
The Fundamentals of Operating
Systems
Hung-Wei Tseng

• Operating systems: virtualizing computers
• Process: the most important abstraction in modern OSs
• Restricted operations: kernel and user modes

!7

Outline

Operating System

The goal of an OS

!8

Operating systems: virtualizing
computers

!9

• The operating system presents an illusion of a virtual machine
to each running program and maintains architectural states of a
von Neumann machine

• Processor
• Memory
• I/O

• Each virtualized environment accesses architectural facilities
through some sort of application programming interface (API)

• Dynamically map those virtualized resources into physical
resources

!10

The idea: virtualization

Operating System

The idea of an OS: virtualization

!11

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

API API API API API API API API

• A 4K movie clip using H.265 coding takes 70GB in storage
• If you want to transfer a total of 2 Peta-Byte video clips (roughly 29959 movies)

from UCSD
• 100 miles from UCR
• Assume that you have a 100Gbps ethernet

• Throughput: 100 Gbits per second
• 2 Peta-byte (16 Peta-bits) over 167772 seconds = 1.94 Days
• Latency: first 70GB (first movie) in 6 seconds

!17

Latency v.s. Throughput

 Toyota Prius 10Gb Ethernet

Throughput/
bandwidth 450GB/sec 100 Gb/s or

12.5GB/sec

latency 3.5 hours 2 Peta-byte over 167772 seconds = 1.94 Days

response time You see nothing in the first 3.5 hours You can start watching the first movie as soon as you get a
frame!

Or ...

!18

100 miles from UCSD
75 MPH on highway!
50 MPG
Max load: 374 kg = 2,770 hard
drives (2TB per drive) = 5.6 PB

Process: the most important
abstraction in modern operating

systems

!19

Operating System

The idea of an OS: virtualization

!20

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

API API API API API API API API

Process

• The most important abstraction in modern operating
systems.

• A process abstracts the underlying computer.
• A process is a running program — a dynamic entity of a

program.
• Program is a static file/combination of instructions
• Process = program + states
• The states evolves over time

• A process may be dynamically switched out/back during the
execution

!21

Processes

• The operating system presents an illusion of a virtual machine to
each running program
• Each virtual machine contains architectural states of a von Neumann

machine
• Processor
• Memory
• I/O

• Each virtualized environment accesses architectural facilities
through some sort of application programming interface (API)

• Dynamically map those virtualized resources into physical
resources

!22

Virtualization
— process

— system calls
— policies, mechanisms

• We use the getcpu system call to identify the processor and
node on which the calling process (can be a thread as well) is
currently running and writes them into the integers pointed to
by the cpu and node arguments.

!23

Demo: Virtualization

• Some processes may use the same processor
• Each process has the same address for variable a, but different

values.
• You may see the content of a compiled program using objdump

!24

Demo: Virtualization

What happens when creating a process

!25

Virtual memory

heap

stack

Dynamic allocated data: malloc()

Local variables,
arguments

code

static data

program

code

static data

Linux contains a .bss section
for uninitialized global variables

The illusion provided by processes

!26

Virtual memory

heap

stack

code

static data

Virtual memory

heap

stack

code

static data

Virtual memory

heap

stack

code

static data

Virtual memory

heap

stack

code

static data

Virtually, every process seems to
have a processor/memory space, but

only a few of them are physically
executing/using the installed DRAM.

• Which of the following information does the OS need to track
for each process?

A. Stack pointer
B. Program counter
C. Process state
D. Registers
E. All of the above

!31

What the OS must track for a process?

• You also need to keep other process information like an
unique process id, process states, I/O status, and etc…

• OS has a PCB for each process
• Sometimes called Task Controlling Block, Task Struct, or

Switchframe
• The data structure in the operating system kernel containing

the information needed to manage a particular process.
• The PCB is the manifestation of a process in an operating

system

!32

Process control block

struct task_struct {
 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
 void *stack;
 atomic_t usage;
 unsigned int flags; /* per process flags, defined below */
 unsigned int ptrace;
 int on_rq;
 int prio, static_prio, normal_prio; 
 const struct sched_class *sched_class; 
 struct sched_entity se;
 struct sched_rt_entity rt; 
 unsigned int policy; 
 int nr_cpus_allowed; 
 cpumask_t cpus_allowed; 
 pid_t pid; 
 struct task_struct __rcu *real_parent; 
 struct task_struct __rcu *parent;  
 struct list_head children; 
 struct list_head sibling; 
 …… 
 struct list_head tasks; 
 …… 
 struct mm_struct *mm, *active_mm; 
 …… 
/* CPU-specific state of this task */ 
 struct thread_struct thread; 
} !33

