Virtual memory (lll): System
Architecture and Design

Hung-Wel Tseng

Virtual Memory

0x000000000000 Proces B

Process A Sode
0x000000000000 ’ Static Data

Code

Vlrtual Static Data

memory

Recap: Demand paglng

g

=
P
P
-
A - .
3 (lntel

=&
Core™i7 "

. . data
instruction 0% 2890000¢ Ddbe ot data
Oxe ingtruction 0x380008000
0x0 ,
V|rtlial Address §|%ce ?or Ehrome Page fau Virtual Address Space for Apple viusic

- 0feObb27 20c7.e800 I J
509-%.23 00¢00008
Program 4 00005d24 02000 Program
@feebb27 00c2e800 0feebb27 00c2e800

509chd23 90000008 Sy A 509chd23 00000008
00005d24 00c2f000 0100bb27 00c21800 00005d24 00c2f000
0000bd24 00000008 509chd23 00000008 0000bd24 90000008
2ca422a0 00c2f800 00005d24 0030000 2¢ab22a0 00c2f800
130020e4 00000008 0000hd24 00000008 130020e4 90000008

00003d24 00c30000 00003d24 00c30000
2cabe2b3 00000008 Memory 2cabe2b3 00000008

Ix

Instructions

Instructions

Recap: Demand paging

Physical memory of the

0 Application A 0 machine Application B

- 9

fthése cells
IS a page

Segmentation v.s. demand paging

- How many of the following statements is/are correct regarding
segmentation and demand paging?

@ Segments can cause more external fragmentations than demand paging

— the main reason why we love paging!
@ Paging can still cause internal fragmentations— within a page

g The overhead of address translatlon N segmentatlon IS higher
— you heed to provide finer-grained mapping ifi paging — you may heed to handle page faults!

@ Consecutive virtual memory address may not be consecutive in physical
address if we use demand paging

We haven't seen pure/true implementation of
segmentations for a while, but we still use segmentation
fault errors all the time!

O w >
N = O

i .
w

[T
I

Recap: Address translation

+ Processor receives virtual addresses from the running Vfjrtyal
code, main memory uses physical memory addresses ,qqrass GX O 00O BETEF

- Virtual address space is organized into “pages”

- The system references the page table to translate
addresses

- Each process has its own
page table

- The page table
content is maintained Page

by OS table ¥
- In addition to valid bit and physical page #, the page
table may also store

- Reference bit

- Modified bit

- Permissions

ermission

valid
dccess

Physical gx D E ADBEE F
address

Recap: Size of page table

.- Assume that we have 64-bit virtual address space, each page
Is 4KB, each page table entry is 8 bytes (64-bit addresses),
what magnitude in size is the page table for 32 processes?

A. MB — 220 Bytes

B. GB — 230 Bytes 164 p 3 2643 55
C. TB— 240 Bytes 8bytes><4KB _2BX 2B =2 B=3208

D. PB — 250 Bytes 32 PBx 32 =20B — 1 EB

Conventional page table

0x0 OXFFFFFFFFFFFFFFFF

Virtual Address Space

— must be consecutive in the physical memory

— like a big segment! — difficult to find a spot

— simply too big to fit iIn memory if address space is large!
24 B
212 B

lalolalalalolalololal L LI L L L L L L L L l1lalolilalalolalololaal LI L UL LU L L L L]

P e page table entries/leaf nodes ——eeg

"Paged" page table

0x0 OXFFFFFFFFFFFFFFFF

Code Data Heap Virtual Address Space
—>

Break up entries into pages!

Each of these occupies exactly apage Question:
H12 p These nodes are spread out,
= 2° PTEs per node how to locate them in the memory?

