# First Day of CS202, 2021 Winter

Hung-Wei Tseng



## CS202: Let's say something!

## What's your name?

## Why're you taking **CS202**



## What's the most **exciting New Year's Eve** experience you ever had?





https://az-eandt-live-legacy.azureedge.net/news/2013/apr/images/640\_edsac-web.jpg

# What releases human beings from the queues?

# **Operating systems**



# The basic idea of execution







## The beast: von Neuman Architecture





# By loading different programs into memory, your computer can perform different functions



 130020e4
 00000000

 00003d24
 00000000

 2ca4e2b3
 000000008

## Memory

# to memory,<br/>entitiesto memory,<br/>entitiesto the second se

Storage

## How processor executes a program

- The program counter (PC) tells where the upcoming instruction is in the memory
- Processor fetches the instruction, decode the instruction, execute the instruction, present the instruction results according to clock signals
- The processor fetches the next instruction whenever it's safe to do so



### instruction memory

| b27 | ldah | gp,15(t12)      |
|-----|------|-----------------|
| d23 | lda  | gp,-25520(gp)   |
| d24 | ldah | t1,0(gp)        |
| d24 | ldah | t4,0(gp)        |
| 2a0 | ldl  | t0,-23508(t1)   |
| 0e4 | beq  | t0,120007a94    |
| d24 | ldah | t0,0(gp)        |
| 2b3 | stl  | zero,-23508(t1) |
| f47 | clr  | vØ              |
| 5b3 | stl  | zero,-23512(t4) |
| 1a4 | ldq  | t0,-23520(t0)   |
| 0e4 | beq  | t0,120007a98    |
| 147 | mov  | t0,t1           |
| f47 | clr  | t2              |
| 0c3 | br   | 120007a80       |

## **Desktop Computer**



## Server



als (e.g., DRA GPUs) (in figure 1000) Process Pro

**Peripher** 

## I/O Connectors (e.g., keyboard/mouse)

## als (e.g., DRAM DRAM DRAM DRAM

## Processor Processor

## DRAM DRAM DRAM DRAM

## MacBook Pro 13"



## iPhone 12 Pro





SSD

0 :: 0

**I/O** 

Connec

tors





## **Play Station 4**



### Processor + GPU



# Peripherals (e.g., H.D.D.)

## Peripher als (e.g., codecs)

## **Nintendo Switch**

(e.g., HDMI)

I/O Connectors

1 15

DRAM



## Processor + GPU

## Network Modules/ Codecs

## Peripherals (e.g., memory cards.)

## **Tesla Model 3**





## **Operating system**









## Why is there an operating system?



# Why is there an operating system?

- Make it easy to run programs
- Enable programs to interact with devices
- Allow programs to share hardware resources
- Support multithreaded programs
- Execute programs efficiently
- Low overhead
- Store data safely
- Secure



# The evolution of OSs



## **Batch systems: earliest type of operating systems**

- Executes jobs in-order, one at a time
  - Provide storage (drum, card holder)
  - Load programs into the memory
  - Setup the processor to execute the job
  - Run until the program finishes and load the next in the queue



# **Batch systems**

- Benefits
  - You don't have to be physically in the line, just drop your cards and take the result later
  - Keep the computer running
- Drawbacks
  - Head-of-line blocking
  - Cannot terminate a process in the middle
  - Cannot communicate among different machines
  - Hard to debug





- Created in AT&T Bell Labs, a project leading by Ken Thompson and Dennis Ritchie
  - Started in 1969, internally public in 1971, public in 1973
- Closely tied to the development of the C programming language
  - Large portion of UNIX version 2 was written in C (version 1 was written in assembly)
  - Unix was one of the first operating system kernels implemented in a language other than assembly
  - Easier to port to many other platforms

```
q97-2.jpg
cover_letter2.pdf
                                       q98-1.jpg
cv.tar.gz
                                       q98-2.jpg
cv2
cxbook-search.pdf
                                       q99-1.jpg
deadlines.pdf
                                       q99-2.jpg
docs
                                       referenceform.pdf
e00-1-1.jpg
                                       schools.pdf
e00-1-2.jpg
                                       umac.pdf
e01-1-1.jpg
                                       wms
e01-1-2.jpg
                                       wu94envy.pdf
e98-1-2.jpg
                                       yangc.pdf
                                       ?C?L?????.pdf
e98-2-2.jpg
e99-1-1.jpg
                                       w?x
e99-1-2.jpg
bsd1 [/home/master/92/r92022] -r92022- cd htdocs/
bsd1 [/home/master/92/r92022/htdocs] -r92022- 1s -altr
total 16
-rw-r-r-+ 1 r92022 graduate 153 Sep 17 2006 index.htm1~
-rw-r-r-+ 1 r92022 graduate 154 Sep 17 2006 index.html
drwxr-xr-x+ 2 r92022 graduate 4096 Sep 17 2006.
drwxr-xr-x+ 36 r92022 graduate 4096 Aug 7 2010 ...
bsd1 [/home/master/92/r92022/htdocs] -r92022- uname -a
FreeBSD bsd1.csie.ntu.edu.tw 10.3-RELEASE-p5 FreeBSD 10.3-RELEASE-p5 #30: Sun Jul 10 10:30:27 CST
        root@:/usr/obj/usr/src/sys/WSBSD amd64
2016
bsd1 [/home/master/92/r92022/htdocs] -r92022-
```

