
Design philosophy of operating
systems (I)

Hung-Wei Tseng

• How to read research papers
• The Structure of the 'THE'-Multiprogramming System
• HYDRA: The Kernel of a Multiprocessor Operating System

!10

Outline

How to read research papers

!11

• For each paper, you should identify the followings:
• Why?

• Why should we care about this paper?
• What’s the problem that this paper is trying to address?

• What?
• What has been proposed?
• Contributions of the paper

• How?
• How does the paper accomplish the proposed idea?
• How does the result perform?

!12

How to read research papers
The most important thing when you’re reading/writing a paper

The second most important thing when you’re reading/writing a paper

They are important only if you want to implement the proposed idea

• What are those related papers that you read before?
• Compare with those related papers and re-exam their whys,

whats and hows
• What will you propose if you’re solving the same “why”?

!13

Recap & Brainstorm

• As a researcher
• You want to identify important problems
• You want to know what has been accomplished

• As an engineer
• You want to know if there is a solution of the design problems of

your systems, applications
• You want to know if you can apply the proposed mechanism
• You want to know how to do it

!14

Why is reading papers important

The Structure of the 'THE'-
Multiprogramming System

Edsger W. Dijkstra
Technological University, Eindhoven, The Netherlands

!15

• 11 May 1930 – 6 August 2002
• Dijkstra's algorithm (single-source shortest path problem)
• Synchronization primitive, Mutual exclusion, Critical sections —

appendix of this paper
• Dining philosophers problem
• Program verification
• Multithreaded programming
• Concurrent programming
• Dijkstra–Scholten algorithm
• ……

!16

Edsger W. Dijkstra

Where is why?

!18

Usually, you should be able to identify the why in the
very beginning part of a paper

• CPU utilization — how busy we keep the CPU to be
• Latency — the time between start execution and completion
• Throughput — the amount of “tasks/processes/threads” that we can finish

within a given amount of time
• Turnaround time — the time between submission/arrival and completion
• Response time — the time between submission and the first time when

the job is scheduled
• Wait time — the time between the job is ready (not including the overhead

of queuing, command processing) and the first time when the job is
scheduled

• Fairness — every process should get a fair chance to make progress
!20

Scheduling Metrics

• Why should people care about this paper in 1968?
• Turn-around time of short programs
• Economic use of peripherals
• Automatic control of backing storage
• Economic use of the machine
• Designing a system is difficult in 1968

• Difficult to verify soundness
• Difficult to prove correctness
• Difficult to deal with the complexities

!22

THE

The computer in the era of “THE”

!23

Memory

Processor

Storage

Core memory

Processor

Drum

now the era of “THE”

cycle time: 2.5 us
(clock rate: 400KHz)

32K

512KWords
response time: 40ms

1000 chars/sec
1+ TB

response time: 20us - 10ms
100MB/sec-2.4GB/sec

cycle time: 0.5 ns
(clock rate: 2 GHz)

8GB+

Where is what?

!24

processes

strict layered design

!25

What has been proposed?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized
peripherals

virtualized
processor

virtualized console

Each layer has a different privilege mode — your
processor needs to provide 5 levels of execution modes

!27

Potential problems?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized
peripherals

virtualized
processor

virtualized console

What if the program of processor
allocation/scheduling needs more memory?

Careful layout of levels:
The peripherals always need to go

through message interpreter.
Why?

Where is how?

!28

!29

• Built the layered system to facilitate debugging
• Implemented priority scheduling to improve turn-around time
• Mutual synchronization for sharing resource among processes

• Processor allocation for processes
• Access of the physical console among virtual consoles
• Access peripherals among user programs
• Keep this in mind, we will discuss mutual exclusion in detail later

!30

How they achieved these goals?

Where else do you see hierarchical designs?

!31

Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

• Process abstraction
• Hierarchical system design
• Virtual memory
• Mutual Synchronization

!32

Impacts of THE

HYDRA: The Kernel of a
Multiprocessor Operating System

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
Carnegie-Mellon University

!33

Let’s talk about HYDRA’s whats
first

!34

Where is the “what”?

!35

• Supporting multiple processors
• Separation of mechanism and policy
• Integration of the design with implementation methodology
• Rejection of strict hierarchical layering
• Protection
• Reliability

!36

What HYDRA proposed

• Rejection of strict hierarchical layering

• Why should we care about HYDRA?
• Hardware efficiency/utilization
• Facilitate construction of an environment for flexible & secure

operating systems

!38

HYDRA

“Kernel”

!40

THE v.s. Hydra

!41

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

THE Hydra

Kernel

privilege boundary

privilege boundary

privilege boundary

privilege boundary

privilege boundary

• Supporting multiple processors
• Separation of mechanism and policy
• Integration of the design with implementation methodology
• Rejection of strict hierarchical layering
• Protection
• Reliability

!42

What HYDRA proposed
• Separation of mechanism and policy

!44

• You can only enjoy the ground services
(objects) that your booking class provides

• You can only access the facilities
(objects) on the airplane according to the
booking class

!45

Capability v.s. boarding pass

Capability in a plane

!46

Economy Class
Passenger

Business Class
Passenger

Business Class Seat

Business Class Cabin

Economy Class Seat

Economy Class Cabin

Galley

IFE

Flight Attendant

Sit

Request a drink

Exit the plane

Board the plane

Watch

Access

Right amplification

• An access control list associated with an object
• Thinking about the “protect”, “public”, “private” in Java classes

• Contains the following:
• A reference to an object
• A list of access rights

• Whenever an operation is attempted:
• The requester supplies a capability of referencing the requesting object
• The OS kernel examines the access rights

• Type-independant rights
• Type-dependent rights

!47

What is capability?

• Object oriented programming
• A unified abstraction of system resources (objects)
• Protection mechanism — exists in many modern OSes with

different implementations
• Flat system design to provide flexibility

!48

Impacts of HYDRA

• Hierarchical
• Ease of debugging/verification/testing
• Lack of flexibility — you can only interact with neighbor layers
• Overhead in each layer — not so great for performance

• Flat
• Flexibility
• Lower overhead — great for performance
• Debugging is not easy

!49

Hierarchical design v.s. flat structure