/

——

than one consecut : <
L [1]4]0la]alalolalololalal [[V L LI LU P DLV DN L]

u 1 1‘0"‘ 1 101 10111 1 1 101 1 1, . uﬂnﬂﬂnﬂ n 1 Eﬂﬂ
“ e eereresesesesesesesesesesesesesnsesnnnnnnan
These are nodes are not presented

if they are not referenced at all — save space

Allocate page table entry nodes “on demand”

B-tree

8860|605

https://en.wikipedia.org/wiki/B-tree#/media/File:B-tree.svg

10

https://en.wikipedia.org/wiki/B-tree#/media/File:B-tree.svg

Hierarchical Page Table

0x0 OXFFFFFFFFFFFFFFFF

Code Data Heap Virtual Address Space
—>

RERRE R EAEEEn 264 B

L Togai o) = 1027 = Slevels
ﬁ_ \nnunnnunuunn

lol1l1l1l0l1]0lol4 1]

1ol1l1l1l0l1]0lol4 0] 11110l4111110l1]0lol4 1] 0l1111110l1]0l0l4 0]

These are nodes are not presented
164 p as they are not referenced at all.

page table entries/leaf NOdeSs (WOrSt CASE) m——

212 B

Case study: Address translation in x86-64

63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
SignExt L4 index L3 index L2 index L1 index page offset

X86

Processor
CR3 Reg. 2 \ 512 entri /4

512 entries

512 entries

physical page # page offset

12

Recap: If we expose memory directly to the processor

What if both programs
need to use memory?

Simply segmentation or paging helps on
this

130020e4 | = 00000008
00003d24 00c30000

1300204 ™ 00000008

00003d24 00c30000
2cabe2b3 00000008

2ca4e2b3 00000008

13

Instructions

Program

0f00bb27
509chd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3
00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

00c21800
00000008
00c30000
00000008

00c21800

00000008
00c30000
00000008

0f00bb27 00c2e800
509chd23 00000008
00005d24 00c21000
0000bd24 00000008
2ca422a0 00c21800
130020e4 00000008

60c2f060 00c21000
00000008 00000008

Memory

14

Recap: If we expose memory directly to the processor (l)

What if my program

needs more memory?

Instructions

Recap: If we expose memory directly to the processor (ll)

What if my program
runs on a machine

with a different
memory size?

0f00bb27
509chd23
00005d24
0000bd24

2cab22a0
130020e4
00003d24
2ca4e2b3

Program

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

0feobb27 00c2e800
509chd23 00000008

00005d24 00c21000
00006bd24 ',0000008
2cakL22a0 00c21800
130020e4 00000008

5 ¢ By TR 5 B .,
el S = y 'y |- "0 f

“ *-.4“’. F. — v~ é’ CiEay
7 g ’ s e

{
BN ot 4“1

Current scoreboard

Red Blue

12 13

Outline

. Swapping
- VAX/VMS Design
- Mach VM

17

Demand Paging + Swapping

(1) an instruction accesses virtual
address OXxDEADBEEF

9x000000000000,

Static Sata

Virtual memory

OxFFFFFFFFFFFF

(5) map the requesting page to the freed space : Stack

(2) page fault! — exception

" (3) running out of space on DRAM

Page
table

Physical memory

.}ﬂ) kick some page out and store it in the
N secondary storage

18

The mechanism: demand paging + swapping

- Divide physical & virtual memory spaces into fix-sized units — pages

- Allocate a physical memory page whenever the virtual memory page
containing your data is absent

- |In case If we are running out of physical memory —

- Reserve space on disks

- Disks are slow: the access time for HDDs is around 10 ms, the access time for SSDs
is around 30us - T ms

- Disks are orders of magnitude larger than main memory

- When you need to make rooms in the physical main memory, allocate a page
In the swap space and put the content of the evicted page there

- When you need to reference a page in the swap space, make a room in the
physical main memory and swap the disk space with the evicted page

19

Latency Numbers Every Programmer Should Know
(2020 Version)

Operations Latency (ns) Latency (us) Latency (ms)

L1 cache reference 0.5ns ~1CPU cycle

Branch mispredict 3ns

L2 cache reference 4ns 14x L1 cache

Mutex lock/unlock 17 ns

Send 2K bytes over network 44 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 Us

