
I/O & Basics of File Systems
Hung-Wei Tseng

Recap: von Neumman Architecture

2

Processor

Memory

Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

Operating System

Operating Systems — Virtualization, Concurrency, Persistency

3

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

API API API API API API API API

Process

Thread
Virtual Memory

System call

• Process — the abstraction of a von Neumann machine
• Virtual memory — the abstraction of memory
• Thread — the abstraction of a processor

• Threads can share virtual memory if they come from the same
process

• You don’t have to create another page table when creating a thread

4

Recap: abstractions in operating systems

• Mechanisms of maintaining the abstraction
• Segmentation
• Demanding page + Swapping

• Hierarchical page table to save space overhead in mapping
• TLB (translation look-aside buffer) to reduce the translation latency — CS203

• Policies to decide how big the space in the physical main memory each process
can enjoy

• Working set/page local replacement — VMS/UNIX/Mach
• Global page replacement — Babaoglu’s UNIX

• Policies to decide what page to stay in the physical main memory
• FIFO + freelist — VMS/UNIX/Mach
• Clock+ freelist — Babaoglu’s UNIX
• WS-Clock — After Carr and Hennessy

5

Recap: Virtual memory

Current scoreboard

6

Red Blue

16 16

• How our systems interact with I/O
• The basics of storage devices
• File

7

Outline

The computer is now like a small network

8

SATA SSD

HDD

Wireless NIC

NIC

Processor

DRAM

processor-memory bus

GPU
Accelerator

NVMe SSD

FPGA/ASIC

Physical main memory is not directly linking to
the system interconnect

• Registers
• Command: receiving commands from host
• Status: tell the host the status of the device
• Data: the location of exchanging data

• Microcontroller
• Memory
• ASICs

9

What’s in each device?

Registers Microcontroller

MemoryASICs

ASIC (e.g. NAND)
DRAM

Controller + Registers

How your application interact with peripherals

10

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer

data

How do I know if the device has something for me? Or …
How the device know if I have something for it?

• Comparing polling and interrupt, how many of the following statements are
true
① Polling mechanism itself generally consume more CPU time than interrupt
② Interrupt can improve CPU utilization if the device only needs service from the

processor occasionally
③ Interrupt allows asynchronous I/O in programs
④ The number of instructions of handling an event after polling is higher than

handling the same event after receiving an interrupt
A. 0
B. 1
C. 2
D. 3
E. 4

11

Polling v.s. Interrupt — Round 1
Poll close in

• Comparing polling and interrupt, how many of the following statements are
true
① Polling mechanism itself generally consume more CPU time than interrupt
② Interrupt can improve CPU utilization if the device only needs service from the

processor occasionally
③ Interrupt allows asynchronous I/O in programs
④ The number of instructions of handling an event after polling is higher than

handling the same event after receiving an interrupt
A. 0
B. 1
C. 2
D. 3
E. 4

12

Polling v.s. Interrupt — Round 1
Poll close in

• Comparing polling and interrupt, how many of the following statements are
true
① Polling mechanism itself generally consume more CPU time than interrupt
② Interrupt can improve CPU utilization if the device only needs service from the

processor occasionally
③ Interrupt allows asynchronous I/O in programs
④ The number of instructions of handling an event after polling is higher than

handling the same event after receiving an interrupt
A. 0
B. 1
C. 2
D. 3
E. 4

13

Polling v.s. Interrupt — Round 1

Not related to polling/interrupt

You can context switch!
Your function can return immediately

You need to have a loop that periodically polls

• The device signals the processor only when
the device requires the processor/OS
handle some tasks/data

• The processor only signals the device when
necessary

14

Interrupt

System Interconnect

CPU System Memory

(3)

(4) (1)

(2)

Registers Microcontroller

MemoryASICs

System Interconnect

• The processor/OS constantly asks if the
device (e.g. examine the status register of
the device) is ready to or requires the
processor/OS handle some tasks/data

• The OS/processor executes corresponding
handler if the device can handle demand
tasks/data or has tasks/data ready

15

Polling

(2) (3)

