File systems over network

Hung-Wel Tseng

Recap: How your application reaches storage device

User data - fread/fwrite — input.bin/output.bin

1/0O libraries m

File system
read/write — 0, 512, 4096, .. (block address)

Device independent I/O interface (e.g.ioctl)
read/writata addresses

Device Driver Device Driver

addresses

Device Driver

Device Controller FTL
Hardware Device Controller

HDD #1 SSD

Network?

Recap: Extent file systems — ext2, ext3, ext4

- Basically optimizations over FFS + Extent + Journaling (write-ahead logs)
. Extent — consecutive disk blocks
- Afile in ext file systems — a list of extents

- Journal
- Write-ahead logs — performs writes as in LFS

- Apply the log to the target location when appropriate

- Block group
- Modern H.D.Ds do not have the concept of “cylinders”
- They label neighboring sectors with consecutive block addresses
- Does not work for SSDs given the internal log-structured management of block
addresses

Recap: flash SSDs, NVM-based SSDs

- Asymmetric read/write behavior/performance
- Wear-out faster than traditional magnetic disks

- Another layer of indirection is introduced

- Intensify log-on-log issues
- We need to revise the file system design

The introduction of virtual file system interface

User-space

open,. close, .read, write,

Virtual File System

open, close, read, write,

File system #1 (e.g. ext4) | File system #2 (e.g. f2fs)
Kernel read/write — 0] 512, 4096, .. (block address)

Device independent I/O interface (e.g.ioctl)

data]] read/wri€éta|block|addresses

Device Driver Device Driver

Device Controller FTL
Hardware Device Controller

HDD #1 SSD

Outline

» NFS
- Google file system

Network File System

The introduction of virtual file system interface

User-space

open,. close, .read, write,

Virtual File System

open, close, read, write, .. open,] close, read, write,

File system #1 (e.g. ext4) @File system #2 (e.q.f2fs) @ File system #3 —NFS
Kernel read/write — @] 512, 4096, .. (block address) gpen,|close, read, write,

Device independent I/O interface (e.g.ioctl)

data _ block afftffekses

Device Driver Device Driver

Network Stack

Network Device Driver

Device Controller FTL Device Controller

Hardware Device Controller
HDD #1 SSD

NIC

NFS Client/Server

User-
space
. open, . close, . 4 b 0L open, close,T
read, write, .. read, wrilte,
Virtual File System Virtual File System
open, close, open, close,T
ead, write ead, write, .l
NFS Disk File System
Kernel _ read/write —
block addresses
Network Stack Network Stack 1/0O interface
Network Device Driver Network Device Driver Device Driver
Hardware Device Controller Device Controller Device Controller

NIC NIC HDD #1

How does NFS handie a file?

- The client gives it's file system a tuple to describe data

- Volume: Identify which server contains the file — represented by
the mount point in UNIX

- Inode: Where in the server
- generation numer: version number of the file

- The local file system forwards the requests to the server

- The server response the client with file system attributes as
local disks

10

How open works with NFS

client server
open(”/mnt/nfsfhome/hungwei/foo.c”, O_RDONLY);

lookup for home

return the inode of home

read for home
return the data of home
lookup for hungwei
return the inode of hungwei
read for hungwei
return the data of hungwei
lookup for foo.c

return the inode of foo.c

read for foo.c

return the data of foo.c
15

Caching

- NFS operations are expensive
- Lots of network round-trips
- NFS server is a user-space daemon

- With caching on the clients
- Only the first reference needs network communication
- Later requests can be satisfied in local memory

17

ldempotent operations

- Given the same input, always give the same output regardless
how many times the operation is employed

- You only need to retry the same operation if it failed

23

Think about this

Client A

update foo.txt in cache

Cache

Network Stack

Client B

Application

File System

Cache

Network Stack

Server

File Server

File System

Network Stack

Client C
Application

File System

Cache

Network Stack

Client C won't be

aware of the change
in Client A

Solution

- Flush-on-close: flush all write buffer contents when close the
file

- Later open operations will get the latest content

- Force-getattr:

- Open afile requires getattr from server to check timestamps
- attribute cache to remedy the performance

25

The Google File System

Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung
Google

26

Why we care about GFS

- Conventional file systems do not fit the demand of data centers
- Workloads in data centers are different from conventional

computers

- Storage based on inexpensive disks that fail frequently

- Many large files in contrast to small files for personal data

- Primarily reading streams of data

- Sequential writes appending to the end of existing files

- Must support multiple concurrent operations

- Bandwidth is more critical than latency

32

Data-center workloads for GFS

- Google Search (Web Search for a Planet: The Google Cluster Architecture, IEEE
Micro, vol. 23, 2003)

- MapReduce (MapReduce: Simplified Data Processing on Large Clusters, OSDI
2004)

- Large-scale machine learning problems
- Extraction of user data for popular queries

- Extraction of properties of web pages for new experiments and products
- Large-scale graph computations

- BigTable (Bigtable: A Distributed Storage System for Structured Data, OSDI
2000)

- Google analytics
- Google earth
- Personalized search

33

What GFS proposes?

