
Design philosophy of operating
systems (II)

Hung-Wei Tseng

What the OS kernel should do?

!5

• The UNIX time-sharing operating system
• Mach: A New Kernel Foundation For UNIX Development

!6

Outline

The UNIX Time-Sharing System
Dennis M. Ritchie and Ken Thompson

Bell Laboratories

!7

!8

• A powerful operating system on “inexpensive” hardware (still
costs USD $40,000)

• An operating system promotes simplicity, elegance, and ease
of use

• They made it

!14

Why should we care about “UNIX”

• Providing a file system
• File as the unifying abstraction in UNIX
• Remind what we mentioned before

!15

What UNIX proposed

Right amplification

!26

• A user program provides an interactive UI
• Interprets user command into OS functions
• Basic semantics:

command argument_1 argument_2 …
• Advanced semantics

• Redirection
• >
• <

• Pipe
• I

• Multitasking
• &

!33

Shell

• Clean abstraction
• File system — will discuss in detail after midterm
• Portable OS

• Written in high-level C programming language
• The unshakable position of C programming language

• We are still using it!

!34

The impact of UNIX

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta , Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian ,
Michael Young

Computer Science Department, Carnegie Mellon University

!35

• The hardware is changing
• Multiprocessors
• Networked computing

• The software
• The demand of extending an OS easily
• Repetitive but confusing mechanisms for similar stuffs

!41

Why “Mach”?

Make UNIX great again!

Tasks/processes

!52

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #1

PC

a = 0x01234567

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #2

PC

a = 0xDEADBEEF

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #3

PC

a = 0x87654321

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #4

PC

a = 0x95273310

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Intel Sandy Bridge

!53

Core Core Core Core

Core Core Core Core

Share L3 $

Threads

!54

Virtual memoryheap

code

static data

code

stack

Task #1

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memoryheap

code

static data

code

stack

Task #2

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Each thread has its own PC, states of execution, but shares
memory address spaces, I/Os without threads within the

same process

Case study: Chrome v.s. Firefox

!55

each of these is a process

each of these is a thread

Memory usage?
Stability?
Security?
Latency?

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

!56

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

• On a 3.2GHz intel Core i5-6500 Processor
• Process fork+exit: 53.5437 microseconds
• More than 16K cycles

!57

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• The hardware is changing
• Multiprocessors
• Networked computing

• The software
• The demand of extending an OS easily
• Repetitive but confusing mechanisms for similar stuffs

!74

Why “Mach”?

• UNIX provides a variety of mechanisms
• Pipes
• Pty’s
• Signals
• Sockets

• No protection
• No consistency
• Location dependent

!75

Interprocess communication

• Port is an abstraction of:
• Message queues
• Capability

• Mach uses ports to implement
• Objects
• Services

• What do ports promote?
• Location independence

!76

Ports/Messages

Ports/Messages

!77

Program A
message = “something”;
send(port Z, message);

Port Z send

Port B recv
Object C read, write
Object D read

Capability of A

Port Z

Program B

recv(port Z, message);

0
1
2
3
4

Message queues

MQ0 read, write

Capability of Z

Port Z recv
Port B send

Object C read, write
Object D read

Capability of B

• An access control list associated with an object
• Contains the following:

• A reference to an object
• A list of access rights

• Whenever an operation is attempted:
• The requester supplies a capability of referencing the requesting

object — like presenting the boarding pass
• The OS kernel examines the access rights

• Type-independant rights
• Type-dependent rights

!78

What is capability?

!79

• You can only enjoy the ground services
(objects) that your booking class provides

• You can only access the facilities
(objects) on the airplane according to the
booking class

!80

Capability v.s. boarding pass

Capability in a plane

!81

Economy Class
Passenger

Business Class
Passenger

Business Class Seat

Business Class Cabin

Economy Class Seat

Economy Class Cabin

Galley

IFE

Flight Attendant

Sit

Request a drink

Exit the plane

Board the plane

Watch

Access

Right amplification

• Extensible operating system kernel design
• Threads
• Strongly influenced modern operating systems

• Windows NT/2000/XP/7/8/10
• MacOS

!82

The impact of Mach

!83