Read 1 MB sequentially from memory 3,000 ns 3us

Read 4K randomly from SSD* 16,000 ns 16 us

Read 1 MB sequentially from SSD* 49,000 ns 49 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from disk 825,000 ns 825 us

Disk seek 2,000,000 ns 2,000 us 2 ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal website/research/interactive latency.html

20

https://colin-scott.github.io/personal_website/research/interactive_latency.html

The swapping overhead

- How much slower (approximately) is your average memory
access time in a system when the probability of a page fault/
swapping is 0.1% comparing with the case when there is no

page fault/swapping?
(Assume you swap to a hard disk)
A.

mouow

10x
T100x

. 1000x

10000x
100000x

21

Operations

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy
Send 1K bytes over 1 Gbps network
Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk
Send packet CA-Netherlands-CA

Latency (ns)
0.5ns

5 ns

/ ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

The swapping overhead

- How much slower (approximately) is your average memory
access time in a system when the probability of a page fault/
swapping is 0.1% comparing with the case when there is no

page fault/swapping?
(Assume you swap to a hard disk)
A.

mouow

10x
T100x

. 1000x

10000x
100000x

22

Operations

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy
Send 1K bytes over 1 Gbps network
Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk
Send packet CA-Netherlands-CA

Latency (ns)
0.5ns

5 ns

/ ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

The swapping overhead

- How much slower (approximately) is your average memory access time in

a system when the probability of a page fault/swapping is 0.1%
comparing with the case when there is no page fault/swapping?

(Assume you swap to a hard disk)
- Memory (i.e. RAM) access time: 100ns

Disk access time: 10ms
Ps: probability of a page fault
Effective Access Time =100 ns + Ps* 107 ns

When P = 0.001:
Effective Access Time = 10,100ns

When Ps = 0.001, even with an SSD
Effective Access Time =100 ns + 10-3*10°
ns = 200 ns

Takeaway: disk accesses are tolerable only

when they are extremely rare 23

Operations

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy
Send 1K bytes over 1 Gbps network
Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk
Send packet CA-Netherlands-CA

Latency (ns)
0.5ns

5 ns

/ ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

The swapping overhead

- How much slower (approximately) is your average memory
access time in a system when the probability of a page fault/
swapping is 0.1% comparing with the case when there is no

page fault/swapping?

(Assume you swap to a hard disk)

A. 10x

C. 1000x
D. 10000x
E. 100000x

24

Operations

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy
Send 1K bytes over 1 Gbps network
Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk
Send packet CA-Netherlands-CA

Latency (ns)
0.5ns

5 ns

/ ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

Page replacement policy

- Goal: Identify page to remove that will avoid future page faults (i.e. utilize
locality as much as possible)

- Implementation Goal: Minimize the amount of software and hardware
overhead

- Example:

- Memory (i.e. RAM) access time: 100ns
- Disk access time: 10ms

- P+ probability of a page fault
. Effective Access Time =10-7 + P; *10-3
- When Ps = 0.001:
Effective Access Time =10,100ns

- Takeaway: Disk access tolerable only when it is extremely rare

25

Virtual Memory Management in the VAX/
VMS Operating System

H. M. Levy and P. H. Lipman
Digital Equipment Corporation

Why: The goals of VAX/VMS

- How many of the following statements is/are true regarding the
optimization goals of VAX/VMS?

Reducing the disk load of paging

Reducing the startup cost of a program

Reducing the overhead of page tables

Reducing the interference from heavily paging processes

MOOW>E0E 0

A WODN-—-O0

27

Why: The goals of VAX/VMS

- How many of the following statements is/are true regarding the
optimization goals of VAX/VMS?

