File systems: case studies

Hung-Wei Tseng

Abstractions in operating systems

- Process — the abstraction of a von Neumann machine

- Thread — the abstraction of a processor
- Virtual memory — the abstraction of memory

- File system — the abstraction of space/location on a storage
device, the storage device itself, as well as other peripherals

Recap: The "“file” abstraction

- What is a file?

- A logical unit of storage (e.g. an mp3), a device or a directory
- Operations: open, close, read, write

- What is a file system?

- A logically-structured collection of files

- Defines the namespace of a file

- Provides persistence, access control, and other protection/security
mechanisms

- Files / File System provides an abstraction for secondary
storage

Recap: How your application reaches storage

User data - fread/fwrite — input.bin/output.bin

M Aeiy Buffer

File system
read/write — 0, 512, 4096, .. (block address)

Buffer Device independent I/O interface (e.g.ioctl)
read/write — block addresses

Device Driver Device Driver Device Driver

Device Controller [Device Controller Device Controller
Hardware

4

Kernel 4.+,

Recap: How the original UNIX file system use disk blocks

Information about the “file system" itself.

Disk blocks (e.g. free blocks)

File System Metadata (Superblock)
File Metadata

Information about the
“files". e.g.inodes

sector

5 cylinder

How to reach /home/hungweil/CS202/foo.c

Superblock el] index node (inode)

DISk bIOCks Mﬁ. m

0 File System Metadata (Superblock) 7 m.!-unl m v IEI!. m-

Fila Matadata ‘

“address | 24
—
11 dlsk acce§ses —each frincluee | e To0

<stdio.h>
takes more than10ms—in | I
CS202

1
barc 118 gettlng a fllel

| |
fooc |19 : —
m ™=

I
JWEI node

ownerid | O m MIII
permission | 755 - - Mﬂa

Current scoreboard

Red Blue

17 17

Outline

- BSD's Fast File System
- Log-structured File System

A Fast File System for UNIX

Marshall K. McKusick, William N. Joy, Samuel J. Leffler and Robert S.
Fabry
Computer Systems Research Group

Why do we care about fast file system

- We want better performance!!!
- We want new features!

Let's make file systems great again!

10

Problems in the “old” file system

- Lots of seeks when accessing a file
- Inodes are separated from data locations
- data blocks belong to the same file can be spread out

- Low bandwidth utilization
- only the very last is retrieving data
- 1 out 11 in our previous example — less than 10% if files are small

- Limited file size
- Crash recovery
- Device oblivious

1

What does fast file system propose?

- Cylinder groups

- Larger block sizes
- Fragments

- Allocators

- New features

- long file names
- file locking

- symbolic links
- renaming

- quotas

12

What FFS proposes?

- How many of the following does FFS propose?

®

MOOW>e60 0

oo O DN -

Cylinder groups to improve average access time
Larger block size to improve bandwidth

Larger block size to support larger files
Replicated superblocks for data recovery
Pre-allocate blocks to improve write performance

13

What FFS proposes?

- How many of the following does FFS propose?

®

MOOW>e60 0

oo O DN -

Cylinder groups to improve average access time
Larger block size to improve bandwidth

Larger block size to support larger files
Replicated superblocks for data recovery
Pre-allocate blocks to improve write performance

14

Cylinder group

- A cylinder group is a logical unit of one or several consecutive cylinders
on the disk. How many of the following can a cylinder group store?

® inodes

@ superblocks

® bitmap of free blocks in the cylinder group
@ data

A. O

moow
A wWOWDN-=-

15

Cylinder group

- A cylinder group is a logical unit of one or several consecutive cylinders
on the disk. How many of the following can a cylinder group store?

® inodes

@ superblocks

® bitmap of free blocks in the cylinder group
@ data

A. O

moow
A wWOWDN-=-

16

How FFS use disk blocks

Disk blocks
0 File Svystem Metadata (Superblock)
8 Backup Superblock
e] | 1 | | | | 123 .
24 File Metadata | Data ‘,‘;3':
32 File Metadata Data 59
aof | | | | | | | |4
48 Data 5 sector

56 Data

Cylinder groups

- Consists of one or more consecutive cylinders on a disk

- Each cylinder group contains the following

- redundant copy of the superblock

- what's the benefit?
- why not a cylinder group for all superblocks?

