
Process/Thread/Task scheduling
Hung-Wei Tseng

• Mechanisms of changing processes
• Basic scheduling policies
• An experimental time-sharing system — The Multi-Level
Scheduling Algorithm

• Scheduler Activations

!18

Outline

The mechanisms of changing
processes

!19

• Cooperative Multitasking (non-preemptive multitasking)
• Preemptive Multitasking

!20

The mechanisms of changing the running processes

• The OS controls the scheduling — can change the running
process even though the process does not give up the
resource

• But how?

!26

Preemptive Multitasking

• System calls / trap instructions — raised by applications
• Display images, play sounds

• Exceptions — raised by processor itself
• Divided by zero, unknown memory addresses

• Interrupts — raised by hardware
• Keystroke, network packets

!32

Three ways to invoke OS handlers

add 0x1bad(%eax),%dh 
add %al,(%eax) 
decb 0x52(%edi) 
in $0x8d,%al 
mov %eax,0x101c 
lea -0x2bb84(%ebx),%eax 
mov %eax,-0x2bb8a(%ebx) 
lgdtl -0x2bb8c(%ebx) 
lea -0x2bf3d(%ebx),%eax 
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx) 
and %cl,(%rbx) 
xor $0x19,%al 
add %edx,(%rbx) 
add %al,(%rax) 
syscall 
add %al,(%rbx)
……  
……
……
div %ecx
……
……
……
……

trap

return-from-trap

exception

return from
exception handler

interrupt
return from

interrupt handler

• Setup a timer event before the process start running
• After a certain period of time, the timer generates interrupt
to force the running process transfer the control to OS
kernel

• The OS kernel code decides if the system wants to
continue the current process
• If not — context switch
• If yes, return to the process

!33

How preemptive multitasking works

Basic scheduling policies

!34

• Virtualizing the processor
• Multiple processes need to share a single processor
• Create an illusion that the processor is serving my task by rapidly
switching the running process

• Determine which process gets the processor for how long

!35

CPU Scheduling

• Non-preemptive/cooperative: the task runs until it finished
• FIFO/FCFS: First In First Out / First Come First Serve
• SJF: Shortest Job First

• Preemptive: the OS periodically checks the status of processes
and can potentially change the running process
• STCF: Shortest Time-to-Completion First
• RR: Round robin

!36

What you learned before

An experimental time-sharing system
Fernando J. Corbató, Marjorie Merwin-Daggett and Robert C. Daley
Massachusetts Institute of Technology, Cambridge, Massachusetts

!48

• Why MIT’s experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the following
က: Optimize for the average response time of tasks
က< Optimize for the average turn-around time of tasks
က> Optimize for the performance of long running tasks
က@ Guarantee the fairness among tasks
A. 0
B. 1
C. 2
D. 3
E. 4

!49

Why Multi-level scheduling algorithm
https://www.pollev.com/hungweitseng close in

!50

• Why MIT’s experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the following
က: Optimize for the average response time of tasks
က< Optimize for the average turn-around time of tasks
က> Optimize for the performance of long running tasks
က@ Guarantee the fairness among tasks
A. 0
B. 1
C. 2
D. 3
E. 4

!51

Why Multi-level scheduling algorithm
https://www.pollev.com/hungweitseng close in

!52

• Why MIT’s experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the following
က: Optimize for the average response time of tasks
က< Optimize for the average turn-around time of tasks
က> Optimize for the performance of long running tasks
က@ Guarantee the fairness among tasks
A. 0
B. 1
C. 2
D. 3
E. 4

!53

Why Multi-level scheduling algorithm

• System saturation — the demand of computing is larger than
the physical resource available

• Service level degrades
• Lots of program swap ins-and-outs (known as context switches in
our current terminology)

• User interface response time is bad
— you have to wait until your turn

• Long running tasks cannot make
good progress — frequent
swap in-and-out

!54

What happens to round robin when the system is saturated?Why Multi-level scheduling algorithm?

Context Switch Overhead

!55

You think round robin should act like this —

0 1 2 3 4 5 6 7 8 9 10
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1

But the fact is —
P1 P2 P3Overhead

P1 -> P2
Overhead
P2 -> P3

Overhead
P3 -> P1

0 1 1 2 2 3
P1 P2Overhead

P1 -> P2
Overhead
P2 -> P3

3 4 4 5

•Your processor utilization can be very low if you switch frequently
•No process can make sufficient amount of progress within a given period of time
•It also takes a while to reach your turn

• Place new process in the one of the queue
• Depending on the program size

• Schedule processes in one of N queues
• Start in initially assigned queue n
• Run for 2n quanta (where n is current depth)
• If not complete, move to a higher queue (e.g. n +1)

• Level m is run only when levels 0 to m-1 are empty
!56

The Multilevel Scheduling Algorithm

wp is the program memory size — smaller ones are
assigned to lower numbered queues

• Smaller tasks are given higher priority in the beginning
Why?