Reducing the disk load of paging

Reducing the startup cost of a program

Reducing the overhead of page tables

Reducing the interference from heavily paging processes

MOOW>E0E 0

A WODN-—-O0

28

The "Why" behind VAX/VMS VM

- The system needs to execute various

eXPErience WIth @ MUILuu wa = ars oo =x | = -
tems, VAX/VMS was ntended to provide a single en
b

icati Te) ' icati ‘hether real-
es of applications efficiently . vironment for all VAX-based applications, ¥
_ Recwgmg tLeI?r?ter erence ;rom hehvily Paging PIARGSRASincluding program development), of

- The system runs on different types of
hardware

- As aresult, the memory management
system has to be capable of
adjusting the changing demands
characteristic of time sharing while
allowing predictable performance
required by real-time and batch

processes
— Reducing the startup cost of a program

— Reducing the disk load of paging

29

had 10 operate ona [amily

' in addition, VAX/VMS .
Reducing the overhead of pagB{4BI&s " e --- —~farmance characteris-

time, LIMESNAICU (iviusiug v o~] |
batch. In addition, VAX/ VMS had to operateona amily

of processors having different performance characteris-

1 i\t ine from 250K
' | memory capacities ranging
tics and physical memc ‘Y cities ranging from = -

bvtés to }nérc than 8M bytes. To meet the reqmremcm‘
p;)sed by these applications cnvironments,.the'memo;
management System hadto be_ca.pable qf adjust}ng tq tt1 i
changing demands characteristic of 11mesbarmg whil
allowing the predictable performance required by rea

- v [OCesSsSES. .
time and batch p atten amAd Aamricinne made

Why: The goals of VAX/VMS

- How many of the following statements is/are true regarding the
optimization goals of VAX/VMS?
® Reducing the disk load of paging
®@ Reducing the startup cost of a program
® Reducing the overhead of page tables
@ Reducing the interference from heavily paging processes

OO0 w>
w N = O

[
I

30

Poll close in 1:30

What VAX/VMS proposed to achieve these goals?

- Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is

Incorrect?

A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement

C Page table lookup overhead Y Page clustering

D Paging load on disks Z Page caching

31

Poll close in 1:30

What VAX/VMS proposed to achieve these goals?

- Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is

Incorrect?

A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement

C Page table lookup overhead Y Page clustering

D Paging load on disks Z Page caching

32

What VAX/VMS proposed to achieve these goals?

- Considering the optimization goals and the proposed VAX/

VMS mechanisms, which of the following combinations is
iIncorrect?

A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering

D Paging load on disks Z Page caching

33

What happens on a fork?

virtual.

o 3‘)1 rwt%‘éiw%ﬂ%‘rgégﬁlgce for Process #1 w‘)

virtual, 4 Tvirtual " virtual G Wy
page #1 page #2 page#3

COpPy COPy

physical | physical | physical | physical § physical | physical
page #1 | page #2 | page #3 | page #4 | page #5 | page #6

physical
page #7

Copy the page content to different locations before the new process can start

34

Copy-on-write

write

virtual.

page S’A rwt%‘é@y%n%‘rgégﬁlgce for Process #1 w‘)

virtual virtual virtual

page #1 page#2 page#3 e for Process #2

physical | physical physmal physmal physical | physical | physical
page #1 | page #2 | page #3 | page #4 | page #5 | page #6 | page #7

The modified bit of a writable page will be set when it's loaded from the executable file

The process eventually will have its own copy of that page
35

Demand zero

write

virtual - virtual ‘| virtual e
page #1 page #2 page #3

physical
page #1

« The linker does not embed the pages with all Os in the compiled program
« When page fault occurs, allocate a physical page fills with zeros
« Set the modified bit so that the page can be written back

What VAX/VMS proposed to achieve these goals?

- Considering the optimization goals and the proposed VAX/

VMS mechanisms, which of the following combinations is
iIncorrect?

Optimization

M Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering

D Paging load on disks Z Page caching

37

Local page replacement policy

- Each process has a maximum size of memory

- When the process exceeds the maximum size, replaces from its own set of memory
pages

- Control the paaing behavior within each process

Virtual Virtual Virtual Virtual
page #1 page#2 page#3 page #4

nace for Process A

ceessetrillll0 0 B Virtual page #4 can only
°°°°° 4 goone of these if 3 is the
* maximum memory size of

the process

Swap Page for Page for

OUt Process Process
/ C C

What's the policy? FIFO! Low overhead!

