
Virtual Memory (IV) — Policies
Hung-Wei Tseng

Storage DevicesPhysical memory

Recap: Virtual Memory

2

Virtual
memory

CPU

address mapping

0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Process A
0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Process B

Physical memory

0x000000000000

0xFFFFFFFFFFFF

3

Virtual memory

Code
Static Data

Data

Heap

Stack

CPU(1) an instruction accesses virtual
address 0xDEADBEEF

page
table

(2) page fault! — exception

(3) running out of space on DRAM

(4) kick some page out and store it in the
secondary storage

(5) map the requesting page to the
freed space

Recap: Demand paging + Swapping

4

Recap: Hierarchical page table to make paging feasible
63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)

SignExt L4 index L3 index L2 index L1 index page offset

X86
Processor

CR3 Reg.

……
…512 entries

……
…512 entries

……
…512 entries

……
…512 entries

11:0 (12 bits)
physical page # page offset

• Make page table “nodes” demand-pagable — not all of them has to
be residual in main memory

• Save the space for nodes belong to addresses not being used
• Upon a context switch, program the CR3 reg (PTBR) and load the

root node of the hierarchical page table

• Goal: Identify page to remove that will avoid future page faults (i.e. utilize
locality as much as possible)

• Implementation Goal: Minimize the amount of software and hardware
overhead
• Example:

• Memory (i.e. RAM) access time: 100ns
• Disk access time: 10ms
• Pf: probability of a page fault
• Effective Access Time = 10-7 + Pf * 10-3

• When Pf = 0.001:
Effective Access Time = 10,100ns

• Takeaway: Disk access tolerable only when it is extremely rare
5

Recap: Page replacement policy

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

6

What VAX/VMS proposed to achieve these goals?

also helps reduce disk loads

• We’re still using their proposed techniques almost everyday!
• It’s basically the baseline UNIX VM design

Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures
Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David Black,

William Bolosky, and Jonathan Chew
Carnegie-Mellon University, NeXT, University of Rochester

7

Overview of Mach’s VM

8

Memory object #1 Memory object #2 Memory object #3memory
objects

Virtual memory space of Task #1
virtual

address
space Virtual memory space of Task #2

vm_start,
vm_end,

memory object #,
protection,
inheritance,
*prev, *next

Page Page Page Page Page Page Page

Pager

address
map

accessing 0xDEADBEEF

offset in an memory
object

Resident
page
table

hash bucket
a memory object could be anything — a
file, a network buffer, remote network
memory, device buffer, or physical DRAM

Nothing in this slide is machine dependent!

Address allocation is sparse in multithreading model!

9

Virtual memory

heap

code

static data

stack #1

stack #2

stack #3
Unused

Unused

Unused

address
map

• Page replacement policies
• Page replacement policy once used in UNIX: Converting a

Swap-Based System to do Paging in an Architecture Lacking
Page-Reference Bits

• Another popular page replacement policy: WSClcok - A Simple
and Effective Algorithm for Virtual Memory Management

10

Outline

Page replacement policies from
textbooks

11

• We need to determine:
• Which page(s) to remove
• When to remove the page(s)

• Goals
• Identify page to remove that will avoid future page faults (i.e. utilize

locality as much as possible)
• Minimize the amount of software and hardware overhead

12

Page replacement policy

• FIFO: Replace the oldest page
• LRU: Replace page that was the least recently used (longest

since last use)

13

Page replacement algorithms

• Assume your OS uses FIFO policy when handle page faults. Also assume that
we have 3 physical memory pages available. Compared with the same
machine using an OS with LRU page replacement police, how many more
page faults will you see for the FIFO based OS in the following page reference
sequence?

A. 0
B. 1
C. 2
D. 3
E. 4

14

FIFO v.s. LRUPoll close in

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

• Assume your OS uses FIFO policy when handle page faults. Also assume that
we have 3 physical memory pages available. Compared with the same
machine using an OS with LRU page replacement police, how many more
page faults will you see for the FIFO based OS in the following page reference
sequence?

A. 0
B. 1
C. 2
D. 3
E. 4

15

FIFO v.s. LRUPoll close in

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

• Assume your OS uses FIFO policy when handle page faults. Also assume that
we have 3 physical memory pages available. Compared with the same
machine using an OS with LRU page replacement police, how many more
page faults will you see for the FIFO based OS in the following page reference
sequence?