CPU System Memory

Registers Microcontroller

MemoryASICs

(1) (4)

• Regarding using interrupts and polling for communicating peripheral devices, how
many of the followings is/are correct?
① Using interrupts may increase the end-to-end latency for a process comparing with

polling
② Using interrupts may increase the cache miss rates comparing with polling
③ Using interrupts for high-speed storage devices may decrease the power consumption of

the processor
④ The latency of serving I/O requests using interrupts can be longer than using polling if

context switches occur during the I/O
A. 0
B. 1
C. 2
D. 3
E. 4

16

Interrupt v.s. Polling — Round 2
Poll close in

• Regarding using interrupts and polling for communicating peripheral devices, how
many of the followings is/are correct?
① Using interrupts may increase the end-to-end latency for a process comparing with

polling
② Using interrupts may increase the cache miss rates comparing with polling
③ Using interrupts for high-speed storage devices may decrease the power consumption of

the processor
④ The latency of serving I/O requests using interrupts can be longer than using polling if

context switches occur during the I/O
A. 0
B. 1
C. 2
D. 3
E. 4

17

Interrupt v.s. Polling — Round 2
Poll close in

• Load architectural states from process control block (somewhere in the main memory,
potentially a cache miss, TLB miss) — takes several microseconds if everything is in the
physical memory

• Set processor registers according to the loaded architectural states
• Set the CR3 (page table base register in x86) register to identify the root page table

node in the hierarchical page table
• Set the RIP (program counter in x86) to the previous execution

• Restore virtual memory address
• You must load the root page table node to the main memory at least.
• TLB flush

• Invalidate all entries in the TLB
• Most TLBs are not tagged, so you’ve to do this

• You DO NOT have to load every page content back from disk — remember that we
have demand paging!

18

Recap: What happens during context switch

To switch or not to switch that’s the question.

19

CPU

I/O Device

P1 P2 P1

Accessing Device

Context Switch
P1 -> P2

Context Switch
P2 -> P1I/O stack

system call

Kernel

device received
the command interrupt

If TContext switch P1->P2 + TContext switch P2->P1 < T Accessing peripherals

makes sense to context switch

I/O stack

Kernel

• Cache warm up cost when you switch back
• TLB warm up cost

20

But context switch overhead is not the only thing

What if we don’t switch?

21

CPU

I/O Device

P1 P1

Accessing Device

I/O stack

system call

Kernel

device received
the command interrupt

I/O stack

Kernel

CPU is idle!
Let’s lower the frequency to save power!

Now, this will take longer as we need to
wait for the clock rate back to normal!

• Regarding using interrupts and polling for communicating peripheral devices, how
many of the followings is/are correct?
① Using interrupts may increase the end-to-end latency for a process comparing with

polling
② Using interrupts may increase the cache miss rates comparing with polling
③ Using interrupts for high-speed storage devices may decrease the power consumption of

the processor
④ The latency of serving I/O requests using interrupts can be longer than using polling if

context switches occur during the I/O
A. 0
B. 1
C. 2
D. 3
E. 4

22

Interrupt v.s. Polling — Round 2

Because you context switched!

Because you context switched!

True, because your processor is free and may be idle — allowing DVFS to lower the clock rate

Yes. It’s still because you have to switch back and warm up cache

• Interrupt is only a good option if the benefit from context
switching or energy saving is larger than waiting for the I/O to
finish

• In general, applying polling on faster devices
• DRAM
• Non-volatile memory (e.g., flash, PCM)

23

When should we poll? When should we interrupt

Case study: interacting with hard
disk drives

24

• Position the head to proper track
(seek time)

• Rotate to desired sector.
(rotational delay)

• Read or write data from/to disk to
in the unit of sectors (e.g. 512B)

• Takes at least 5ms for each
access

25

Hard Disk Drive

tracksector

cylinder

Each sector is identified, locate by an “block address”

head

Latency Numbers Every Programmer Should Know
(2020 Version)

26

Operations Latency (ns) Latency (us) Latency (ms)

L1 cache reference 0.5 ns ~ 1 CPU cycle

Branch mispredict 3 ns

L2 cache reference 4 ns 14x L1 cache

Mutex lock/unlock 17 ns

Send 2K bytes over network 44 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 2,000 ns 2 us

Read 1 MB sequentially from memory 3,000 ns 3 us

Read 4K randomly from SSD* 16,000 ns 16 us

Read 1 MB sequentially from SSD* 49,000 ns 49 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from disk 825,000 ns 825 us

Disk seek 2,000,000 ns 2,000 us 2 ms 4x datacenter roundtrip

Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html

• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What’s the
latency and bandwidth of accessing a 512B sector?