38

What VAX/VMS proposed to achieve these goals?

- Considering the optimization goals and the proposed VAX/

VMS mechanisms, which of the following combinations is
iIncorrect?

Optimization

Process startup cost W Demand-zero & copy-on-refernce
V Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering

D Paging load on disks Z Page caching

39

Page clustering

- Read or write a cluster of pages that are both consecutive in
virtual memory and the disk

- Combining consecutive writes into single writes

40

Latency Numbers Every Programmer Should Know
(2020 Version)

Operations Latency (ns) Latency (us) Latency (ms)

L1 cache reference 0.5ns ~1CPU cycle

Branch mispredict 3ns

L2 cache reference 4ns 14x L1 cache

Mutex lock/unlock 17 ns

Send 2K bytes over network 44 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 Us

Read 1 MB sequentially from memory 3,000 ns 3us

Read 4K randomly from SSD* 16,000 ns @

Read 1B spayentialy &o8LS3Ra larger block i/%R8 s @

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from disk 825,000 ns @

Disk seek for a 512B sector 2,000,000 ns m 2ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal website/research/interactive latency.html

41

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Page caching to cover the performance loss

- Evicted pages will be put into one of the lists iIn DRAM
- Free list: clean pages
- Modified list: dirty pages — needs to copy data to the disk

- Page fault to any of the page in the lists will bring the page back
- Reduces the demand of accessing disks

page fault!

oage fea page fault!
RS of Process A RS of Process B
A pages : e

Page Page Physical Memory

Page caching

NN

I S —— - —————— i —— — — — — —

P - ———— - ——

—— . ————— i — —— --—--1

e ——

Figure 3. Faulis vs. memory usage in Fortran compilation.

What VAX/VMS proposed to achieve these goals?

- Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is

Incorrect?

Process startup cost

V Process performance interference

C Page table lookup overhead
V Paging load on disks

44

Optimization

W Demand-zero & copy-on-refernce

X Process-local replacement

Y
Z

Dage Clustering also helps reduce disk loads

Page caching

Process memory layout

PO (Program) Region Code
Heap
. Stack

P1 (Control) Region Other data

System: software vectors, hardware data structures,
System Region executive data, executive procedures, record
management, dynamic storage

Reserved The VAX/VMS allows the OS code to
access user-space memory

45

Why segmented layout?

- Each segment has its own page table

- Entries between stack and heap boundaries do not need to be
allocated — reduce the size of page table

PO (Program) Region

entries

P1 (Control) Region

e =

What VAX/VMS proposed to achieve these goals?

- Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
Incorrect?

Optimization

Process startup cost W Demand-zero & copy-on-refernce
V Process performance interference X Process-local replacement
C Page table lookup overhead Y segmented memory layout

V Paging load on disks Z Page caching

47

The impact of VAX/VMS

- VAX Is popular in universities and UNIX is later ported to VAX
— a popular OS research platform

- Affect the UNIX virtual memory design
- Affect the Windows virtual memory design

48

64-bit Linux process memory layout

OXTFFfffffffffffff OXTIFfffffffffffff

Kernel Space (120TB) rernel Space (120TB)

OxTTfff880000000000 Oxf£F7880000000000

|

‘ Other physical

memory

User Mode Space User Mode Space

Physical memory
reserved for kernel

49

Machine-Independent Virtual Memory Management for

Paged Uniprocessor and Multiprocessor Architectures

Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David Black,
William Bolosky, and Jonathan Chew
Carnegie-Mellon University, NeXT, University of Rochester

50

Mach abstractions

- | Task: process in UNIX
- | Thread: the basic scheduling identity

We mentioned previously
- |Port: message queues protected by the kernel

- IMessage: data objects for inter-thread communication

- Memory object: data mapped into the address space of a task/
process

57

What Mach VM proposed?

