Cloud storage (ll) — Google
(cont.), Microsoft, Facebook

Hung-Wel Tseng

Outline

- Google File System (cont.)

- Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency

- f4: Facebook's Warm BLOB Storage System

Distributed architecture

decoupled data and control paths —

only control path goes through master

Application O e
. (file name, chunk index) GFS master
GFS client | File namespace /"

(chunk handle,
chunk locations)

» /loo/bar

chunk 2ef()

Instructions to chunkserver

Chunkserver slale

y

[Legend:

mmm) Dala messages

—_—

(chunk handle, byte range) 1 Y
GFS chunkserver

GFS chunkserver

chunk data

Linux file system

= 9 —

Linux file system

56 -

load balancing, replicas among chunkservers

12

Control messages

Distributed architecture

- Single master

- maintains file system metadata including namespace, mapping, access control
and chunk locations.

- controls system wide activities including garbage collection and chunk migration.
- Chunkserver

- stores data chunks

- chunks are replicated to improve reliability (3 replicas)
- Client

- APIs to interact with applications

- interacts with masters for control operations

- interacts with chunkservers for accessing data
- Can run on chunkservers

13

Reading data in GFS

Application

filename, size
filename, chunk index

GFS Client

chunk handle, chunk
locations

handle, byte Chunk server

data from file

14

Writing data in GFS

Application

filename, data response
filename, chunk index

GFS Client

chunk handle, primary
and secondary replicas

Chunk server

primary defines the
&3 V111 ¢=1=1a/ =18 order of updates i

chunk servers

response write command "
primary

Chunk server

15

GFS: Relaxed Consistency model

- Distributed, simple, efficient
- Filename/metadata updates/creates are atomic
- Consistency modes

Write — write to a specific offset L Bt wrlft“eeto HTD e EE

Serial success Defined
Defined with interspersed with

inconsistent
Concurrent success Consistent but undefined

inconsistent

- Consistent: all replicas have the same value
- Defined: replica reflects the mutation, consistent
- Applications need to deal with inconsistent cases themselves

16

Real world, industry experience

- Linux problems (section /)
- Linux driver issues — disks do not report their capabilities honestly

- The cost of fsync — proportion to file size rather than updated
chunk size

- Single reader-writer lock for mmap

- Due to the open-source nature of Linux, they can fix it and
contribute to the rest of the community

« GFSis not open-sourced

system behavior. When appropriate, we improve the kernel
and share the changes with the open source community.

17

Single master design

-+ GFS claims this will not be a bottleneck
- In-memory data structure for fast access

- Only involved in metadata operations — decoupled data/
control paths

- Client cache
- What if the master server fails?

18

The evolution of GFS

- Mentioned in "Spanner: Google's Globally-Distributed
Database” OSDI 2012 — "tablet’s state is stored in set of B-
tree-like files and a write-ahead log, all on a distributed file
system called Colossus (the successor to the Google File

" Case Stud
SyStem) [I U E |.| E GFS: Evolu%ion on Fast-forward
° S I n g I e m a Ste r A discussion between Kirk McKusick and Sean Quinlan about the origin and evolution

of the Google File System.

proportionate increasz2 in tne amount of metzdata the master had to maintain. Also, operztions such

as scanning the metadata to look for recoveries all scaled linearly with the volume of data. So the
amount of wark required of the mester grew substzntially. The amount of storage needed to retain all
i iell,

In additinn, this prmved to be a bottleneck for the clients, even thangh the clients issie few

metacata operations themselves—for example, & client talks to the master whenever it does an
open. When you have thousands ot clients all tzlking to the master at the same time, given that the MCKUSICK /ind historically you've had one cell per data center, right?

master is capable of doing only a few thousand operations a second, the average client isn’t able to QUINLAN That was initially the goa!, but it didn't work vut like tiat to a large extent—partly
command all that many operations per second. Also bear in mind that there are applications such because of the limitations of the single-master design and partly because isolation proved to be

. . dificult. As a consequence, people generally ended up with more than one cell per cata center.
as MapReduce, where you might suddenly have a thousand tasks, each wanting to open a number X q ! L : P))) | N
’ We also ended up doing what we call a “multi.cell” approach, which hasically made it possible to

of files. Obviously, it would take a long time to handle all those requests, and the master would be put multiple GES masters on top of a pool of chunksevers. That way, the chunkscrvers could be
under a fair amonnt of duracs cunfigunad to have, say, eight GFS :nasters assigied to thenn, and tiat would give you at least one

pool of underlying storage—with multiple master heacs con it, if you will. Then the application was
19 responsible for partitioning data across those Cifferent cells.