A. 0
B. 1
C. 2
D. 3
E. 4

16

FIFO v.s. LRU

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2 5 5 5 5 3 3 3 3
3 3 3 3 2 2 2 2 2 5 5

1 1 1 4 4 4 4 4 2
FIFO
LRU 2 2 2 2 2 2 2 2 3 3 3 3

3 3 3 5 5 5 5 5 5 5 5
1 1 1 4 4 4 2 2 2

FIFO v.s. LRU

17

FIFO LRU

Implementation Easy — circular queue
May require hardware support or

linked list or additional
timestamps in page tables

Execution overhead Low High — you need to manipulate
the list or update every counter

Performance Usually not as good as LRU Usually better than FIFO

Converting a Swap-Based System to do Paging
in an Architecture Lacking Page-Reference Bits

Özalp Babaoglu and William Joy*
Cornell University and University of California, Berkeley

18

• Regarding the original UNIX VM (basically the VMS), please identify how many
of the following statements are correct.
! VAX machine provides no hardware support for page replacement policies
" VMS implements FIFO policy for page replacement
A process’s resident set cannot be adjusted even though that process is the only

process in the system
$ VMS swaps out all memory page belong to a process when that process is

switched out
A. 0
B. 1
C. 2
D. 3
E. 4

19

The VMS/Old UNIX VMPoll close in

• Regarding the original UNIX VM (basically the VMS), please identify how many
of the following statements are correct.
! VAX machine provides no hardware support for page replacement policies
" VMS implements FIFO policy for page replacement
A process’s resident set cannot be adjusted even though that process is the only

process in the system
$ VMS swaps out all memory page belong to a process when that process is

switched out
A. 0
B. 1
C. 2
D. 3
E. 4

20

The VMS/Old UNIX VMPoll close in

• Regarding the original UNIX VM (basically the VMS), please identify how many
of the following statements are correct.
! VAX machine provides no hardware support for page replacement policies
" VMS implements FIFO policy for page replacement
A process’s resident set cannot be adjusted even though that process is the only

process in the system
$ VMS swaps out all memory page belong to a process when that process is

switched out
A. 0
B. 1
C. 2
D. 3
E. 4

21

The VMS/Old UNIX VM

— Really inefficient if you have frequent context switches or if you have many applications in-fly

• The original UNIX is a swap-based system
• Whenever you have a context switch, swap the whole process out

from the memory
• Really inefficient if you have frequent context switches or if you

have many applications in-fly
• Imply that the modern UNIX or Linux does not do this

• Efficient page replacement policies and other virtual
optimization techniques cannot be implemented easily without
appropriate hardware support

22

The Why of Babaoglu new UNIX VM

• How many of following statements fit the page replacement policy that the paper
implements?
! It uses LRU (least-recently-used) as the page replacement policy
" Page replacement policy are only triggered whenever a page fault occurs
It attaches a timestamp to each page table entry instead of using the reference bit

from hardware
$ Processes are allocated a fixed set of pages and swap in/out to/from those pages
% The page replacement policy helps to guarantee the response time of short programs
A. 0
B. 1
C. 2
D. 3
E. 4

23

The page replacement policy proposedPoll close in

• How many of following statements fit the page replacement policy that the paper
implements?
! It uses LRU (least-recently-used) as the page replacement policy
" Page replacement policy are only triggered whenever a page fault occurs
It attaches a timestamp to each page table entry instead of using the reference bit

from hardware
$ Processes are allocated a fixed set of pages and swap in/out to/from those pages
% The page replacement policy helps to guarantee the response time of short programs
A. 0
B. 1
C. 2
D. 3
E. 4

24

The page replacement policy proposedPoll close in

Clock algorithm

25

A
B

C

D

E

F
G

H

I

J

K

L
R

R

R

attach a “reference bit”
to each PTE, set to true

when the page is
referenced

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

Where to put ?