27

Seagate Barracuda 12

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+
0.5

1024

300 +0.2 ms

= 8 ms + 4.17 ms + 0.00167 us + 0.2 ms = 12.36 ms

= 0.5KB
12.36ms

= 40.45KB/sec

• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What’s the
latency and bandwidth of accessing consecutive 4MB data?

28

Seagate Barracuda 12

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+ 4
300

+0.2 ms

= 8 ms + 4.17 ms + 13.33 ms + 0.2 ms = 25.69 ms

= 4MB
25.69ms

= 155.7 MB/sec

Numbering the disk space with block addresses

29

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks

How your application interact with peripherals

30

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer

data

The application needs to be tightly coupled with the underlying device —
Not generic

Not portable

read/write — 0, 512, 4096, … (block address)

–David Wheeler

All problems in computer science can be solved by
another level of indirection

31

The file & file system abstraction

32

• Regarding “files” in the “basic” UNIX operating system, how many of the
following statements is/are correct?
① Every device can be mapped to a file
② The UNIX file system uses a hierarchical structure and directory is also a file in

UNIX
③ The UNIX file system runs in the kernel space
④ The UNIX file system needs to maintain the information regarding the content

type of files (e.g. image, text, C program)
A. 0
B. 1
C. 2
D. 3
E. 4

33

File abstraction in UNIX
Poll close in

• Regarding “files” in the “basic” UNIX operating system, how many of the
following statements is/are correct?
① Every device can be mapped to a file
② The UNIX file system uses a hierarchical structure and directory is also a file in

UNIX
③ The UNIX file system runs in the kernel space
④ The UNIX file system needs to maintain the information regarding the content

type of files (e.g. image, text, C program)
A. 0
B. 1
C. 2
D. 3
E. 4

34

File abstraction in UNIX
Poll close in

What we’ve learned in the past…

35

• Regarding “files” in the “basic” UNIX operating system, how many of the
following statements is/are correct?
① Every device can be mapped to a file
② The UNIX file system uses a hierarchical structure and directory is also a file in

UNIX
③ The UNIX file system runs in the kernel space
④ The UNIX file system needs to maintain the information regarding the content

type of files (e.g. image, text, C program)
A. 0
B. 1
C. 2
D. 3
E. 4

36

File abstraction in UNIX

How your application interact with peripherals

37

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer

data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite/
fopen/fclose open/close

How your application reaches H.D.D.

38

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer

data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite — input.bin/output.bin

fread/fwrite — input.bin/output.bin

Buffer
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses

read/write — block addresses

The application only needs
to interact with files!

int fd, nr, nw;
void *in_buff;
in_buff = malloc(BUFF_SIZE);

fd1 = open(“infile.txt”, O_RDONLY);
fd2 = open(“outfile.txt”, O_RDWR | O_CREAT);
nr = read(fd1, in_buff, BUFF_SIZE);
nw = write(fd2, in_buff, BUFF_SIZE);
lseek(fd1, -8, SEEK_END);
nr = read(fd1, in_buff, 8); // read last 8 bytes
// more fancy stuff here…
close(fd1);
close(fd2);

39

How you access files in C

Kernel

File System

open

40

infile.txt

fd PIDs Location

0 8,12

1

2

3

fd = open(“infile.txt”);
22

file descriptor table

1

Kernel

File System

read

41

infile.txt

fd PIDs Location

0 8,12

1

2

3

read(fd, buff, n);
22

file descriptor table

1

buff:

• Namespace has tree-like structure
• Root directory (/) with subdirectories, each containing its own

subdirectories
• Links break the tree analogy

42

Hierarchical File System Structure

/

usr home var

local bin hungwei tyler spool logsrc

tylervim

• The “/“ on storage device A will become /backup now!