The evolution of GFS

- Support for smaller chunk size — gmail

QUINLAN The distributed master certainly allows you to grow file counts, in line with the number
of machines you're willing to throw at it. That certainly helps.

One of the appeals of the distributed multimaster model is that if you scale everything up by two
orders of magnitude, then getting down to a 1-MB average file size is going to be a lot different from
having a 64-MB average [ile size. I[you end up going below 1 MB, then you're also going o run
into other issues that you really need to be careful about. For example, if you end up having to read
10,000 10-KB files, you're going to be doing a lot more seeking than if you're just reading 100 1-MB
files.

My gut feeling is that if you design for an average 1-MB file size, then that should provide for a
miuch larger class of things than does a design that assumes a 64-MB average file size. Ideally, you
would like to imagine a system that goes all the way down to much smaller file sizes, but 1 MB seems
a reasonable compromise in our environment.

MCKUSICK What have you been doing to design GES to work with 1-MB files?

QUINLAN We haven’t heen doing anything with the existing GFS design. Our distributed master
system that will provide for 1-MB files is essentially a whole new design. That way, we can aim for
somelhing on the order of 100 million files per masler. You can also have hundreds ol maslers.

20

Lots of other interesting topics

- snapshots

- namespace locking

- replica placement

- create, re-replication, re-balancing

- garbage collection

- stable replica detection

- data integrity

- diagnostic tools: logs are your friends

21

Do they achieve their goals?

- Storage based on inexpensive disks that fail frequently —
replication, distributed storage

- Many large files in contrast to small files for personal data —
large chunk size

- Primarily reading streams of data — large chunk size

- Sequential writes appending to the end of existing files — large
chunk size

- Must support multiple concurrent operations — flat structure
- Bandwidth is more critical than latency — large chunk size

22

Why we care about GFS

- Conventional file systems do not fit the demand of data centers

- Workloads in data centers are different from conventional
computers

- Storage based on inexpensive disks that fail frequentlz/,
— MapReduceé is fault tolerant

- Many large files in contrast to small files for personal data

— MapReduce aims at processing large amount of data once

* Primar”y reading streams Of data — MapReduce reads chunks of large files
- Sequential writes appending to the end of existing files

— Output file keep growing as workers keep writing

- Must support multiple concurrent operations

—MapReduce has thousands of workers simultaneously

- Bandwidth is more critical than latenc

—MapReduce only wants to finish tasks within “reasonable” amount of time

23

What's missing in GFS?

- GFS only supports consistency models
- Scalability — single master

- No geo-redundancy

- Only efficient in dealing with large data

24

Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav,
Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,
Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas Rigas
Microsoft

25

Data center workloads for WAS

%Requests | %Capacity | %Ingress %Egress

Blob 17.9 70.31 48.28 66.17

All Table 46.88 29.68 49.61 33.07
Queue 35.22 0.01 2.11 0.76

Blob 0.46 60.45 16.73 29.11

Bing Table 98.48 39.55 83.14 70.79
Queue 1.06 0 0.13 0.1

Blob 99.68 99.99 99.84 99.88

Gar’:‘:::ves Table | 0.32 0.01 0.16 0.12
Queue 0 0 0 0

Blob 26.78 19.57 50.25 11.26

Tel’f:::try Table | 4498 80.43 49.25 88.29
Queue 28.24 0 0.5 0.45

Blob 94.64 99.9 98.22 96.21

Zune Table 5.36 0.1 1.78 3.79
Queue 0 0 0 0

26

Why Windows Azure Storage

- A cloud service platform for social network search, video streaming,
XBOX gaming, records management, and etc. in M$.
- Must tolerate many different data abstractions: blobs, tables and queues

- Data types:

- Blob(Binary Large OBjects) storage: pictures, excel files, HTML files, virtual
hard disks (VHDs), big data such as logs, database backups -- pretty much
anything.

