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• Operating systems: virtualizing computers 
• Process: the most important abstraction in modern OSs 
• Restricted operations: kernel and user modes
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Outline



Operating System

The goal of an OS
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Operating systems: virtualizing 
computers
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• The operating system presents an illusion of a virtual machine 
to each running program and maintains architectural states of a 
von Neumann machine 

• Processor 
• Memory 
• I/O 

• Each virtualized environment accesses architectural facilities 
through some sort of application programming interface  (API) 

• Dynamically map those virtualized resources into physical 
resources
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The idea: virtualization



Operating System

The idea of an OS: virtualization
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• A 4K movie clip using H.265 coding takes 70GB in storage 
• If you want to transfer a total of 2 Peta-Byte video clips (roughly 29959 movies) 

from UCSD 
• 100 miles from UCR 
• Assume that you have a 100Gbps ethernet 

• Throughput: 100 Gbits per second 
• 2 Peta-byte (16 Peta-bits) over 167772 seconds = 1.94 Days 
• Latency: first 70GB (first movie) in 6 seconds
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Latency v.s. Throughput



 Toyota Prius 10Gb Ethernet

Throughput/
bandwidth 450GB/sec 100 Gb/s or 

12.5GB/sec

latency 3.5 hours 2 Peta-byte over 167772 seconds = 1.94 Days

response time You see nothing in the first 3.5 hours You can start watching the first movie as soon as you get a 
frame!

Or ...

!18

100 miles from UCSD  
75 MPH on highway! 
50 MPG  
Max load: 374 kg = 2,770 hard 
drives (2TB per drive) = 5.6 PB



Process: the most important 
abstraction in modern operating 

systems
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Operating System

The idea of an OS: virtualization
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Process



• The most important abstraction in modern operating 
systems. 

• A process abstracts the underlying computer. 
• A process is a running program — a dynamic entity of a 

program. 
• Program is a static file/combination of instructions 
• Process = program + states 
• The states evolves over time 

• A process may be dynamically switched out/back during the 
execution
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Processes



• The operating system presents an illusion of a virtual machine to 
each running program 
• Each virtual machine contains architectural states of a von Neumann 

machine 
• Processor 
• Memory 
• I/O 

• Each virtualized environment accesses architectural facilities 
through some sort of application programming interface  (API) 

• Dynamically map those virtualized resources into physical 
resources
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Virtualization
— process

— system calls
— policies, mechanisms



• We use the getcpu system call to identify the processor and 
node on which the calling process (can be a thread as well) is 
currently running and writes them into the integers pointed to 
by the cpu and node arguments.
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Demo: Virtualization



• Some processes may use the same processor 
• Each process has the same address for variable a, but different 

values. 
• You may see the content of a compiled program using objdump
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Demo: Virtualization



What happens when creating a process
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Virtual memory

heap

stack

Dynamic allocated data: malloc()

Local variables, 
arguments

code

static data

program

code

static data

Linux contains a .bss section 
for uninitialized global variables



The illusion provided by processes
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Virtually, every process seems to 
have a processor/memory space, but 

only a few of them are physically 
executing/using the installed DRAM.



• Which of the following information does the OS need to track 
for each process? 

A. Stack pointer 
B. Program counter 
C. Process state 
D. Registers 
E. All of the above
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What the OS must track for a process?

• You also need to keep other process information like an 
unique process id, process states, I/O status, and etc…



• OS has a PCB for each process 
• Sometimes called Task Controlling Block, Task Struct, or 

Switchframe 
• The data structure in the operating system kernel containing 

the information needed to manage a particular process. 
• The PCB is the manifestation of a process in an operating 

system
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Process control block



struct task_struct { 
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */ 
        void *stack; 
        atomic_t usage; 
        unsigned int flags;     /* per process flags, defined below */ 
        unsigned int ptrace; 
        int on_rq; 
        int prio, static_prio, normal_prio; 
        const struct sched_class *sched_class; 
        struct sched_entity se; 
        struct sched_rt_entity rt; 
        unsigned int policy; 
        int nr_cpus_allowed; 
        cpumask_t cpus_allowed; 
        pid_t pid; 
        struct task_struct __rcu *real_parent; 
        struct task_struct __rcu *parent;  
        struct list_head children; 
        struct list_head sibling; 
        …… 
        struct list_head tasks; 
        …… 
        struct mm_struct *mm, *active_mm; 
        …… 
/* CPU-specific state of this task */ 
        struct thread_struct thread; 
} !33

Example: struct task_struct in Linux

• You may find this struct in /usr/src/linux-headers-x.x.x-xx/include/linux/sched.h