43

Mount

Storage Device A

/

usr home var

local bin hungwei tyler spool logsrc

tylervim

Storage Device B
/

usr home var backup

The design of a file system

44

Recap: Numbering the disk space with block addresses

45

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks

• How do we locate files?
• How do we manage hierarchical namespace?
• How do we manage file and file system metadata?

• How do we allocate storage space?
• How do we make the file system fast?
• How do we ensure file integrity?

46

Questions for file systems

How the original UNIX file system use disk blocks

47

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks
File System Metadata (Superblock)

Information about the “file system” itself.
(e.g. free blocks)

File Metadata Information about the
“files”. e.g. inodes

Data

Data

• Contains critical file system information
• The volume size
• The number of nodes
• Pointer to the head of the free list

• Located at the very beginning of the file system

48

Superblock — metadata of the file system

• File types: directory, file
• File size
• Permission
• Attributes

49

inode — metadata of each file

• File types: directory, file
• File size
• Permission
• Attributes
• Types of pointers:

• Direct: Access single data block
• Single Indirect: Access n data blocks
• Double indirect: Access n2 data blocks
• Triple indirect: Access n3 data blocks

• inode has 15 pointers: 12 direct, 1 each
single-, double-, and triple-indirect

• If data block size is 512B and n = 256:
max file size =
(12+256+2562+2563)*512 = 8GB

50

Unix inode

• For a file /home/hungwei/CS202/foo.c , how many accesses
does the original/old, unoptimized UNIX file system need to
perform to reach the actual file content in the worst case?

A. 4
B. 6
C. 8
D. 9
E. At least 10

51

Number of disk accesses
Poll close in

• For a file /home/hungwei/CS202/foo.c , how many accesses
does the original/old, unoptimized UNIX file system need to
perform to reach the actual file content in the worst case?

A. 4
B. 6
C. 8
D. 9
E. At least 10

52

Number of disk accesses
Poll close in

• For a file /home/hungwei/CS202/foo.c , how many accesses
does the original/old, unoptimized UNIX file system need to
perform to reach the actual file content in the worst case?

A. 4
B. 6
C. 8
D. 9
E. At least 10

53

Number of disk accesses

• Scenario: User wants to access
/home/hungwei/CS202/foo.c

• Procedure: File system will…
• Open “/” file (This is in known from superblock.)
• Locate entry for “home,” open that file
• Locate entry for “hungwei”, open that file
• …
• Locate entry for “foo.c” and open that file

• Let’s use “strace” to see what happens

54

What must be done to reach your files

How to reach /home/hungwei/CS202/foo.c

55

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks
File System Metadata (Superblock)

File Metadata

Superblock inode 1
owner_id 0
permission 755
type dir
address 24
…

/
usr 13
var 14

home 15

inode 15
owner_id 0

permission 755
type dir

address 31
…

index node (inode)

home
tyler 20

hungwei 21

inode 21
owner_id 0

permission 755
type dir

address 34
…

hungwei
CS202 16

Dropbox 17

inode 16
owner_id 0

permission 755
type dir

address 44
…

CS202
bar.c 18
foo.c 19

inode 19
owner_id 0

permission 755
type file

address 55
…

#include
<stdio.h>
.
.
.
.
.

• Reading quizzes due this Thursday
• Office hour

• M 3p-4p and Th 9a-10a
• Use the office hour Zoom link, not the lecture one

• Midterm
• Median: 76
• You may find your grade and reference solution

(midterm and final section) in iLearn
• One week regrading policy, no regrading request

after 2/23 — check the website for details
• Project

• Due 3/2
• No late submission is allowed

56

Announcement

0
5

10
15
20
25
30
35
40
45
50
55
60

1 3 5 7 9 1113151719212325

Weighted Total (iLearn)

A+ A A- B+ B

つづく

Computer
Science &
Engineering

202

