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• How to read research papers 
• The Structure of the 'THE'-Multiprogramming System 
• HYDRA: The Kernel of a Multiprocessor Operating System
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Outline



How to read research papers
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• For each paper, you should identify the followings: 
• Why? 

• Why should we care about this paper? 
• What’s the problem that this paper is trying to address? 

• What? 
• What has been proposed? 
• Contributions of the paper 

• How? 
• How does the paper accomplish the proposed idea? 
• How does the result perform?
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How to read research papers
The most important thing when you’re reading/writing a paper

The second most important thing when  you’re reading/writing a paper

They are important only if you want to implement the proposed idea



• What are those related papers that you read before? 
• Compare with those related papers and re-exam their whys, 

whats and hows 
• What will you propose if you’re solving the same “why”?
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Recap & Brainstorm



• As a researcher 
• You want to identify important problems 
• You want to know what has been accomplished 

• As an engineer 
• You want to know if there is a solution of the design problems of 

your systems, applications 
• You want to know if you can apply the proposed mechanism 
• You want to know how to do it
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Why is reading papers important



The Structure of the 'THE'-
Multiprogramming System 

Edsger W. Dijkstra 
Technological University, Eindhoven, The Netherlands
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• 11 May 1930 – 6 August 2002 
• Dijkstra's algorithm (single-source shortest path problem) 
• Synchronization primitive, Mutual exclusion, Critical sections — 

appendix of this paper 
• Dining philosophers problem 
• Program verification 
• Multithreaded programming 
• Concurrent programming 
• Dijkstra–Scholten algorithm 
• ……
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Edsger W. Dijkstra



Where is why?

!18

Usually, you should be able to identify the why in the 
very beginning part of a paper



• CPU utilization — how busy we keep the CPU to be 
• Latency — the time between start execution and completion 
• Throughput — the amount of “tasks/processes/threads” that we can finish 

within a given amount of time 
• Turnaround time — the time between submission/arrival and completion 
• Response time — the time between submission and the first time when 

the job is scheduled 
• Wait time — the time between the job is ready (not including the overhead 

of queuing, command processing) and the first time when the job is 
scheduled 

• Fairness — every process should get a fair chance to make progress
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Scheduling Metrics



• Why should people care about this paper in 1968? 
• Turn-around time of short programs 
• Economic use of peripherals 
• Automatic control of backing storage 
• Economic use of the machine 
• Designing a system is difficult in 1968 

• Difficult to verify soundness 
• Difficult to prove correctness 
• Difficult to deal with the complexities
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THE



The computer in the era of “THE”
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Memory

Processor

Storage

Core memory

Processor

Drum

now the era of “THE”

cycle time: 2.5 us
(clock rate: 400KHz)

32K

512KWords
response time: 40ms

1000 chars/sec
1+ TB

response time: 20us - 10ms 
100MB/sec-2.4GB/sec

cycle time: 0.5 ns 
(clock rate: 2 GHz)

8GB+



Where is what?

!24

processes

strict layered design
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What has been proposed?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized 
peripherals

virtualized 
processor

virtualized console

Each layer has a different privilege mode — your 
processor needs to provide 5 levels of execution modes
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Potential problems?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized 
peripherals

virtualized 
processor

virtualized console

What if the program of processor 
allocation/scheduling needs more memory?

Careful layout of levels: 
The peripherals always need to go 

through message interpreter. 
Why?



Where is how?
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• Built the layered system to facilitate debugging 
• Implemented priority scheduling to improve turn-around time  
• Mutual synchronization for sharing resource among processes 

• Processor allocation for processes 
• Access of the physical console among virtual consoles 
• Access peripherals among user programs 
• Keep this in mind, we will discuss mutual exclusion in detail later
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How they achieved these goals?



Where else do you see hierarchical designs?
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Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical



• Process abstraction 
• Hierarchical system design 
• Virtual memory 
• Mutual Synchronization
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Impacts of THE



HYDRA: The Kernel of a 
Multiprocessor Operating System

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
Carnegie-Mellon University
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Let’s talk about HYDRA’s whats 
first
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Where is the “what”?
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• Supporting multiple processors 
• Separation of mechanism and policy 
• Integration of the design with implementation methodology 
• Rejection of strict hierarchical layering 
• Protection 
• Reliability
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What HYDRA proposed

• Rejection of strict hierarchical layering



• Why should we care about HYDRA? 
• Hardware efficiency/utilization 
• Facilitate construction of an environment for flexible & secure 

operating systems
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HYDRA



“Kernel”
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THE v.s. Hydra
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layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

THE Hydra

Kernel

privilege boundary

privilege boundary

privilege boundary

privilege boundary

privilege boundary



• Supporting multiple processors 
• Separation of mechanism and policy 
• Integration of the design with implementation methodology 
• Rejection of strict hierarchical layering 
• Protection 
• Reliability
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What HYDRA proposed
• Separation of mechanism and policy
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• You can only enjoy the ground services 
(objects) that your booking class provides 

• You can only access the facilities 
(objects) on the airplane according to the 
booking class
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Capability v.s. boarding pass



Capability in a plane
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Economy Class 
Passenger

Business Class 
Passenger

Business Class Seat

Business Class Cabin

Economy Class Seat

Economy Class Cabin

Galley

IFE

Flight Attendant

Sit

Request a drink

Exit the plane

Board the plane

Watch

Access

Right amplification



• An access control list associated with an object 
• Thinking about the “protect”, “public”, “private” in Java classes 

• Contains the following: 
• A reference to an object 
• A list of access rights 

• Whenever an operation is attempted: 
• The requester supplies a capability of referencing the requesting object 
• The OS kernel examines the access rights 

• Type-independant rights 
• Type-dependent rights
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What is capability?



• Object oriented programming 
• A unified abstraction of system resources (objects) 
• Protection mechanism — exists in many modern OSes with 

different implementations 
• Flat system design to provide flexibility
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Impacts of HYDRA



• Hierarchical 
• Ease of debugging/verification/testing 
• Lack of flexibility — you can only interact with neighbor layers 
• Overhead in each layer — not so great for performance 

• Flat 
• Flexibility 
• Lower overhead — great for performance 
• Debugging is not easy
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Hierarchical design v.s. flat structure


