Don't stack your log on my log

1

Modern file system desigh —
Extent File Systems

Extent file systems — ext2, ext3, ext4

- Basically optimizations over FFS + Extent + Journaling (write-
ahead logs)

13

How do we allocate space?

- Contiguous: the file resides in continuous addresses
Non-contiguous: the file

can be anywhere

Extents: the file resides in «
3 txt several group of smaller
continuous address

.
.
-

atxt’

14

Using extents in iInodes

. Contiguous blocks only need a pair <start, size> to represent
- Improve random seek performance
.+ Save inode sizes

- Encourage the file system to use contiguous space allocation

15

How ExtFS use disk blocks

Disk blocks
0 File System Metadata (Superblock)
8 File Metadata Data " block group
16 Data 23 .
24 File System Metadata (Superblock) i
32 File Metadata Data)
40 DEF : . track

48 File System Metadata (Superblock) sector

56 File Metadata Data
Data

16 cylinder

Write-ahead log

- Basically, an idea borrowed from LFS to facilitate writes and
crash recovery
- Write to log first, apply the change after the log transaction

commits
- Update the real data block after the log writes are done

- Invalidate the log entry if the data is presented in the target location
- Replay the log when crash occurs

17

Flash-based SSDs
and
eNVy: A non-volatile, main memory storage system

Michael Wu and Willy Zwaenepoel
Rice University

18

Flash memory: eVNy and now

Technologies

Read granularity

Write/program granularity

Write once?

Program-erase cycles

Modern SSDs

Pages (4K or 8K)

Pages (4K or 8K)

Yes

In blocks (64 ~ 384 pages)

3,000 -10,000

24

NOR

Supports byte accesses

Supports byte accesses

Yes

64 KB

~ 100,000

Basic flash operations
Program Read Programmed page

Page#: 0 1 2 3 4 5 6/ 7 n-8n-7 n-6n-5n-4 n-3n-2 n-1

Block #0

Block #1

Block #2

Block #n-2

Erase -

Programming MLC (multi-level cell)

voltage level
lowest

highest

1st page

26

Not a good practice FlastO\O performance

105 _‘;;1,500 3000
Il £ o
E 70 = 1,000 £ 2000 -
o) o 2
3 2 S
(a 4 TE w
35 T 500 1000 -
L SLC
c i Q3w y 33 255858533 7338838898 s
O 2o b om = 3
[] @ o
Reads: Program/write: Erase:
less than 150us less than 2ms less than 3.6ms

Similar relative performance for reads, writes and erases

Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H. Siegel, and Jack K. Wolf.

Characterizing flash memory: anomalies, observations, and applications. In MICRO 2009.
27

Recap: How vour application reaches H.D.D.

User data - fread/fwrite — input.bin/output.bin

1/0O libraries m

File system
read/write — 0, 512, 4096, .. (block address)

Buffer Device independent I/O interface (e.g.ioctl)
read/write — block addresses

Device Driver Device Driver Device Driver

Device Controller 8 Device Controller Device Controller
Hardware

28

What happens on a write if we use the same abstractions as H.D.D.

Can we write to page #0 directly? No.

We have to copy page #1, page #2 in block #0 to
somewhere (e.g. RAM buffer) and then erase the block

Write this the new O and the old 15 back to block #0
again!
Read: 6*30us + Writing: 2ms*3 + Erasing 3ms ~ 9 ms

Not much faster than the H.D.D.— also hurts the lifetime

3SD
Controller

Erase .’

Block #1

Block #2

Block #3

Block #4

All problems in computer science can be solved by another level of
Indirection

—David Wheeler

31

How vour application reaches S.S.D.

User data - fread/fwrite — input.bin/output.bin

1/0O libraries m

File system
read/write — 0, 512, 4096, .. (block address)
Buffer Device independent I/O interface (e.g.ioctl)

Kernel ;4 read/write — block addresses

Device Driver Device Driver Device Driver

FTL FTL: Flash translation layer

W VIWVW WWIILW VilwIi A W W IWS WIS WIIWwE WYY VIWSY VLW VIITVIE

32

Hardware

How should we deal with writes?

- How many of following optimizations would help improve the write
performance of flash SSDs?

® Write asynchronously — vou need RAM buffers

@ OUt'Of'place Update — Avoid time consuming read-erase-write

@ Preallocate |OCat£) Qc?ufr(\)ere\cllvtgtrlng%t(ajiﬁtaafree-Iist and garbage collection when free list is low

N Aggregate writes to the same bank/chip

— Probably not. You can write in parallel

A. O

B. 1

C. 2 Sounds familiar ...

ID. 3| Log-structured file system!