Large *+ Table: database tables

- Queue: store and retrieve messages. Queue messages can be up to 64 KB in
Small size, and a queue can contain millions of messages. Queues are generally
used to store lists of messages to be processed asynchronously.

Large

27

Why Windows Azure Storage (cont.)

- Learning from feedbacks in existing cloud storage
- Strong consistency

- Global and scalable namespace/storage

- Disaster recovery

- Multi-tenancy and cost of storage

28

All problems in computer science can be solved by another level of
indirection

—David Wheeler

29

What WAS proposes?

m Stamp is the basic granularity of storage

Front-ends . provisioning, fault domain, geo-replication.
A stamp can contain 10—20 racks with 18
disk-heavy storage node per rack.
ebaibidi | - You may consider each stamp is similar to a
MGFS"

Partition layer -

Storage stamp

30

What WAS proposes?

- Manages account namespace across ., e
all storage stamps erviee

- Manages all storage stamps e
- Distributed across multiple geographic
locations

31

e, chunk index

nandle, primary
ondary replicas

Chunk server
replication

sk handle, byte Chunk server

e

replication

m file

Chunk server

Partition layer

s ackgpqwie | Create exien

Stream layer

Stream Manager
alocate gxtentgeplicaset

Extent€¢— Extent€¢—Extent
node =”hode =>nhode

primary-%econdar%secondary

Extent
nhode

Extent
hode

Extent
node

32

Extent
hode

Extent
hode

GFS v.s. stamp in WAS

Extent

node

Extent
node

Partition layer

Stream layer

Stream Manager

Extent
hode

Extent
node

Extent
node

Extent
node

Extent
hode

Extent
node

Write failure

- Consider the case where 1 of 3 nodes handling a write fails and
the current extent is sealed at latest commit boundary (end of
extent) — that data will be on failed node

- new extent created
- SM chooses three new replicas to store extents
- client retries via new primary among the three new replicas

- failed node, upon restart, will coord w/ SM to synchronize its
extent to the commit length decided upon

43

GFS v.s. stamp in WAS

Partition layer Partition layer

a4

Partition layer

- Managing high-level data abstractions
- Providing scalable object namespaces

- Providing transaction ordering and strong consistency for
objects

- Storing object data on top of the stream layer
- Cache object data to reduce disk |/O

50

GFS v.s. stamp in WAS

Mer-stam

51

Front-end layer

- A set of stateless servers taking incoming requests
- Think about the benefits of stateless in NFS
- Keep partition maps to forward the request to the right server

- A stamp can contain 10—20 racks with 18 disk-heavy storage
node per rack

- Stream large objects directly from the stream layer and cache
frequently accessed data for efficiency

52

Are they doing well?

- 50,000
c s (GET emellifemm PUT === Batch PUT .
S 40000 / Good scalability
“ 30,000
&
20,000
.2
£ 10,000
)
c
w 0 1200
0 4 8 12 16 wmpp= Get Blob === Put Blob

Number of VMs .

ood scalability

Megabytes Per Second
S
(@]

0 4 8 12 16
Number of VMs
53

GFS v.s. WAS

file stream
File organizations chunk extent
block record
System architecture master stream manager
chunkserver extent nodes
Data updates append only updates
Consistency models relaxed consistency strong consistency
Data formats files multiple types of objects
Replications intra-cluster replication geo-replication
Usage of nodes chunk server can perform both separate computation and storage

54

f4: Facebook's Warm BLOB Storage
System

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill,
Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar,
Viswanath Sivakumar, Linpeng Tang, and Sanjeev Kumar.

