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Recap: von Neumman Architecture
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By loading different programs into memory, 
your computer can perform different functions



Operating System

Operating Systems — Virtualization, Concurrency, Persistency
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• Process — the abstraction of a von Neumann machine 
• Virtual memory — the abstraction of memory 
• Thread — the abstraction of a processor 

• Threads can share virtual memory if they come from the same 
process 

• You don’t have to create another page table when creating a thread
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Recap: abstractions in operating systems



• Mechanisms of maintaining the abstraction 
• Segmentation 
• Demanding page + Swapping 

• Hierarchical page table to save space overhead in mapping 
• TLB (translation look-aside buffer) to reduce the translation latency — CS203 

• Policies to decide how big the space in the physical main memory each process 
can enjoy 

• Working set/page local replacement — VMS/UNIX/Mach 
• Global page replacement — Babaoglu’s UNIX 

• Policies to decide what page to stay in the physical main memory  
• FIFO + freelist — VMS/UNIX/Mach 
• Clock+ freelist — Babaoglu’s UNIX  
• WS-Clock — After Carr and Hennessy 
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Recap: Virtual memory



Current scoreboard
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• How our systems interact with I/O 
• The basics of storage devices 
• File
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Outline



The computer is now like a small network
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Physical main memory is not directly linking to 
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• Registers 
• Command: receiving commands from host 
• Status: tell the host the status of the device 
• Data: the location of exchanging data 

• Microcontroller 
• Memory 
• ASICs
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What’s in each device?

Registers Microcontroller

MemoryASICs

ASIC (e.g. NAND)
DRAM

Controller + Registers



How your application interact with peripherals
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How do I know if the device has something for me? Or … 
How the device know if I have something for it?



• Comparing polling and interrupt, how many of the following statements are 
true 
① Polling mechanism itself generally consume more CPU time than interrupt 
② Interrupt can improve CPU utilization if the device only needs service from the 

processor occasionally 
③ Interrupt allows asynchronous I/O in programs 
④ The number of instructions of handling an event after polling is higher than 

handling the same event after receiving an interrupt 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Polling v.s. Interrupt — Round 1
Poll close in
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Polling v.s. Interrupt — Round 1

Not related to polling/interrupt

You can context switch!
Your function can return immediately

You need to have a loop that periodically polls



• The device signals the processor only when 
the device requires the processor/OS 
handle some tasks/data 

• The processor only signals the device when 
necessary
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System Interconnect

• The processor/OS constantly asks if the 
device (e.g. examine the status register of 
the device) is ready to or requires the 
processor/OS handle some tasks/data 

• The OS/processor executes corresponding 
handler if the device can handle demand 
tasks/data or has tasks/data ready
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• Regarding using interrupts and polling for communicating peripheral devices, how 
many of the followings is/are correct? 
① Using interrupts may increase the end-to-end latency for a process comparing with 

polling 
② Using interrupts may increase the cache miss rates comparing with polling 
③ Using interrupts for high-speed storage devices may decrease the power consumption of 

the processor 
④ The latency of serving I/O requests using interrupts can be longer than using polling if 

context switches occur during the I/O 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Interrupt v.s. Polling — Round 2
Poll close in
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Interrupt v.s. Polling — Round 2
Poll close in



• Load architectural states from process control block (somewhere in the main memory, 
potentially a cache miss, TLB miss) — takes several microseconds if everything is in the 
physical memory 

• Set processor registers according to the loaded architectural states 
• Set the CR3 (page table base register in x86) register to identify the root page table 

node in the hierarchical page table 
• Set the RIP (program counter in x86) to the previous execution 

• Restore virtual memory address 
• You must load the root page table node to the main memory at least. 
• TLB flush 

• Invalidate all entries in the TLB 
• Most TLBs are not tagged, so you’ve to do this 

• You DO NOT have to load every page content back from disk — remember that we 
have demand paging!
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Recap: What happens during context switch



To switch or not to switch that’s the question.
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• Cache warm up cost when you switch back 
• TLB warm up cost
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But context switch overhead is not the only thing



What if we don’t switch?
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• Regarding using interrupts and polling for communicating peripheral devices, how 
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Interrupt v.s. Polling — Round 2

Because you context switched!

Because you context switched!

True, because your processor is free and may be idle — allowing DVFS to lower the clock rate

Yes. It’s still because  you have to switch back and warm up cache



• Interrupt is only a good option if the benefit from context 
switching or energy saving is larger than waiting for the I/O to 
finish 

• In general, applying polling on faster devices 
• DRAM 
• Non-volatile memory (e.g., flash, PCM)
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When should we poll? When should we interrupt



Case study: interacting with hard 
disk drives
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• Position the head to proper track 
(seek time) 

• Rotate to desired sector.
(rotational delay) 

• Read or write  data from/to disk to 
in the unit of sectors (e.g. 512B) 

• Takes at least 5ms for each 
access
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Hard Disk Drive

tracksector

cylinder

Each sector is identified, locate by an “block address”

head



Latency Numbers Every Programmer Should Know 
(2020 Version)
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Operations Latency (ns) Latency (us) Latency (ms)

L1 cache reference 0.5 ns ~ 1 CPU cycle

Branch mispredict 3 ns

L2 cache reference 4 ns 14x L1 cache

Mutex lock/unlock 17 ns

Send 2K bytes over network 44 ns

Main memory reference 100   ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 2,000 ns 2 us