- Inode space

- bitmap of free blocks within the cylinder group
- summary of block usage

- data

- Imp
. A
. P

roves average disk access time
locating blocks within the same cylinder group for the same file

acing inode along with data within the same cylinder group

18

Cylinder group

- A cylinder group is a logical unit of one or several consecutive cylinders
on the disk. How many of the following can a cylinder group store?

® inodes

@ superblocks

® bitmap of free blocks in the cylinder group
@ data

A. O

O 0O W
w N =

i
I

19

Cylinder groups

- Which of the following factor of disk access can cylinder
groups help to improve when manage files?

A. Seek time
B. Rotational delay sector
C. Data transfer latency
D. AandB
E. AandC

20

Cylinder groups

- Which of the following factor of disk access can cylinder
groups help to improve when manage files?

A. Seek time
B. Rotational delay sector
C. Data transfer latency
D. AandB
E. AandC

21

Cylinder groups

- Which of the following factor of disk access can cylinder
groups help to improve when manage files?
A. Seek time
B. Rotational delay
C. Data transfer latency
D, Aandb
E. AandC

sector

22

Larger block sizes

- The block size of the old file system is aligned with the block
(sector) size of the disk

- Each file can only contain a fixed number of blocks

- Cannot fully utilize the 1/O interface bandwidth

- The new file system supports larger block sizes

- Supports larger files

- Each |/O request can carry more data to improve bandwidth

- However, larger block size leads to internal fragments

23

How larger block sizes improves bandwidth

- SATA Il (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What's the

bandwidth of accessing 512B sectors and 4MB consecutive
sectors?

Latency = seek time + rotational delay + transfer time + controller overhead
=8 ms+4.17 ms+ 13.33 ms + 0.2 ms = 25.69 ms

Bandwidth = volume_of_data over period_of_time
= 2;2492 = 155.7 MB/sec Trading latencies with bandwidth

8 ms+4.17 ms +0.00167 us + 0.2 ms = 12.36 ms

0.5KB
e = 40.45KB/sec

Fragments

- Addressable units within a block

- Allocates fragments from a block with free fragments if the
writing file content doesn't fill up a block

25

Allocators

- Global allocators
- [ry to allocate inodes belong to same file together

- Spread out directories across the disk to increase the successful rate
of the previous

- Local allocators — allocate data blocks upon the request of the
global allocator

- Rotationally optimal block in the same cylinder

- Allocate a block from the cylinder group if global allocator needs one

- Search for blocks from other cylinder group if the current cylinder
group is exhausted

26

What FFS proposes?

- How many of the following does FFS propose?
® Cylinder groups to improve average access time
@ Larger block size to improve bandwidth
® Larger block size to support larger files
@ Replicated superblocks for data recovery
x Pre-allocate blocks to improve write performance

allocation [13]. This technigque was not included because hlock allocation cur-
rently accounts for less than 10 percent of the time spent in a write system call
and, once again, the current throughput rates are already limited by the speed of
the available processors.

0w »
w N =

i
O

27

How is BSD FFS doing?

- Regarding the performance of BSD FFS, please identify how many of the
following statements is/are true
® BSD FFS is performing better than UFS regardless of reads and writes

@ The performance of reading data is faster than writing data in BSD FFS, while
the reading is slower than writing in UFS

® The bandwidth utilization of BSD FFS is better than UFS
@ The CPU utilization of BSD FFS is higher than UFS
A. O

moow
A wp>N-

28

How is BSD FFS doing?

- Regarding the performance of BSD FFS, please identify how many of the
following statements is/are true
® BSD FFS is performing better than UFS regardless of reads and writes

@ The performance of reading data is faster than writing data in BSD FFS, while
the reading is slower than writing in UFS

® The bandwidth utilization of BSD FFS is better than UFS
@ The CPU utilization of BSD FFS is higher than UFS
A. O

moow
A wp>N-

29

Performance of FFS

Table Ila. Reading Rates of the Old and New UNIX File Systems

Type of Processor and Speed Read % CPU
file system bus measured (Kbytes/s) bandwidth % d
0Old 1024 750/UNIBUS 29 29/983 3 11
New 4096/1024 750/UNIBUS 221 221,983 22 43
New 8192/1024 750/UNIBUS 23 233,983 24 29
New 4096/1024 750/MASSBUS 466 4 73
New 8192/1024 750/MASSBUS 456 54
writes in FFS are slower
hot the case for old FS than reads

Table IIb. Writing Rates of the Old and\New UNIX Hile Systems
Type of Processor and Speed % CPU
file system bus measured (Kbytes/s) ¢
Old 1024 750/UNIBUS 48 . g .
Newioooi2e TOUNBUS 1 CPU loadis fine given tha
New 8192/1024 750/UNIBUS 215 Is way too slow:
New 4096/1024 750/MASSBUS 323
New 8192/1024 750/MASSBUS 466

30

How is BSD FFS doing?