- Maintaining the same interface

- The same function calls
- The same hierarchical directory/files

- Files are decomposed into large chunks (e.g. 64MB) with
replicas

- Hierarchical namespace implemented with flat structure
- Master/chunkservers/clients

34

Latency Numbers Every Programmer Should Know

Operations Latency (ns) Latency (us) Latency (ms)

L1 cache reference 0.5ns ~ 1 CPU cycle

Branch mispredict 5 ns

L2 cache reference / ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3us

Send 1K bytes over 1 Gbps 10,000 ns 10 us

network

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from 250,000 ns 250 us

memory

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentlally from SSD* 1,000,000 ns 1,000 us Tms ~1GB/sec SSD, 4X memory

Send packet CA-Netherlands-CA 150 OOO 000 ns 150 000 us 150 ms

Flat file system structure

- Directories are illusions
- Namespace maintained like a hash table

Unlike many traditional file systems, GFS does not have
a per-directory data structure that lists all the files in that

directory. Nor does it support alases for the same file or
directory (i.e, hard or symbolic links in Unix terms). GFS

ogically represents 1ts namespace as a lookup table mapping
full pathnames to metadata. With prefix compression, this

41

How open works with NFS

client server
open(”/mnt/nfsrhome/hungwei/foo.c", O_RDONLY) ;

lookup fonfhomé/hungwei/foo.c

return the list,of locations of /home/hungwei/foo.c

read from one data l6¢éationofifhome/hungwei/foo.c

return datawof/homéfhungweiffoo.c

lookup for hungwei

You only need
these in GFS

return the inode of hungwei
read for hungwei

return the data of hungwei
lookup for foo.c

return the inode of foo.c

read for foo.c

return the data of foo.c
43

Application
GFES client

Distributed architecture

decoupled data and control paths — only

control path goes through master

(filc name, chunk index) GFS master
-

(chunk handle, byte range) _ Y

chunk data

i}

File namespace
(chunk handle, \
chunk locations)

» /loo/bar

chunk 2ef()

GFS chunkserver

Linux filc system

£

— —

Instructions to chunkserver

Chunkserver slale

Y

[egend:

ﬁ Dala messages

Control messages

GFS chunkserver

Linux file systcm

5

load balancing, replicas among chunkservers

49

Distributed architecture

- Single master

- maintains file system metadata including namespace, mapping, access control
and chunk locations.

. controls system wide activities including garbage collection and chunk migration.
- Chunkserver

- stores data chunks

- chunks are replicated to improve reliability (3 replicas)
- Client

- APls to interact with applications

- interacts with masters for control operations

- Interacts with chunkservers for accessing data
- Can run on chunkservers

50

Reading data in GFS

Application

filename, size
filename, chunk index

GFS Client

chunk handle, chunk
locations

data from file

51

Writing data in GFS

Application

filename, data response
filename, chunk index

GFS Client

chunk handle, primary
aQd secondary replicas

data Chunk server

primary defines the
Chunkserver RIeEgeRlseE=E 10

chunk servers

response write command 3
primary

Chunk server

52

Real world, industry experience

- Linux problems (section /)
- Linux driver issues — disks do not report their capabilities honestly

- The cost of fsync — proportion to file size rather than updated
chunk size

- Single reader-writer lock for mmap

- Due to the open-source nature of Linux, they can fix it and
contribute to the rest of the community

- GFSis not open-sourced

system behavior. When appropriate, we improve the kernel
and share the changes with the open source community.

53

Single master design

. GFS claims this will not be a bottleneck
- In-memory data structure for fast access

- Only involved in metadata operations — decoupled data/
control paths

- Client cache
- What if the master server fails?