- Machine-independent virtual memory design by maintaining all
VM state in a machine-independent module

- Treat hardware page tables/TLBs as caches of machine-
iIndependent information

52

Overview of Mach's VM

accessing OxDEADBEEF

virtual
a::;i:s Virtual memory space of Task #1 Virtual memory space of Task #2

address- $

vm_start,
vin_end,
memory object #, offset in an memory
protection, object
inheritance,
kprev, *xnext

memory Page Page Page Page Page Page Memory iject #2
objects
hash bucket{

Memory object #3

Resident a memory object could be anything—a
page file, a network buffer, remote network
table memory, device buffer, or physical DRAM

Where is pmap?

- Pmap is just a cache of virtual to physical address mapping

- |t accelerates address translation by caching the address
mapping, but not required

- As aresult, it can be a small as several KBs

54

The impact of Mach VM

- MacOS X uses a "hybrid” kernel — BSD + Mach

- The kernel itself is BSD-based — modular, not microkernel-
based

- MacQOS X's virtual memory resembles the Mach VM design
- Why?

55

VAX v.s. Mach

- MacOS does not adopt the microkernel idea from Mach but takes Mach's
VMS design instead of a VAX/UNIX style one. Why?
® Mach's VM would provide better average memory access latency

@ Mach's VM would make the page table more efficient for sparse address
allocations

Mach's VM would make the process creation more efficient
Mach's VM would be less dependent on hardware architecture

MmMOoOOw>»eEaeE

WO DN -0

56

VAX v.s. Mach

- MacOS does not adopt the microkernel idea from Mach but takes Mach's
VMS design instead of a VAX/UNIX style one. Why?
® Mach's VM would provide better average memory access latency

@ Mach's VM would make the page table more efficient for sparse address
allocations

Mach's VM would make the process creation more efficient
Mach's VM would be less dependent on hardware architecture

MmMOoOOw>»eEaeE

WO DN -0

57

VAX v.s. Mach

- MacOS does not adopt the microkernel idea from Mach but takes Mach's
VMS design instead of a VAX/UNIX style one. Why?

x Mach's VM wguld %r?r\‘/ide betteFrI I?(\gera efmeI{nor acr:‘cess latency ot switeh
— both, of them uses efau ach has more context switches
@ Mach's VM wouli makerﬂwe page taBYe more e?flment If1or sparse address
allocations — think about It's linked-list nature

Mach's VM would make the process creation more efficient
Mach's VM would be less dependent on hardware architecture

MmMOoOOw>»eEaeE

WO DN -0

58

Address allocation is sparse in multithreading model!

static data

heap

Unused

stack #2
Unused
stack #1

Virtual memory

59

VAX v.s. Mach

- MacOS does not adopt the microkernel idea from Mach but takes Mach's
VMS design instead of a VAX/UNIX style one. Why?

Mach's VM would provide better average memor access latency

— both of the uses FIFO efault as more context switches
@ Mach's VM wou make B e more e f|C|ent or sparse address
allocations — think about | s Imked list nature

— what's the benefit? — multithreading!
Mach's VM would make the process creatlon more efficient

— both of the es copy-pn-reference...
@ Mach's VM would be less depen ent on Ware a‘r’cﬂﬂecture
A O — what's the titIe of the paper?
B. 1
D. 3
E. 4

60

Announcement

- Reading quizzes due next Tuesday

- New office hour
- M 3p-4p and Th 9a-10a
- Use the office hour Zoom link, not the lecture one

- Project released
- Groupsin 2

- Pull the latest version — had some changes for later kernel versions
https://github.com/hungweitseng/CS202-ResourceContainer

« Install an Ubuntu Linux 16.04.07 VM as soon as you can!
- Please do not use a real machine — you may not be able to reboot again

- Midterm

- Will release on 2/10/2021 0:00am and due on 2/15/202111:59:00pm

- You will have to find a consecutive, nhon-stop 80-minute slot with this period

- One time, cannot reinitiate — please make sure you have a stable system and network
« No late submission is allowed

61

https://github.com/hungweitseng/CS202-ResourceContainer

Computer

Engineering