Clock algorithm in motion

26

A
B

C

D

E

F
G

H

I

J

K

L
R

R

R

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

27

A
B

C

D

E

F
G

H

I

J

K

L

R

R

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

28

A
B

C

D

E

F
G

H

I

J

K

L

R

R

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

29

A
B

C

D

E

F
G

H

I

J

K

L

R

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

M
C will be selected to

swap out, but Rs of A
and B are cleared

• Assume your OS uses LRU policy when handle page faults. Also
assume that we have 3 physical memory pages available. How many
page faults will you see in the following page reference sequence?

A. 5
B. 6
C. 7
D. 8
E. 9

30

Recap: LRU

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2 2 2 2 2 3 3 3 3
3 3 3 5 5 5 5 5 5 5 5

1 1 1 4 4 4 2 2 2

• Assume your OS uses the clock policy when handle page faults. Also
assume that we have 3 physical memory pages available. How many
page faults will you see in the following page reference sequence?

A. 5
B. 6
C. 7
D. 8
E. 9

31

How good is clock?Poll close in

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

• Assume your OS uses the clock policy when handle page faults. Also
assume that we have 3 physical memory pages available. How many
page faults will you see in the following page reference sequence?

A. 5
B. 6
C. 7
D. 8
E. 9

32

How good is clock?Poll close in

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

• Assume your OS uses the clock policy when handle page faults. Also
assume that we have 3 physical memory pages available. How many
page faults will you see in the following page reference sequence?

A. 5
B. 6
C. 7
D. 8
E. 9

33

How good is clock?

2 2* 2*+ 2*+ 2 2+ 2+ 2*+ 2* 2+* 2* 2+*

3 3 3 5 5 5 5+ 5 5 5+ 5+

1 1* 1* 4 4 3 3 3 3

+ means the reference bit is set
* means the current hand

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

Physical Memory

• Evicted pages will be put into one of the lists in DRAM
• Free list: clean pages
• Modified list: dirty pages — needs to copy data to the disk

• Page fault to any of the page in the lists will bring the page back
• Reduces the demand of accessing disks

34

Recap: Page caching to cover the performance loss

RS of Process B FreelistModified
List

PagePage PagePage

RS of Process A

Page Page Page PagePage Page

2 pages 2 pages4 pages 4 pages

page fault!

Page Page

page fault!

PagePage

page fault!

PagePage

• How many of the following statements regarding the “free list” is/are
correct?
! It can improve the latency of a page fault
" It can reduce the latency of swapping out a page
It can incur disk accesses without page faults
$ It doesn’t allow a page in the list to be used for other purpose
A. 0
B. 1
C. 2
D. 3
E. 4

35

Free list in Babaoglu’s UNIXPoll close in

• How many of the following statements regarding the “free list” is/are
correct?
! It can improve the latency of a page fault
" It can reduce the latency of swapping out a page
It can incur disk accesses without page faults
$ It doesn’t allow a page in the list to be used for other purpose
A. 0
B. 1
C. 2
D. 3
E. 4

36

Free list in Babaoglu’s UNIXPoll close in

• How many of the following statements regarding the “free list” is/are
correct?
! It can improve the latency of a page fault
" It can reduce the latency of swapping out a page
It can incur disk accesses without page faults
$ It doesn’t allow a page in the list to be used for other purpose
A. 0
B. 1
C. 2
D. 3
E. 4

37

Free list in Babaoglu’s UNIX

— instead of swapping a page during the page fault, just take one from the free list
— No! This completely depend on how fast your disk/storage is!

— Do you remember how UNIX page replacement is triggered?

— No! You can use those pages as disk caches!

• So far, we need to trigger clock policy and swap in/out on each page
fault

• Why don’t we prepare more free pages each time so that we can
feed page faults with pages from the list?