- Regarding the performance of BSD FFS, please identify how many of the
following statements is/are true
® BSD FFS is performing better than UFS regardless of reads and writes

@ The performance of reading data is faster than writing data in BSD FFS, while
the reading is slower than writing in UFS

® The bandwidth utilization of BSD FFS is better than UFS
@ The CPU utilization of BSD FFS is higher than UFS
A. O

O O0Ow
w N =

i
I

31

Writes

- Larger overheads than the old file system as the new file
system allocates blocks after write requests occur — Why not
optimize for writes?

- 10% of overall time in allocating blocks
- writes are a lot faster already

- Writing metadata is synchronous rather than asynchronous —
What's the benefit of synchronous writes?

) ConSIStenCy allocation (13]. This technique was not included because block allocation cur-
rently accounts for less than 10 percent of the time spent in a write system call
and, once again, the current throughput rates are already limited by the speed of
the available processors.

32

What does fast file system propose?

- Cylinder groups —improve spread-out data locations

Larger block sizes — improve bandwidth and file sizes
Frag ments — improve low space utilization due to large blocks
Allocators — address device oblivious

New features

- long file names
- file locking

- symbolic links
- renaming

- quotas

33

The design and implementation of a
log-structured file system

Mendel Rosenbaum and John K. Ousterhout
Univ. of California, Berkeley

34

Why LFS?

- How many of the following problems is/are Log-structured file
systems trying address?
® The performance of small random writes
@ The efficiency of large file accesses
® The space overhead of metadata in the file system

@ Reduce the main memory space used by the file system
A. O

moOoOw
A W N -

35

Why LFS?

- How many of the following problems is/are Log-structured file
systems trying address?
® The performance of small random writes
@ The efficiency of large file accesses
® The space overhead of metadata in the file system

@ Reduce the main memory space used by the file system
A. O

moOoOw
A W N -

36

Why LFS?

- How many of the following problems is/are Log-structured file
systems trying address?

@ The performance of small random writes

@ The efficiency of large file accesses

® The space overhead of metadata in the file system

@ Reduce the main memory space used by the file system

A. O In designing a log-structured file system we decided to
focus on the efficiency of small-file accesses, and leave it

The notion of logging is not new, and a number of
recent file systems have incorporated a log as an auxiliary
structure to speed up writes and crash recovery{2, 3]. How-

moOoOw
A W N -

37

Why LFS?

- Small, random writes will dominate the traffic
between main memory and disks — Unix FFS is
designed under the assumption that large files are

more impOrtant UFSis pub"Shed in 1984 This has two effects on file system behavior. First, larger

. . file caches alter the workload presented to the disk by
- Who is Wrong? 2. Design for file systems of the 1990°s absorbing a greater fraction of the read requests(l,6].

Most write requests must eventually be reflected on disk for
- As system memory grows, frequently read data can safety, so disk traffic (and disk performance) will become

be cached efficienﬂy more and more dominated by writes.
- Every modern OS aggressively caches — use “free”

in Linux to check Workloads dominated by sequential accesses to large

. . . files, such as those found in supercomputing environments,

Ta rget environments are different also pose interesting problems, but not for file system

. software. A number of techniques exist for ensuring that

- Gaps between sequential access and random e fites are 1aid out sequentially on disk, so /O perfor-
aCCess mance tends to be limited by the bandwidth of the I/O and
memory subsystems rather than the file allocation policies.

- Conventional file systems are not RAID aware

38

Why LFS?