E. 4

37

Flash Translation Layer (FTL)

- We are always lazy to modify our applications

- FTL maintains an abstraction of LBAs (logic block addresses) used
between hard disk drives and software applications

- FTL dynamically maps your logical block addresses to physical
addresses on the flash memory chip

- |t needs your SSD to have a processor in it now

38

What happens on aread with FTL

LBA Flash Block Flash Page
0x3241 0] 0]
0x3242 0] 63
0x3243 1 3
0x3244 2 4
0x3245 3 §)
0x3246 2 /

Block #0

Block #1

Block #2

Block #3

Block #4

©

What happens on a write with FTL

0x3242 0 63 valio page
0x3243 1 3

0x3244 2 4

0x3245 3 6 free Page
0x3246 2 /

Garbage Collectionin FTL

0x3242 0 63 valid page
0x3243 1 3

Ox3244 2 4 i

0x3245 3 6 free Page
0x3246 2

.
1

Flash Translation Layer (FTL)

- We are always lazy to modify our applications

- FTL maintains an abstraction of LBAs (logic block addresses) used
between hard disk drives and software applications

- FTL dynamically maps your logical block addresses to physical
addresses on the flash memory chip

- FTL performs copy-on-write when there is an update

- FTL reclaims invalid data regions and data blocks to allow future
updates

- FTL executes wear-leveling to maximize the life time
- |t needs your SSD to have a processor in it now

42

Why eNVy

- Flash memories have different characteristics than
conventional storage and memory technologies

- We want to minimize the modifications in our software

43

What eNVy proposed

- A file system inside flash that performs
- Transparent in-place update

- Page remapping

- Caching/Buffering

- Garbage collection

- Exactly like LFS

44

Utilization and performance

- Performance degrades as your store more data
- Modern SSDs provision storage space to address this issue

o 45000

W s
g O
o O
o O
o O

/A

N
o
o
o
o
M

—
o !
o O
o O
o O

Measured Throughput (TP
&
S

5000 S -
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flash Array Utilization

-<- 10,000 TPS + 20,000 TPS 4 30,000 TPS -©- 40,000 TPS

Figure 14: Throughput for Various Levels of Utilization

45

The impact of eNVy

. Your SSD structured exactly like this!

Stores the mapping table

. ASIC (e.g. NAND) 05 805

Controller + Registers

Perform FTL algorithms

46

Don't stack your log on my log

Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and
Swaminathan Sundararaman
SanDisk Corporation

52

Why should we care about this paper?

- Log is everywhere ORACLE o= @ c e, " Goagle Cloud
. . = - BigTable
- Application: database DATABASE

files, offsets

- File system
. Flash-based SSDs

- They can interfere with each
other!

File system Write-ahead Log

logic bIock

I/O interface

logic blockjaddresses

- An issue with software Flash translation layer (also log-structured)
engineering nowadays

physicalladdresses

53

FTL mapping table

0 L T ey 0 1 0
File system [F | J KCDEGHLMNO P 1 :
= 9 _ _
logic block|addresses = 3
= 4
/O interface = 5 1 5
- 6 - -
e e PP H - -
3 2 O
9 2 1
10 2 2
SSD AL : 1 ykjclplefefr| LimINjo] | | | [T 0
Block #1 Block #2 Block #3 12 2 4
13 2 5
14 2 6
15 2 /
16 3 O
17 3 1
18 3 2
invalid 19 3 3
valid gi)] ;
free 22

54

N
w

Now, SSD wants to reclaim a block........cc......

- FTL mapping table
: LBA: 0 - 0 3 4
File system [F§J F | J K CDEGHLMNDO P 3 5
: : : i 2 . _
logic block|addresses = 3
!
/O interface = 5 3 6
- 6 - -
... e I - -
- 3 2 0
// \\ 9 2 1
10 2 2
sso Ll [ulklefolejoln] iiminjofalelrl | 0 2
Block #1 Block #2 Block #3 12 2 4
13 2 5
14 2 6
15 2 /
16 3 O
17 3 1
18 3 2
invalid 19 3 3
valid 72—]
21
free 22

55

Garbage collection on the SSD done!............

FTL mapping table

EEE
3 5

A B F ' J K CDE GHLMN O

LBA: O

logic blockjaddresses

/O interface

logic blockjaddresses

SSD M 1 [J]k[c|pfefe|n| [Llm{n|o]a[e[F]|
Block #1 Block #2 Block #3

00O NO O b~ WN -
w
o

©

—_\ —
2 O

N
N

—
w

S N L G
00 d4 O O1

invalid

—_—
©
FWN 2 OO 0PN - O

R N
~
W W WWNNNNNNNDN I

N
@)

valid

N N
N —
[
[

free
56

N
w
|
[

What will happen if the FS wants to perform.GC?........

FTL mapping table

I o = 0 - -
NN S = Y A e P

LBA: O I ' . : 2 _
logic block|addresses = 3 -
- 4 -

/O interface = 5 -
X 6 _ _
.................................... logic blockaddresses | 1. vvveeeeeemmmnssnsssssssreerreenes 7 - -
9 2 1
10 2 2
SSD B[F i |J]k|c|ofefolH] |Lmn]o] | | |al 9 2
Block #1 Block #2 Block #3 12 2 4
13 2 5
We could have avoided writing the e
stale A, B, Fif they are coordinated! © 3 0
17 3 1
: . 18 3 2
invalid 19 3 3
valid 20 3 7
27 1 o
free 22 1 1

57

N
w

All problems in computer science can be solved by another level of
Indirection

—David Wheeler

...except for the problem of too many layers of indirection.

58

File systems for flash-based SSDs

- Still an open research question

- Software designer should be aware of the characteristics of underlying
hardware components

- Revising the layered design to expose more SSD information to the file

system or the other way arouna Spotify is writing massive amounts of

junk data to storage drives

Streaming app used by 40 million writes hundreds of gigabytes per day.

DAN GCODIN - 11/10/2016, 7:00 PM