• Larger process will execute longer before switch

• Smaller process, newer process are given higher priority

• Not optimized for anything — it’s never possible to have an
optimized scheduling algorithm without prior knowledge
regarding all running processes

• It’s practical — many scheduling algorithms used in modern
OSes still follow the same idea

!57

The Multilevel Scheduling Algorithm

Lottery Scheduling: Flexible Proportional-
Share Resource Management

Carl A. Waldspurger and William E. Weihl

!58

• Quality of Service — we need to give important applications
higher priorities

• Flexible, responsive control — easy to adjust the priority of
processes

• However —
• Existing policies are difficult to understand
• Precise control requires high overheads

!59

Why lottery?

• Each process hold a certain number of lottery tickets
• Randomize to generate a lottery
• If a process wants to have higher priority

• Obtain more tickets!

!60

What lottery proposed?

• Ticket transfers
• Ticket inflation
• Ticket currencies
• Compensation tickets

!66

Ticket economics

• The overhead is not too bad
• 1000 instructions ~ less than 500 ns on a 2 GHz processor

• Fairness
• Figure 5: average ratio in proportion to the ticket allocation

• Flexibility
• Allows Monte-Carlo
algorithm to dynamically
inflate its tickets

• Ticket transfer
• Client-server setup

!67

How good is lottery?

• Will it be good for
• Event-driven application
• Real-time application
• GUI-based system

• Is randomization a good idea?
• The authors later developed a deterministic stride-scheduling

!68

Will you use lottery for your system?

• Data center scheduling
• You buy “times”
• Lottery scheduling of your virtual machine

!69

The impact of “lottery”

Scheduler Activations: Effective Kernel Support
for the User-level Management of Parallelism

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska and Henry M. Levy
University of Washington

!70

User-level v.s kernel threads

!75

user-level threads

Kernel

privilege boundary

user-
level

kernel
mode

Process

runtime
library

thread list

process list

The process is a
virtual processor

kernel threads

Process

Kernel

process list
thread list

thread
thread

• The OS kernel is unaware of user-level threads
• Switching threads does not require kernel mode operations
• A thread can block other threads within the same process

• The kernel can control threads directly
• Thread switch requires kernel/user mode switch and system calls
• Thread works individually

• User-level threads
• Efficient, flexible, safer, customizable

• Kernel threads
• Slower, more powerful
• Better matches the multiprocessor hardware

• Problems
• OS is aware of kernel threads
• OS is unaware of user-level threads as they are hidden behind each
process

!77

Why — the “dilemma” of thread implementations

• The OS kernel provides each user-level thread system with its
own virtual multiprocessor

• Communication mechanism between kernel and user-level

!78

What does “Scheduler Activations” propose?

• The kernel allocates processors to address space
• An address space is shared by all threads within the same process
• The kernel controls the number of processors to an address space

• Each address space has complete control over the processor-
thread allocation

• The kernel notifies the address space when the allocated
number of processors changes

• The address notifies the kernel when it needs more or fewer
processors

• Transparent to users/programmers
!79

The virtual multiprocessor abstraction

• Linux treat all schedule identities as “tasks” — context of
executions

• COEs can share parts of their contexts with each
• Processes share nothing
• Threads share everything but the CPU states

• http://www.evanjones.ca/software/threading-linus-msg.html

!80

Linux’s thread implementation

http://www.evanjones.ca/software/threading-linus-msg.html

• Create a scheduler activation when the system create a process on a processor
• Create a scheduler activation when the kernel needs to perform an “upcall”
user-level
• Add a processor
• Processor has been preempted
• Scheduler activation has blocked
• Scheduler activation has unblocked

• Downcalls — hints for kernel to perform resource management
• Add more processors
• This processor is idle

• Key difference from a kernel thread
• Kernel never restarts user thread after it is blocked

!81

How scheduler activation works?

• Once been implemented in NetBSD, FreeBSD, Linux
• A user-level thread gets preempted whenever there is
scheduling-related event
• Overhead
• You may preempt a performance critical thread

• Blocking system call

!82

Will you use Scheduler activation?

