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Recap: If we expose memory directly to the processor
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What if both programs 
need to use memory?

Simply segmentation or paging helps on 
this
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Recap: If we expose memory directly to the processor (I)
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Recap: If we expose memory directly to the processor (II)
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Virtual memory
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(5) map the requesting page to the 
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Demand paging + Swapping



• Divide physical & virtual memory spaces into fix-sized units — pages 
• Allocate a physical memory page whenever the virtual memory page 
containing your data is absent 

• In case if we are running out of physical memory — 
• Reserve space on disks 

• Disks are slow: the access time for HDDs is around 10 ms, the access time for SSDs 
is around 30us - 1 ms 

• Disks are orders of magnitude larger than main memory 
• When you need to make rooms in the physical main memory, allocate a page 
in the swap space and put the content of the evicted page there 

• When you need to reference a page in the swap space, make a room in the 
physical main memory and swap the disk space with the evicted page
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The mechanism: demand paging + swapping



Latency Numbers Every Programmer Should Know
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Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5   ns
L2 cache reference 7   ns 14x L1 cache
Mutex lock/unlock 25   ns
Main memory reference 100   ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000   ns 3 us
Send 1K bytes over 1 Gbps 
network

10,000   ns 10 us

Read 4K randomly from SSD* 150,000   ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from 
memory

250,000   ns 250 us

Round trip within same datacenter 500,000   ns 500 us
Read 1 MB sequentially from SSD* 1,000,000   ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000   ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000   ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms



• Goal: Identify page to remove that will avoid future page faults (i.e. utilize 
locality as much as possible) 

• Implementation Goal: Minimize the amount of software and hardware 
overhead 
• Example: 

• Memory (i.e. RAM) access time: 100ns 
• Disk access time: 10ms 
• Pf: probability of a page fault 
• Effective Access Time = 10-7 + Pf * 10-3 

• When Pf = 0.001:
Effective Access Time = 10,100ns 

• Takeaway: Disk access tolerable only when it is extremely rare
!15

Page replacement policy



• VAX/VMS Design 
• Mach VM
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Outline



Virtual Memory Management in the VAX/
VMS Operating System 

H. M. Levy and P. H. Lipman
Digital Equipment Corporation
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• The system needs to execute various types of applications 
efficiently 

• The system runs on different types of hardware 
• As a result, the memory management system has to be 
capable of adjusting the changing demands characteristic of 
time sharing while allowing predictable performance required 
by real-time and batch processes
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The “Why” behind VAX/VMS VM



Virtual Memory Space for Process #1

What happens on a fork?
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Virtual Memory Space for Process #1

Copy-on-write
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• The modified bit of a writable page will be set when it’s loaded from the executable file 
• The process eventually will have its own copy of that page



Demand zero
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• The linker does not embed the pages with all 0s in the compiled program 
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• Set the modified bit so that the page can be written back
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• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is 
incorrect?
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What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching



Physical Memory

Virtual Memory Space for Process A

• Each process has a maximum size of memory 
• When the process exceeds the maximum size, replaces from its own set of memory 
pages 

• Control the paging behavior within each process
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Local page replacement policy
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Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is 
incorrect?
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What VAX/VMS proposed to achieve these goals?



• Read or write a cluster of pages that are both consecutive in 
virtual memory and the disk 

• Combining consecutive writes into single writes
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Page clustering



Latency Numbers Every Programmer Should Know
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Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5   ns
L2 cache reference 7   ns 14x L1 cache
Mutex lock/unlock 25   ns
Main memory reference 100   ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000   ns 3 us
Send 1K bytes over 1 Gbps 
network

10,000   ns 10 us

Read 4K randomly from SSD* 150,000   ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from 
memory

250,000   ns 250 us

Round trip within same datacenter 500,000   ns 500 us
Read 1 MB sequentially from SSD* 1,000,000   ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000   ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000   ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms

for a 512B sector



Physical Memory

• Evicted pages will be put into one of the lists in DRAM 
• Free list: clean pages 
• Modified list: dirty pages — needs to copy data to the disk 

• Page fault to any of the page in the lists will bring the page back 
• Reduces the demand of accessing disks
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Page caching to cover the performance loss
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Page caching
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Process memory layout
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• Each segment has its own page table 
• Entries between stack and heap boundaries do not need to be 
allocated — reduce the size of page table
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Why segmented layout?
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• VAX is popular in universities and UNIX is later ported to VAX 
— a popular OS research platform 

• Affect the UNIX virtual memory design 
• Affect the Windows virtual memory design
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The impact of VAX/VMS



Other physical 
memory

64-bit Linux process memory layout
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Machine-Independent Virtual Memory Management for 
Paged Uniprocessor and Multiprocessor Architectures 
Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David Black, 

William Bolosky, and Jonathan Chew
Carnegie-Mellon University, NeXT, University of Rochester
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• Task: process in UNIX 
• Thread: the basic scheduling identity  
• Port: message queues protected by the kernel 
• Message: data objects for inter-thread communication 
• Memory object: data mapped into the address space of a task/
process
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Mach abstractions



• Machine-independent virtual memory design by maintaining all 
VM state in a machine-independent module 

• Treat hardware page tables/TLBs as caches of machine-
independent information
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What Mach VM proposed?



Overview of Mach’s VM
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• Pmap is just a cache of virtual to physical address mapping 
• It accelerates address translation by caching the address 
mapping, but not required 

• As a result, it can be a small as several KBs
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Where is pmap?



• MacOS X’s virtual memory resembles the Mach VM design 
• Why?

!55

The impact of Mach VM



• Reading quiz due next Tuesday 
• Project due 3/3 
• Check your grades on iLearn 
• Use office hours to discuss projects

!61

Announcement