• Free list
• When we need a page, take one from the free list
• Have a daemon running the background, managing this free list — you

can do this when system is not loaded
• If size of free list gets too small, trigger the clock algorithm to add pages

into the free list (by swapping out to disk)
• Free list can be used as a disk cache

38

Free list

• How many of following statements fit the page replacement policy that the paper
implements?
! It uses LRU (least-recently-used) as the page replacement policy
" Page replacement policy are only triggered whenever a page fault occurs
It attaches a timestamp to each page table entry instead of using the reference bit

from hardware
$ Processes are allocated a fixed set of pages and swap in/out to/from those pages
% The page replacement policy helps to guarantee the response time of short programs
A. 0
B. 1
C. 2
D. 3
E. 4

39

The page replacement policy proposed

clock
free list is under a threshold

reference bit

• How many of following statements fit the page replacement policy that the paper
implements?
! It uses LRU (least-recently-used) as the page replacement policy
" Page replacement policy are only triggered whenever a page fault occurs
It attaches a timestamp to each page table entry instead of using the reference bit

from hardware
$ Processes are allocated a fixed set of pages and swap in/out to/from those pages
% The page replacement policy helps to guarantee the response time of short programs
A. 0
B. 1
C. 2
D. 3
E. 4

40

The page replacement policy proposed

clock
free list is under a threshold

reference bit

Process just get a page from the free list whenever it needs

WSClcok - A Simple and Effective
Algorithm for Virtual Memory Management

Richard Carr and John Hennessy

46

• Local: select one page from the same process’ physical pages
for storing the demanding page when swapping is necessary
• VAX/VMS
• Original UNIX

• Global: select any page that was previously belong to any
process when swapping is necessary
• UNIX after Babaoglu
• Mach

47

Brief recap: what policies are used?

• How many of the following would happen in Babaoglu’s UNIX VM if we
keep increase the amount of concurrent processes and assume each
process uses some virtual memory in the system?
! The CPU utilization will keep increasing and stay at 100%
" The system may spend more time in context switching than real computation
The system may spend more time in swap in/out than real computation
$ Some process may not respond due to the high paging overhead
A. 0
B. 1
C. 2
D. 3
E. 4

48

Degree of parallelism and performancePoll close in

• How many of the following would happen in Babaoglu’s UNIX VM if we
keep increase the amount of concurrent processes and assume each
process uses some virtual memory in the system?
! The CPU utilization will keep increasing and stay at 100%
" The system may spend more time in context switching than real computation
The system may spend more time in swap in/out than real computation
$ Some process may not respond due to the high paging overhead
A. 0
B. 1
C. 2
D. 3
E. 4

49

Degree of parallelism and performancePoll close in

• The system overcommitted memory to tasks
• The system spends most time in paging, instead of making

meaningful progress

50

Thrashing: Paging overhead

Previously, we have seen how scheduling
policies can help improving “saturation”.

Now, let’s see how page replacement
policies can address this “thrashing”

Saturation: Context Switch Overhead

51

You think round robin should act like this —

0 1 2 3 4 5 6 7 8 9 10
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1

But the fact is —
P1 P2 P3Overhead

P1 -> P2
Overhead
P2 -> P3

Overhead
P3 -> P1

0 1 1 2 2 3
P1 P2Overhead

P1 -> P2
Overhead
P2 -> P3

3 4 4 5

•Your processor utilization can be very low if you switch frequently
•No process can make sufficient amount of progress within a given period of time
•It also takes a while to reach your turn

• Thrashing — when memory are overcommitted
• The system is busy paging
• The processor is idle waiting

• Saturation — when processors are overcommitted
• The system is busy context switching and scheduling
• The processor is busy but not contributing to the running program

52

Thrashing v.s. Saturation

• How many of the following would happen in Babaoglu’s UNIX VM if we
keep increase the amount of concurrent processes and assume each
process uses some virtual memory in the system?
! The CPU utilization will keep increasing and stay at 100%
" The system may spend more time in context switching than real computation
The system may spend more time in swap in/out than real computation
$ Some process may not respond due to the high paging overhead
A. 0
B. 1
C. 2
D. 3
E. 4

53

Degree of parallelism and performance

• Take advantages from both local and global page replacement
policies
• Global — simplicity, adaptive to process demands
• Local — prevent thrashing

54

Why WS-Clock

• Working set: the set of pages used in a certain number of
recent accesses

• Assume these recently referenced pages are likely to be
referenced again soon (temporal locality)

• Evict pages that are not referenced in a certain period of time
• Swap out may occur even if there is no page faults

• A process is allowed to be executed only if the working set size
fits in the physical memory

55

Working Set Algorithm

• Use working set policy to decide how many pages can a
process use
• Return a page to the free list if there exists a page in the process’

working set that hasn’t been access for a certain period of time
• If the free list is lower than a threshold