- How many of the following problems is/are Log-structured file
systems trying address?
@ The performance of small random writes
@ The efficiency of large file accesses
® The space overhead of metadata in the file system

@ Reduce the main memory space used by the file system
A. O

moOoOw
A W N -

39

Problems with BSD FFS

- Data are spread out the whole disk

- Can achieve sequential access within each file, but the distance between files can be
far

- Aninode needs a standalone |/O in addition to file content
- Creating files take at least five |/Os with seeks — can only use 5% bandwidth for data

- 2 for file attributes gles ana workloads OI tne 1Yyu's. Kirsi, ey spreaa Inior-
. _ . mation around the disk in a way that causes 00 many small
- You have to check if the file exists or not accesses. For example, the Berkeley Unix fast file system

(Unix FFS)[9] is quite effective at laying out cach file

- You have to update after creating the file sequentially on disk, but it physically separates different

. : files. Furthermore, the attributes (‘‘inode’’) for a file are
for tile data separate from the file’s contents, as is the directory entry

- 1for directory data containing the file’s name. It takes at least five separate
disk 1/Os, each preceded by a seek, to create a new file in

- 1 for directory attributes Unix FFS: two different accesses to the file’s attributes

- Writes to metadata are synchronous
The second problem with current file systems is that
- Good for crash recovery, bad for performance they tend to write synchronously: the application must wait

for the write to complete, rather than continuing while the
write is handled in the background. For example even

40

What does LFS propose?

- Buffering changes in the system main memory and commit
those changes sequentially to the disk with fewest amount of

write operations

Three components of technology are particularly
significant for file system design: processors, disks, and
main memory. Processors are significant because their
speed is increasing at a nearly exponential rate, and the
improvements seem likely to continue through much of the
1990’s. This puts pressure on all the other elements of the
computer system to speed up as well, so that the system
doesn’t become unbalanced.

Disk technology is also improving rapidly, but the
improvements have been primarily in the arcas of cost and
capacity rather than performance. There are two com-
ponents of disk performance: transfer bandwidth and
access time. Although both of these factors are improving,
the rate of improvement is much slower than for CPU
speed. Disk transfer bandwidth can be improved substan-
tially with the use of disk arrays and parallel-head disks([5]
but no major improvements scem likely for access time (it
is determined by mechanical motions that are hard to
improve). If an application causes a sequence of small disk
transfers separated by seeks, then the application is not
likely to experience much speedup over the next ten years,
even with faster processors.

41

The third component of technology is main memory,
which is increasing in size at an exponential rate. Modern
file systems cache recently-used file data in main memory,
and larger main memories make larger file caches possible.

LFS in motion

write
buffer

Data chuck | Data chuck Updated Data
chuck #1

Data chuck inode UpdatedData inode
#2 #2 chuck #1 #1

disk

disk space (log)

42

Why LFS?

- How many of the following problems is/are Log-structured file

systems trying address?
@’ The performance of small random writes
@ The efficiency of large file accesses jeave it for the hardware designer
® The space overhead of metadata in the file system

. Increases due to garbagde collection and inode maps
@ Reduce the main memory space used by the file system

increases due to write cachin
A. O 9

[B. 1]

In designing a log-structured file system we decided to
focus on the efficiency of small-file accesses, and leave it
to hardware designers to improve bandwidth for large-file
accesses. Fortunately, the techniques used in Sprite LFS
work well for large files as well as small ones.

Mmoo
A WNDN

43

Crashrecovery

- Checkpointing
- Create a redundant copy of important file system metadata
periodically

- Roll-forward
- Scan through/replay the log after checkpointing

44

LFS v.s. crash

write
buffer

inode- Data chuck inode Datachuck inode Updatec
map #1 #1 #2 #2 chucl

disk

disk space (loQ)

45

LFS v.s. write failed

You can try again!

write

buffer Updated Data

chuck #1

Data chuck inode Datachuck inode Updatec
#1 #1 #2 #2 chucl

disk

disk space (log)

46

Segment cleaning/Garbage collection

- Reclaim invalidated segments in the log once the latest
updates are checkpointed

- Rearrange the data allocation to make continuous segments

- Must reserve enough space on the disk
- Otherwise, every writes will trigger garbage collection
- Sink the write performance

47

Announcement

- Reading quizzes due next Thursday

- Office hour

- M 3p-4p and Th 9a-10a

- Use the office hour Zoom link, not the lecture one

- Plazza

- One of the most efficient ways of getting responses

- Feel free to discuss your project — just don't discuss code directly
- Project

« Due 3/2

- No late submission is allowed

54

Computer

Engineering