Read 1 MB sequentially from memory 3,000  ns 3 us

Read 4K randomly from SSD* 16,000   ns 16 us

Read 1 MB sequentially from SSD* 49,000  ns 49 us

Round trip within same datacenter 500,000   ns 500 us

Read 1 MB sequentially from disk 825,000   ns 825 us

Disk seek 2,000,000   ns 2,000 us 2 ms 4x datacenter roundtrip

Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html


• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8 
ms. Assume the controller overhead is 0.2ms. What’s the 
latency and bandwidth of accessing a 512B sector?
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Seagate Barracuda 12 

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+
0.5

1024

300 +0.2 ms

= 8 ms + 4.17 ms + 0.00167 us + 0.2 ms = 12.36 ms

= 0.5KB
12.36ms

= 40.45KB/sec



• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8 
ms. Assume the controller overhead is 0.2ms. What’s the 
latency and bandwidth of accessing consecutive 4MB data?
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Seagate Barracuda 12 

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+ 4
300

+0.2 ms

= 8 ms + 4.17 ms + 13.33 ms + 0.2 ms = 25.69 ms

= 4MB
25.69ms

= 155.7 MB/sec



Numbering the disk space with block addresses
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How your application interact with peripherals
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The application needs to be tightly coupled with the underlying device — 
Not generic 

Not portable

read/write — 0, 512, 4096, … (block address) 



–David Wheeler

All problems in computer science can be solved by 
another level of indirection
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The file & file system abstraction
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• Regarding “files” in the “basic” UNIX operating system, how many of the 
following statements is/are correct? 
① Every device can be mapped to a file 
② The UNIX file system uses a hierarchical structure and directory is also a file in 

UNIX 
③ The UNIX file system runs in the kernel space 
④ The UNIX file system needs to maintain the information regarding the content 

type of files (e.g. image, text, C program) 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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File abstraction in UNIX
Poll close in
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File abstraction in UNIX
Poll close in



What we’ve learned in the past…
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File abstraction in UNIX



How your application interact with peripherals
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How your application reaches H.D.D.
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int fd, nr, nw; 
void *in_buff; 
in_buff = malloc(BUFF_SIZE); 

fd1 = open(“infile.txt”, O_RDONLY); 
fd2 = open(“outfile.txt”, O_RDWR | O_CREAT); 
nr = read(fd1, in_buff, BUFF_SIZE); 
nw = write(fd2, in_buff, BUFF_SIZE); 
lseek(fd1, -8, SEEK_END); 
nr = read(fd1, in_buff, 8); // read last 8 bytes 
// more fancy stuff here… 
close(fd1); 
close(fd2);
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How you access files in C



Kernel

File System

open
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fd = open(“infile.txt”);
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Kernel

File System

read
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file descriptor table
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buff:



• Namespace has tree-like structure 
• Root directory (/) with subdirectories, each containing its own 

subdirectories 
• Links break the tree analogy
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Hierarchical File System Structure
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• The “/“ on storage device A will become /backup now!
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Mount

Storage Device A
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Storage Device B
/

usr home var backup



The design of a file system
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Recap: Numbering the disk space with block addresses
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• How do we locate files? 
• How do we manage hierarchical namespace? 
• How do we manage file and file system metadata? 

• How do we allocate storage space? 
• How do we make the file system fast? 
• How do we ensure file integrity?
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Questions for file systems



How the original UNIX file system use disk blocks
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• Contains critical file system information 
• The volume size 
• The number of nodes 
• Pointer to the head of the free list 

• Located at the very beginning of the file system
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Superblock — metadata of the file system



• File types: directory, file 
• File size 
• Permission 
• Attributes
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inode — metadata of each file



• File types: directory, file 
• File size 
• Permission 
• Attributes 
• Types of pointers: 

• Direct: Access single data block 
• Single Indirect: Access n data blocks 
• Double indirect: Access n2 data blocks 
• Triple indirect: Access n3 data blocks 

• inode has 15 pointers: 12 direct, 1 each 
single-, double-, and triple-indirect 

• If data block size is 512B and n = 256: 
max file size = 
(12+256+2562+2563)*512 = 8GB
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Unix inode



• For a file /home/hungwei/CS202/foo.c , how many accesses 
does the original/old, unoptimized UNIX file system need to 
perform to reach the actual file content in the worst case? 

A. 4 
B. 6 
C. 8 
D. 9 
E. At least 10

51

Number of disk accesses
Poll close in
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Number of disk accesses



• Scenario: User wants to access 
/home/hungwei/CS202/foo.c 

• Procedure: File system will… 
• Open “/” file (This is in known from superblock.) 
• Locate entry for “home,” open that file 
• Locate entry for “hungwei”, open that file 
• … 
• Locate entry for “foo.c” and open that file 

• Let’s use “strace” to see what happens
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What must be done to reach your files



How to reach /home/hungwei/CS202/foo.c
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Disk blocks
File System Metadata (Superblock)

File Metadata

Superblock inode 1
owner_id 0
permission 755
type dir
address 24
…

/
usr 13
var 14

home 15

inode 15
owner_id 0

permission 755
type dir

address 31
…

index node (inode)

home
tyler 20

hungwei 21

inode 21
owner_id 0

permission 755
type dir

address 34
…

hungwei
CS202 16

Dropbox 17

inode 16
owner_id 0

permission 755
type dir

address 44
…

CS202
bar.c 18
foo.c 19

inode 19
owner_id 0

permission 755
type file

address 55
…

#include 
<stdio.h> 
. 
. 
. 
. 
. 



• Reading quizzes due this Thursday 
• Office hour 

• M 3p-4p and Th 9a-10a 
• Use the office hour Zoom link, not the lecture one 

• Midterm 
• Median: 76 
• You may find your grade and reference solution 

(midterm and final section) in iLearn 
• One week regrading policy, no regrading request 

after 2/23 — check the website for details 
• Project 

• Due 3/2 
• No late submission is allowed
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