54

The evolution of GFS

- Mentioned in “Spanner: Google's Globally-Distributed
Database” OSDI 2012 — “tablet’s state is stored in set of B-
tree-like files and a write-ahead log, all on a distributed file
system called Colossus (the successor to the Google File

SyStem) " qu EU E Case Study

GFS: Evolution on Fast-forward

° S I n g I e m a Ste r A discussion between Kirk McKusick and Sean Quinlan about the origin and evolution

of the Google File System.
proportionate increas2 in the amount of metadata the master had to maintain. Also, operztions such

as scanning the metadata to look for recoveries all scaled linearly with the volume of data. So the
amopunt of wark required of the master grew substantially. The amount of storage needed to retain all
_that information grew as well,
In additinn, this pmved to be a hottleneck for the clients, even thangh the clients issue few

metacata operations themselves—for example, & client talks to the master whenever it does an

open. When you have thousands ot clients all talking to the master at the same time, given that the MCKUSICK /ind historically vou've had onc cell per data center, right!

master is capable of doing only a few thousand operations a second, the average client isn’t able to QUINLAN That was initially the goal, but it dido’t work vut like that to o large extent—partly

command all that many operations per second. Also bear in mind that there are applications such bc_““‘sc of the limitations of the single-master design and partly because isolation ?fo"Td to be
. . dificult. As a consequence, people generally ended up with more than one cell per cata center.

as MapReduce, where you might suddenly have a thousand tasks, each wanting to open a number ’ '

_ . We also ended up do'ng what we call a “multi-cell” apprnach, which hasically made it possible to
N \ N ¥ A r . o < U) X R
of files. Obviously, it would take a long time to handlz all those requests, and the master would be put multiple GES masters on top of a pool of chunkse:v Fhat way, the chunkservers could be
nunder a fair amonnt af durace

cunfigured to have, say, eight GFS inasters assigred o then, and st would give you at least one

pool of underlying storage—with multiple master heacs on it, if you will. Then the application was
55 responsidle for partitioning data across those Cifferent cells.

The evolution of GFS

. Support for smaller chunk size — gmaill

QUINLAN The distributed master certainly allows you to grow file counts, in line with the number
of machines you're willing to throw at it. That certainly helps.

One of the appeals of the distributed multimaster model is that if you scale everything up by two
orders of magnitude, then getting down to a 1-MB average file size is going to be a lot different from
having a 64-MB average [ile size. Il you end up going below 1 MB, then you're also going (o run
into other issues that vou really need to be careful about. For example, if you end up having to read
10,000 10-KB files, you're going to be doing a lot more seeking than if you're just reading 100 1-MB
files.

My gut feeling is that if you design for an average 1-MB file size, then that should provide for a
miuch larger class of things than does a design that assumes a 64-MB average file size. Ideally, you
would like to imagine a system that goes all the way down to much smaller file sizes, but 1 MB seems
a reasonable compromise in our environment.

MCKUSICK What have you been doing to design GES to work with 1-MB files?

QUINLAN We haven’t been doning anything with the existing GFS design. Our distributed master
system that will provide for 1-MB files is essentially a whole new design. That way, we can aim for
somelhing on Lthe order ol 100 million [iles per masler. You can also have hundreds ol maslers.

56

Lots of other interesting topics

+ shapshots

- hamespace locking

- replica placement

- Create, re-replication, re-balancing

- garbage collection

- stable replica detection

- data integrity

- diagnostic tools: logs are your friends

57

GFS: Relaxed Consistency model

- Distributed, simple, efficient
- Filename/metadata updates/creates are atomic
- Consistency modes

_ Write — write to a specific offset Append — erft“eeto theendofa

Serial success Defined
Defined with interspersed with
inconsistent
Concurrent success Consistent but undefined

- Consistent: all replicas have the same value
- Defined: replica reflects the mutation, consistent

- Applications need to deal with inconsistent cases themselves

58

Why we care about GFS

- Conventional file systems do not fit the demand of data centers

- Workloads in data centers are different from conventional
computers

- Storage based on inexpensive disks that fail frequentlg/,
— MapReducé is fault tolerant

- Many large files in contrast to small files for personal data

. . . — MapReduce aims at processing large amount of data once
» Primari Iy readmg streams of data — MapReduce reads chunks of large files

- Sequential writes appending to the end of existing files

— Output file keep growing as workers keep writing

- Must support multiple concurrent operations

—MapReduce has thousands of workers simultaneously

- Bandwidth is more critical than latenc

—MapReduce only wants to finish tasks within “reasonable” amount of time

59

Announcement

- Reading quiz due next Thursday
- Project due 3/3

60

