
Virtual memory — policies
Hung-Wei Tseng

Storage DevicesPhysical memory

Recap: Virtual Memory

!2

Virtual
memory

CPU

address mapping

0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Process A
0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Process B

Physical memory

0x000000000000

0xFFFFFFFFFFFF

!3

Virtual memory

Code
Static Data

Data

Heap

Stack

CPU(1) an instruction accesses virtual
address 0xDEADBEEF

page
table

(2) page fault! — exception

(3) running out of space on DRAM

(4) kick some page out and store it in the
secondary storage

(5) map the requesting page to the
freed space

Recap: Demand paging + Swapping

• Goal: Identify page to remove that will avoid future page faults (i.e. utilize
locality as much as possible)

• Implementation Goal: Minimize the amount of software and hardware
overhead
• Example:

• Memory (i.e. RAM) access time: 100ns
• Disk access time: 10ms
• Pf: probability of a page fault
• Effective Access Time = 10-7 + Pf * 10-3

• When Pf = 0.001:
Effective Access Time = 10,100ns

• Takeaway: Disk access tolerable only when it is extremely rare
!4

Page replacement policy

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

!5

What VAX/VMS proposed to achieve these goals?

also helps reduce disk loads

• We’re still using their proposed techniques almost everyday!
• It’s basically the baseline UNIX VM design

!6

The impact of VAX/VMS

• Page replacement policies
• Page replacement policy once used in UNIX: Converting a
Swap-Based System to do Paging in an Architecture Lacking
Page-Reference Bits

• Another popular page replacement policy: WSClcok - A Simple
and Effective Algorithm for Virtual Memory Management

• Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures

!7

Outline

Swapping policies

!8

• We need to determine:
• Which page(s) to remove
• When to remove the page(s)

• Goals
• Identify page to remove that will avoid future page faults (i.e. utilize
locality as much as possible)

• Minimize the amount of software and hardware overhead

!9

Page replacement policy

• FIFO: Replace the oldest page
• LRU: Replace page that was the least recently used (longest
since last use)

!10

Page replacement algorithms

FIFO v.s. LRU

!21

FIFO LRU

Implementation Easy — circular queue
May require hardware support or

linked list or additional
timestamps in page tables

Execution overhead Low High — you need to manipulate
the list or update every counter

Performance Usually not as good as LRU Usually better than FIFO

Converting a Swap-Based System to do Paging
in an Architecture Lacking Page-Reference Bits

Özalp Babaoglu and William Joy*
Cornell University and University of California, Berkeley

!22

• The original UNIX is a “swap-based” system
• Whenever you have a context switch, swap the whole process out
from the memory

• Really inefficient if you have frequent context switches or if you
have many applications in-fly

• Efficient page replacement policies and other virtual
optimization techniques cannot be implemented easily without
appropriate hardware support

!28

The Why of Babaoglu new UNIX VM

Clock algorithm

!33

A
B

C

D

E

F
G

H

I

J

K

L

R

R

R

attach a “reference bit”
to each PTE, set to true

when the page is
referenced

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

Where to put ?

Clock algorithm in motion

!34

A
B

C

D

E

F
G

H

I

J

K

L

R

R

R

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

!35

A
B

C

D

E

F
G

H

I

J

K

L

R

R

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

!36

A
B

C

D

E

F
G

H

I

J

K

L

R

R

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

!37

A
B

C

D

E

F
G

H

I

J

K

L

R

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

M
C will be selected to
swap out, but Rs of A

and B are cleared

• So far, we need to trigger clock policy and swap in/out on each page
fault

• Why don’t we prepare more free pages each time so that we can
feed page faults with pages from the list?

• Free list
• When we need a page, take one from the free list
• Have a daemon running the background, managing this free list — you
can do this when system is not loaded

• If size of free list gets too small, trigger the clock algorithm to add pages
into the free list (by swapping out to disk)

• Free list can be used as a disk cache
!45

Free list

WSClcok - A Simple and Effective
Algorithm for Virtual Memory Management

Richard Carr and John Hennessy

!48

• Local: select one page from the same process’ physical pages
for storing the demanding page when swapping is necessary
• VAX/VMS
• Original UNIX

• Global: select any page that was previously belong to any
process when swapping is necessary
• UNIX after Babaoglu
• Mach

!49

What policies are used?

• The system overcommitted memory to tasks
• The system spends most time in paging, instead of making
meaningful progress

!54

Thrashing!

Previously, we have seen how scheduling
policies can help improving “saturation”.
Now, let’s see how page replacement
policies can address this “thrashing”

• How many of the following would happen in Babaoglu’s UNIX VM if we
keep increase the amount of concurrent processes in the system?
က: The CPU utilization will keep increasing and stay at 100%
က< The system may spend more time in context switching than real computation
က> The system may spend more time in swap in/out than real computation
က@ Some process may not respond due to the high page overhead
A. 0
B. 1
C. 2
D. 3
E. 4

!55

Degree of parallelism and performance

• Take advantages from both local and global page replacement
policies
• Global — simplicity, adaptive to process demands
• Local — prevent thrashing

!56

Why WS-Clock

• Working set: the set of pages used in a certain number of
recent accesses

• Assume these recently referenced pages are likely to be
referenced again soon (temporal locality)

• Evict pages that are not referenced in a certain period of time
• Swap out may occur even if there is no page faults

• A process is allowed to be executed only if the working set size
fits in the physical memory

!57

Working Set Algorithm

• Use working set policy to decide how many pages can a
process use
• Return a page to the free list if there exists a page in the process’
working set that hasn’t been access for a certain period of time

• If the free list is lower than a threshold
• Trigger the clock policy to select pages from any process

• On a page fault
• Take a page from the free list

!58

WSClock

• Wherever you need to reclaim a page —
1. Examine the PTE pointed to by clock hand.
2. If reference bit is set

1. Clear reference bit;
2. Advance clock hand;
3. Goto Done.

3. If reference bit is not set
1. If the timestamp of the PTE is older than a threshold

1. Write the page to disk if it’s dirty and use this page
2. Goto Done

2. Otherwise
1. Advance clock hand
2. Goto 1.

4. Done
5. If no victim page is chosen, randomly pick one

!59

WSClock

• One of the most important page replacement policies in
practice

!60

The impact of WSClock

• Reading quiz due next Tuesday
• Project due 3/3

• We highly recommend you to fresh install a Ubuntu 16.04.6
Desktop version within a VirtualBox
• Virtual box is free
• If you crash the kernel, just terminate the instance and
restart virtual box

• Use office hours to discuss projects

!73

Announcement