Example: struct task_struct in Linux

• You may find this struct in /usr/src/linux-headers-x.x.x-xx/include/linux/sched.h

Process ID

Virtual memory pointers

Process state

Low-level architectural states

struct mm_struct {
 struct vm_area_struct * mmap; /* list of VMAs */
 ...
 unsigned long start_code, end_code, start_data, end_data;
 unsigned long start_brk, brk, start_stack;
 ...
};

!34

Memory pointers in struct mm_struct

start of heap

end of heap current stack
pointer

struct thread_struct {
 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
 unsigned long sp0;
 unsigned long sp;
#ifdef CONFIG_X86_32
 unsigned long sysenter_cs;
#else
 unsigned short es;
 unsigned short ds;
 unsigned short fsindex;
 unsigned short gsindex;
#endif
#ifdef CONFIG_X86_32
 unsigned long ip;
#endif
#ifdef CONFIG_X86_64
 unsigned long fs;
#endif
 unsigned long gs; 
 struct perf_event *ptrace_bps[HBP_NUM];
 unsigned long debugreg6;
 unsigned long ptrace_dr7;

 unsigned long cr2;
 unsigned long trap_nr;
 unsigned long error_code;
#ifdef CONFIG_VM86
 struct vm86 *vm86;
#endif
 unsigned long *io_bitmap_ptr;
 unsigned long iopl;
 unsigned io_bitmap_max;
 struct fpu fpu;

};

!35

Processor states in struct thread_struct

Some x86 Register values

Program counter

Restricted operations: kernel and
user modes

!37

• Most operations can directly execute on the processor without OS’s
intervention

• The OS only takes care of protected resources, change running processes
or anything that the user program cannot handle properly

• Divide operations into two modes
• User mode

• Restricted operations
• User processes

• Kernel mode
• Can perform privileged operations
• The operating system kernel

• Requires architectural/hardware supports
!38

Restricted operations

• Through the API: System calls
• Implemented in “trap” instructions

• Raise an exception in the processor
• The processor saves the exception

PC and jumps to the corresponding
exception handler in the OS kernel

!39

How applications can use privileged operations?

add 0x1bad(%eax),%dh 
add %al,(%eax) 
decb 0x52(%edi) 
in $0x8d,%al 
mov %eax,0x101c 
lea -0x2bb84(%ebx),%eax 
mov %eax,-0x2bb8a(%ebx) 
lgdtl -0x2bb8c(%ebx) 
lea -0x2bf3d(%ebx),%eax 
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx) 
and %cl,(%rbx) 
xor $0x19,%al 
add %edx,(%rbx) 
add %al,(%rax) 
syscall 
add %al,(%rbx)
……  
……
……
……
……
……
……
……

trap

return-from-trap

• The processor provides
normal instructions and privileged
instructions

• Normal instructions: ADD, SUB, MUL, and
etc …

• Privileged instructions: HLT, CLTS, LIDT,
LMSW, SIDT, ARPL, and etc…

• The processor provides different modes
• User processes can use normal

instructions
• Privileged instruction can only be used if

the processor is in proper mode
!40

Architectural support: privileged instructions

Kernel

Ring 3
Ring 2
Ring 1
Ring 0

Device Drivers

Device Drivers

Applications
Least privileged

Most privileged

How does the processor knows where to jump to?

!46

power on/boot

install trap tables using
privileged instructions

system call handlers

system call

kernel mode

user process

user mode

user process

system call

Latency Numbers Every Programmer Should Know

!47

Operations Latency (ns) Latency (us) Latency (ms)

L1 cache reference 0.5 ns ~ 1 CPU cycle

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory

Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD

Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

• Measure kernel switch overhead using lmbench http://
www.bitmover.com/lmbench/

!52

Demo: Kernel Switch Overhead

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