• Trigger the clock policy to select pages from any process
• On a page fault

• Take a page from the free list

56

WSClock

• Wherever you need to reclaim a page —
1. Examine the PTE pointed to by clock hand.
2. If reference bit is set

1. Clear reference bit;
2. Advance clock hand;
3. Goto Done.

3. If reference bit is not set
1. If the timestamp of the PTE is older than a threshold

1. Write the page to disk if it’s dirty and use this page
2. Goto Done

2. Otherwise
1. Advance clock hand
2. Goto 1.

4. Done
5. If no victim page is chosen, randomly pick one

57

WSClock

• One of the most important page replacement policies in
practice

58

The impact of WSClock

Sample Midterm

59

• This is just a sample midterm for you to practice.
• Questions listed in multiple choices can be transformed as free

answer or short answer questions in the midterm.
• Same thing for sample free answer questions and short answer

questions

60

Disclaimer

• Rules
• Cheating is not allowed and you will receive an F once we identified that
• Will release on 2/10/2021 0:00am and due on 2/15/2021 11:59:00pm
• You will have to find a consecutive, non-stop 80-minute slot with this period
• One time, cannot reinitiate — please make sure you have a stable system and

network
• No late submission is allowed

• Format
• 15 multiple choices — 30%
• 4 short answer questions — 38%

— You have to explain everything within 30 words.
• 3 free answer questions — 32%

61

Regarding the “true” midterm

• Which of the following information does NOT the OS need to
track?

A. Stack pointer
B. Program counter
C. Scheduling information
D. Registers
E. None of the above

62

What OS must track for a process?

• Which process component(s) must we replicate in order to take
advantage of multiple cores/CPUs?

A. The address space (i.e. memory)
B. Misc. resources (e.g. open files)
C. Execution state (e.g. PC, registers, stack pointer)
D. More than one of the above
E. None of the above (explain).

63

What do we need for parallel processing

• How many the following is/are true regarding the proposed hierarchical
design in Dijkstra’s THE.
! Hierarchical design facilitates debugging
" Hierarchical design makes verification of system components easier
Hierarchical design reduces the overhead of running a single process
$ The proposed hierarchical design allows layer 0 to schedule

I/O & peripherals
A. 0
B. 1
C. 2
D. 3
E. 4

64

Is hierarchical design a good idea?

• What’s the main reason why HYDRA rejects the layering
proposed in Dijkstra’s THE?

A. Enhance functionality
B. Support concurrency
C. Facilitate debugging
D. Improve flexibility
E. Boost performance

65

Rejection of layering

• Regarding HYDRA, how many of the following statements is/are correct?
! The procedure call overhead of using capability is larger than without using

capability
" A procedure can have a different capability from the caller
If the caller does not have the permission of an operation on an object, the

caller may still perform that operation by calling a procedure
$ Only the kernel can alter capabilities
A. 0
B. 1
C. 2
D. 3
E. 4

66

Understanding about HYDRA

• Regarding processes (or say tasks in Mach) and threads, how many of the
following statements is/are correct?
! Threads within a process share the same address space
" Threads within a process can communicate and synchronize using shared

memory
Processes can communicate through messages
$ Two processes may only be able to communicate through messages
A. 0
B. 1
C. 2
D. 3
E. 4

67

Processes and threads

• Regarding the protection in UNIX, how many of the followings is/are correct?
! The same file may have different permissions for different user-id
" The owner of the file may not have the permission of writing a file
If the user does not have a permission to access a device, set-user-id will

guarantee that the user will not be able to access that device
$ In the UNIX system described in this paper, if the file owner is “foo”, then the

user “bar” will have the same permission as another user (e.g. “xyz”).
A. 0
B. 1
C. 2
D. 3
E. 4

68

Protection

• Although Mach’s design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

69

Why not microkernels?