55

The original NFS-based FB storage

- Within a data center with high-speed network, the round-trip
latency of network accesses is not really a big deal

- However, the amount of metadata, especially directory
metadata, is huge — cannot be cached

- As aresult, each file access still requires ~ 10 inode/data
requests from disks/network nodes — kill performance

56

Haystack

user requests (browsers, mobile devices)

A

(1) [(4)

v

web server

) (3)

Haystack directory

A cN 410

Content
Delivery
Network

(Gi T(9)
\4

Haystack cache

Haystack store

http://<CDN>/<Cache>/<Machine ID>/<Logical volume,Photo>

- Finding a needle in Haystack: Facebook's photo storage, OSDI 2010

- Each storage unit provides 10TB of usable space, using RAID-6 — 20%

redundancy for parity bits

- Each storage split into 100 physical volumes (100GB)

Haystack

- Physical volumes on different machines grouped into logical volumes

- A photo saved to a logical volume is written to all corresponding physical volumes —

3 replicas
- Each volume is actually just
a large file

- Needle represents a photo

- Each needle is identified
through the offset

- Sealed (the same as WAS)
one the file reaches 100GB

Superblock

Needle 1

Needle 2

Neecle 3

Header Magic Number

Cookie

Key

Alternate Key

Flags

Size

Data

Footer Magic Number

Data Checksum

Padding

“"Temperature"” of data

== Profile Photo == HD Photo == HD Mobile Sync == Group Attachment == HD Video == Warm

== Photo == Mobile Sync = Video = Message Attachment

99% Percentile IOPS/TB

Relative Request Rate, [0X intervals
/

Dlay : “ Week * Month ® Year Dlay “ Week * Month Year
BLOB Age (log) BLOB Age (log)

log scale — not encouraged to graph like this if you're writing a
technical document or scientific paper

69

“"Temperature” of data

Access Frequency Most frequent Less frequent

Not so frequently read
Created often, delete often Not so frequently deleted
Maybe read-only

Long-term storage, usually
takes hours to retrieve

©65PB in 2014 and growing rapidly

70

Facebook storage architecture

user requests (browsers, mobile devices)

Read(4)

Content
Distribution
Network

Create(1)

Read(3)
Create(2)

Blob Storage System

Haystack Hot Storage

Create(3)

f4 Warm Storage

Cold Data

Graph Store — Tao

71

Storage efficiency

- Reed-Solomon erasure coding

- Strips: 10GB data + 4GB parity — 1.4x space efficiency

- One volume contains 10 strips

- XOR Geo-replication

- Use XOR to reduce overhead further (e.g., Azure makes full copies)
- Block Ain DC1 + block B in DC2 -> parity block P in DC3

- Any two blocks can be used to generate the third

- 1.5x space efficiency

- 1.4*1.5 = 2.1x space efficiency in total

data center 3

Block A 1.4x » XOR—» =L (e T

data center 1 data center 2

Block B 1.4x

72

L]

L]

Fault tolerance

1%-2% HDD fail in a year
- replicate data across multiple disks

- Use erasure coding for storage efficiency
« nblocks -> n + k blocks, can tolerate k simultaneous failures
- higher cost for recovering data when there is a failure

Host failures (periodically)

- replicate coded blocks on different hosts
Rack failures (multiple times/year)

- replicate coded blocks on different racks
Datacenter failures (rare, but catastrophic)

- replicate blocks across data centers

- use XOR to reduce overhead further (e.g., Azure makes full copies)
+ block Ain DC1 + block B in DC2 -> parity block P in DC3
- any two blocks can be used to generate the third

Index files
- use normal triple replication (tiny, little benefit in coding them)

73

What happens if fault occurs?

- Drive fails

- Reconstruct blocks on another drive

- Heavy disk, Network, CPU operation

- one in background

- During failure, may need to reconstruct data online

- rebuilder node reads BLOB from data + parity, reconstructs

- only reads + reconstructs the BLOB (40KB), not the entire block
(1GB)

74

Performance of f4

| -

g

c 08

73

& 0.6 |

pe

&

x 0.4 |

ke

s |

5 02 Haystack =

v 4 —
0k | | | 1 |

0 20 40 60 80 100

Latency (ms)

75

Cells

- Each cell contains 14 racks of 15 hosts, each host contains 30
4TB H.D.Ds.

- A unit of acquisition, deployment
- Storage for a set of volumes
- Similar to the idea of stamps

76

Make common case fast,
make rare case correct

77