Process ID

Virtual memory pointers

Process state

Low-level architectural states



struct mm_struct { 
        struct vm_area_struct * mmap;           /* list of VMAs */ 
        ... 
        unsigned long start_code, end_code, start_data, end_data; 
        unsigned long start_brk, brk, start_stack; 
        ... 
};
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Memory pointers in struct mm_struct

start of heap

end of heap current stack 
pointer



struct thread_struct { 
        struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 
        unsigned long           sp0; 
        unsigned long           sp; 
#ifdef CONFIG_X86_32 
        unsigned long           sysenter_cs; 
#else 
        unsigned short          es; 
        unsigned short          ds; 
        unsigned short          fsindex; 
        unsigned short          gsindex; 
#endif 
#ifdef CONFIG_X86_32 
        unsigned long           ip; 
#endif 
#ifdef CONFIG_X86_64 
        unsigned long           fs; 
#endif 
        unsigned long           gs; 
        struct perf_event       *ptrace_bps[HBP_NUM]; 
        unsigned long           debugreg6; 
        unsigned long           ptrace_dr7; 

            unsigned long           cr2; 
            unsigned long           trap_nr; 
            unsigned long           error_code; 
#ifdef CONFIG_VM86 
            struct vm86             *vm86; 
#endif 
            unsigned long           *io_bitmap_ptr; 
            unsigned long           iopl; 
            unsigned                io_bitmap_max; 
            struct fpu              fpu; 

};
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Processor states in struct thread_struct

Some x86 Register values

Program counter



Restricted operations: kernel and 
user modes
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• Most operations can directly execute on the processor without OS’s 
intervention 

• The OS only takes care of protected resources,  change running processes 
or anything that the user program cannot handle properly 

• Divide operations into two modes 
• User mode 

• Restricted operations 
• User processes 

• Kernel mode 
• Can perform privileged operations 
• The operating system kernel 

• Requires architectural/hardware supports
!38

Restricted operations



• Through the API: System calls 
• Implemented in “trap” instructions 

• Raise an exception in the processor 
• The processor saves the exception 

PC and jumps to the corresponding 
exception handler in the OS kernel
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How applications can use privileged operations?

add    0x1bad(%eax),%dh 
add    %al,(%eax) 
decb   0x52(%edi) 
in     $0x8d,%al 
mov    %eax,0x101c 
lea    -0x2bb84(%ebx),%eax 
mov    %eax,-0x2bb8a(%ebx) 
lgdtl  -0x2bb8c(%ebx) 
lea    -0x2bf3d(%ebx),%eax 
push   $0x10 
…… 
…… 
…… 
…… 
…… 
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb    %ecx,0x13(%rcx) 
and    %cl,(%rbx) 
xor    $0x19,%al 
add    %edx,(%rbx) 
add    %al,(%rax) 
syscall 
add    %al,(%rbx) 
……  
…… 
…… 
…… 
…… 
…… 
…… 
……

trap

return-from-trap



• The processor provides 
normal instructions and privileged 
instructions 

• Normal instructions: ADD, SUB, MUL, and 
etc … 

• Privileged instructions: HLT, CLTS, LIDT, 
LMSW, SIDT, ARPL, and etc…  

• The processor provides different modes 
• User processes can use normal 

instructions 
• Privileged instruction can only be used if 

the processor is in proper mode
!40

Architectural support: privileged instructions

Kernel

Ring 3
Ring 2
Ring 1
Ring 0

Device Drivers

Device Drivers

Applications
Least privileged

Most privileged



How does the processor knows where to jump to?
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power on/boot

install trap tables using 
privileged instructions

system call handlers

system call

kernel mode

user process

user mode

user process

system call



Latency Numbers Every Programmer Should Know
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Operations Latency (ns) Latency (us) Latency (ms)

L1 cache reference 0.5 ns ~ 1 CPU cycle

Branch mispredict 5   ns

L2 cache reference 7   ns 14x L1 cache

Mutex lock/unlock 25   ns

Main memory reference 100   ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 3,000   ns 3 us

Send 1K bytes over 1 Gbps network 10,000   ns 10 us

Read 4K randomly from SSD* 150,000   ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000   ns 250 us

Round trip within same datacenter 500,000   ns 500 us

Read 1 MB sequentially from SSD* 1,000,000   ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory

Disk seek 10,000,000   ns 10,000 us 10 ms 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000   ns 20,000 us 20 ms 80x memory, 20X SSD

Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms



• Measure kernel switch overhead using lmbench http://
www.bitmover.com/lmbench/
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Demo: Kernel Switch Overhead

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