• Which of the following is true about kernel?
A. It executes as a process
B. It is always executing, in support of other processes
C. It should execute as little as possible.
D. A & B
E. B & C

70

What we learned about kernel

• How many of the following statements is/are true regarding interrupt
and trap?
! Both interrupt and trap can incur context switch
" Both interrupt and trap are raised from hardware
Both interrupt and trap require OS kernel to handle
$ Both interrupt and trap are machine dependent features
A. 0
B. 1
C. 2
D. 3
E. 4

71

Interrupt and Trap

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

72

Did they achieve their goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• How many of the following tasks in virtual memory management
always requires the assistance of operating system?
! Address translation
" Growth of process address space
Tracking free physical memory locations
$ Maintaining mapping tables
A. 0
B. 1
C. 2
D. 3
E. 4

73

The role of the OS in virtual memory management

• The above shows the address partition in x86-64. According to this information,
how many of the following is/are true?
! x86-64 provides 16EB virtual memory space
" each node in the hierarchical page contains 512 entries
the default page size is 4KB
$ if only three level indexes are used, x86-64 can support 2MB page size
A. 0
B. 1
C. 2
D. 3
E. 4

74

Address translation in x86-64
63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)

SignExt L4 index L3 index L2 index L1 index page offset

• How many of the following statements regarding the “free list” is/are
correct?
! It can improve the latency of a page fault
" It can reduce the latency of swapping out a page
It can incur disk accesses without page faults
$ It doesn’t allow a page in the list to be used for other purpose
A. 0
B. 1
C. 2
D. 3
E. 4

75

Free list

• Comparing user-level threads and kernel threads, please identify how many of
the following statements are correct.
! The overhead of switching threads is smaller for user-level threads
" The OS scheduler can directly control the scheduling of kernel thread, but not for

user-level threads
A user-level thread can potentially block all other threads in the same process
$ Implementing the user-level thread library can be achieved without modifying the

OS kernel
A. 0
B. 1
C. 2
D. 3
E. 4

76

User-level v.s kernel threads

• Differences among 4 types of kernels
• Differences between threads and processes
• The pros and cons between using threads and processes to parallelize an

application
• Differences between global and local page replacement policy. Examples of

using global/local page replacement policies?
• What is “free list”? How is it used in the system?
• Differences among VAX/VMS and Mach’s VM. Why initial version of UNIX’s

VM resembles VAX/VMS?
• Differences between UNIX in the 70’s paper and now. Why?
• What is segmentation fault? What is page fault?
• What is thrashing? What’s saturation?

77

Answer the following within 30 words

• What problem does multi-level scheduling policy try to
address? What they proposed to address the issue?

• What will happen during a context switch? How expensive is a
context?

78

Think deep

• Assume your OS uses LRU policy when handle page faults.
Also assume that we have 3 physical memory pages available.
How many page faults will you see in the following page
reference sequence?

• What if we use FIFO?
• What if we use Clock policy?
• Can you propose a policy outperform both FIFO and Clock?

79

Page replacement policy

0 1 2 3 4 5 6 7 8 9 10 11

Page # 9 4 8 7 9 4 8 7 9 4 8 7

• What functions to use for P, Q, R, S in this problem?
• What variables to use for W, X, Y, Z in this problem?
• Can you use spinlock to achieve the same effect?
• What if we have multiple producers and consumers?

80

Bounded-buffer/producer-consumer problem

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 Sem_init(&filled, 0);
 Sem_init(&empty, BUFF_SIZE);
 while(TRUE) {
 int item = …;
 P(&W);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Q(&X);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 R(&Y);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 // do something w/ item
 S(&Z);
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
sem_t filled, empty;

• Consider the following code
fork();
printf(“moo\n”);
fork();
printf(“oink\n”);
fork();
printf(“baa\n”);

What is the output?

81

More forks

• How to implement a simple shell that can launch a user
program given from the command line?

• How to implement a shell that can redirect program output to a
file?

82

Programming questions in C

• No lecture this Thursday — relocate those 80 minutes to anytime you like
before EOD 2/10.

• Reading quizzes due next Thursday
• New office hour

• M 3p-4p and Th 9a-10a
• Use the office hour Zoom link, not the lecture one

• Project released
• Groups in 2
• Pull the latest version — had some changes for later kernel versions

https://github.com/hungweitseng/CS202-ResourceContainer
• Install an x86-64 Ubuntu Linux 16.04.07 (or later) VM as soon as you can!

83

Announcement

https://github.com/hungweitseng/CS202-ResourceContainer

Computer
Science &
Engineering

202

