
Virtual memory design in
operating systems

Hung-Wei Tseng

Virtual Memory

!2Physical memory

Virtual
memory

CPU

address mapping

0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Process A
0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Process B

!3

Recap: If we expose memory directly to the processor

Memory

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins
tru

cti
on

s 00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

?

What if both programs
need to use memory?

Simply segmentation or paging helps on
this

!4

Recap: If we expose memory directly to the processor (I)

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins
tru

cti
on

s 00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Memory

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008 
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Da
ta

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008  
00c2e800
00000008
00c2f000
00000008

00c2e800
00000008
00c2f000
00000008

00c2f800  
00000008
00c30000  
00000008

? What if my program
needs more memory?

But how about this?

!5

Recap: If we expose memory directly to the processor (II)

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins
tru

cti
on

s 00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

Memory

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Memory

?

What if my program
runs on a machine
with a different
memory size?

and this?

Physical memory

0x000000000000

0xFFFFFFFFFFFF

!6

Virtual memory

Code
Static Data

Data

Heap

Stack

CPU(1) an instruction accesses virtual
address 0xDEADBEEF

page
table

(2) page fault! — exception

(3) running out of space on DRAM

(4) kick some page out and store it in the
secondary storage

(5) map the requesting page to the
freed space

Demand paging + Swapping

• Divide physical & virtual memory spaces into fix-sized units — pages
• Allocate a physical memory page whenever the virtual memory page
containing your data is absent

• In case if we are running out of physical memory —
• Reserve space on disks

• Disks are slow: the access time for HDDs is around 10 ms, the access time for SSDs
is around 30us - 1 ms

• Disks are orders of magnitude larger than main memory
• When you need to make rooms in the physical main memory, allocate a page
in the swap space and put the content of the evicted page there

• When you need to reference a page in the swap space, make a room in the
physical main memory and swap the disk space with the evicted page

!7

The mechanism: demand paging + swapping

Latency Numbers Every Programmer Should Know

!8

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps
network

10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from
memory

250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

• Goal: Identify page to remove that will avoid future page faults (i.e. utilize
locality as much as possible)

• Implementation Goal: Minimize the amount of software and hardware
overhead
• Example:

• Memory (i.e. RAM) access time: 100ns
• Disk access time: 10ms
• Pf: probability of a page fault
• Effective Access Time = 10-7 + Pf * 10-3

• When Pf = 0.001:
Effective Access Time = 10,100ns

• Takeaway: Disk access tolerable only when it is extremely rare
!15

Page replacement policy

• VAX/VMS Design
• Mach VM

!16

Outline

Virtual Memory Management in the VAX/
VMS Operating System

H. M. Levy and P. H. Lipman
Digital Equipment Corporation

!17

• The system needs to execute various types of applications
efficiently

• The system runs on different types of hardware
• As a result, the memory management system has to be
capable of adjusting the changing demands characteristic of
time sharing while allowing predictable performance required
by real-time and batch processes

!18

The “Why” behind VAX/VMS VM

Virtual Memory Space for Process #1

What happens on a fork?

!29

virtual
page #1

virtual
page #2

virtual
page #3

Virtual Memory Space for Process #2

fork()

virtual
page #1

virtual
page #2

virtual
page #3

• Copy the page content to different locations before the new process can start

copy

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

copy copy

Virtual Memory Space for Process #1

Copy-on-write

!30

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

virtual
page #1

virtual
page #2

virtual
page #3

Virtual Memory Space for Process #2

fork()

virtual
page #1

virtual
page #2

virtual
page #3

write

• The modified bit of a writable page will be set when it’s loaded from the executable file
• The process eventually will have its own copy of that page

Demand zero

!31

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

Virtual Memory Space for Process #2virtual
page #1

virtual
page #2

virtual
page #3

write

• The linker does not embed the pages with all 0s in the compiled program
• When page fault occurs, allocate a physical page fills with zeros
• Set the modified bit so that the page can be written back

page
with “0”s

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

!32

What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

Physical Memory

Virtual Memory Space for Process A

• Each process has a maximum size of memory
• When the process exceeds the maximum size, replaces from its own set of memory
pages

• Control the paging behavior within each process

!33

Local page replacement policy

Page for
Process

A

Page for
Process

A

Page for
Process

A

Page for
Process

B
Page for
Process

B

Page for
Process

C

Virtual
page #1

Virtual
page #2

Virtual
page #3

Page for
Process

C

Virtual
page #4

Virtual page #4 can only
go one of these if 3 is the
maximum memory size of

the process

swap
out

What’s the policy? FIFO! Low overhead!

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

!34

What VAX/VMS proposed to achieve these goals?

• Read or write a cluster of pages that are both consecutive in
virtual memory and the disk

• Combining consecutive writes into single writes

!35

Page clustering

Latency Numbers Every Programmer Should Know

!36

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps
network

10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from
memory

250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

for a 512B sector

Physical Memory

• Evicted pages will be put into one of the lists in DRAM
• Free list: clean pages
• Modified list: dirty pages — needs to copy data to the disk

• Page fault to any of the page in the lists will bring the page back
• Reduces the demand of accessing disks

!37

Page caching to cover the performance loss

RS of Process B FreelistModified
List

PagePage PagePage

RS of Process A

Page Page Page PagePage Page

2 pages 2 pages4 pages 4 pages

page fault!

Page Page

page fault!

PagePage

page fault!

PagePage

Page caching

!38

Process memory layout

!40

P0 (Program) Region

P1 (Control) Region

System Region

Reserved

Code
Heap

Stack
Other data

System: software vectors, hardware data structures,
executive data, executive procedures, record

management, dynamic storage

The VAX/VMS allows the OS code to
access user-space memory

• Each segment has its own page table
• Entries between stack and heap boundaries do not need to be
allocated — reduce the size of page table

!41

Why segmented layout?

P0 (Program) Region

P1 (Control) Region
Only need just enough

entries

• VAX is popular in universities and UNIX is later ported to VAX
— a popular OS research platform

• Affect the UNIX virtual memory design
• Affect the Windows virtual memory design

!43

The impact of VAX/VMS

Other physical
memory

64-bit Linux process memory layout

!44

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

Physical memory
reserved for kernel

Kernel logical address Kernel logical address

B B

A A

Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures
Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David Black,

William Bolosky, and Jonathan Chew
Carnegie-Mellon University, NeXT, University of Rochester

!45

• Task: process in UNIX
• Thread: the basic scheduling identity
• Port: message queues protected by the kernel
• Message: data objects for inter-thread communication
• Memory object: data mapped into the address space of a task/
process

!46

Mach abstractions

• Machine-independent virtual memory design by maintaining all
VM state in a machine-independent module

• Treat hardware page tables/TLBs as caches of machine-
independent information

!47

What Mach VM proposed?

Overview of Mach’s VM

!53

Memory object #1 Memory object #2 Memory object #3memory
objects

Virtual memory space of Task #1
virtual
address
space Virtual memory space of Task #2

vm_start,
vm_end, 

memory object #,
protection,  
inheritance,  
*prev, *next

Page Page Page Page Page Page Page

Pager

address
map

accessing 0xDEADBEEF

offset in an memory
object

Resident
page
table

hash bucket

• Pmap is just a cache of virtual to physical address mapping
• It accelerates address translation by caching the address
mapping, but not required

• As a result, it can be a small as several KBs

!54

Where is pmap?

• MacOS X’s virtual memory resembles the Mach VM design
• Why?

!55

The impact of Mach VM

• Reading quiz due next Tuesday
• Project due 3/3
• Check your grades on iLearn
• Use office hours to discuss projects

!61

Announcement