# UNIX (cont.)

- Support multiple users
- Support interprocess communication
- First portable operating system
- Everything is a file
  - Max filename length: 255 bytes
- No GUI



[screen is terminating] bunny@ubuntu:/dev\$ 🙂 🔍 🗇 Download QEMU - QEMU - Mozilla Firefox [sudo] password for Cownload QEMU-QEMIX + [detached from 2205  $( \epsilon ) \rightarrow$ C' 🛈 bunny@ubuntu:/dev\$ HOME [detached from 2343 bunny@ubuntu:/dev\$ [sudo] password for [screen is terminat: bunny@ubuntu:/dev\$ Linux [screen is terminat: bunny@ubuntu:/dev\$ [sudo] password for [screen is terminat: bunny@ubuntu:/dev\$ [sudo] password for [screen is terminat: bunny@ubuntu:/dev\$ [screen is terminating]

## bunny@ubuntu:/dev bunny@ubuntu:/dev\$ screen /dev/ttyUSB0 115200 ① A https://www.gemu.org/download/ ··· 🖂 ŵ DOWNLOAD SUPPORT CONTRIBUTE Download QEMU Windows macOS QEMU is packaged by most Linux distributions: Arch: paeman -S gemu Debian/Ubuntu: apt-get install gemu Fedora: dnf install @virtualization

Gentoo: emerge --ask app-emulation/gemu

[SUDD] password for 👩 It looks like you haven't started Firefox in a while. Do you want to clean it up for a fresh, like-new experience? And by the way, welcome back!

bunny@ubuntu:/dev\$ sudo screen /dev/ttyUSB0 115200 [screen is terminating]



# UNIX (cont.)

- Support **multiple users**
- Support interprocess communication
- First portable operating system
- Everything is a file
  - Max filename length: 255 bytes
- No GUI
  - X Window provides a GUI for UNIX since 1987.
  - Now X Window is replaced by X.Org still not part of the default system

# UNIX (cont.)

- Descendants
  - BSD (Berkeley Software Distribution)
    - FreeBSD, OpenBSD, NetBSD
    - The base of Apple's MacOS X and iOS
  - Solaris
  - IBM AIX
- Affected
  - Linux
    - Started in 1983 by Richard Stallman
    - Linus Torvalds, principal developer of the Linux kernel

C:\Users\bunny>dir Volume in drive C has no label. Volume Serial Number is 56EB-C458

Directory of C:\Users\bunny

| 07/02/2019 | 08:06 AM | <dir></dir> |         | -                 |
|------------|----------|-------------|---------|-------------------|
| 07/02/2019 | 08:06 AM | <dir></dir> |         |                   |
| 02/02/2018 | 11:52 PM |             | 8,067   | A125386726.pfx    |
| 02/11/2016 | 01:30 AM | <dir></dir> |         | Contacts          |
| 06/23/2016 | 08:20 AM |             | 504     | cpuz.ini          |
| 04/21/2016 | 01:59 PM | 3,3         | 77,880  | cpuz_x64.exe      |
| 11/04/2015 | 02:23 AM | <dir></dir> |         | Desktop           |
| 11/04/2015 | 02:23 AM | <dir></dir> |         | Documents         |
| 06/25/2016 | 01:56 AM | <dir></dir> |         | Downloads         |
| 02/11/2016 | 01:30 AM | <dir></dir> |         | Favorites         |
| 05/09/2017 | 12:02 AM | 17,2        | 43,245  | IRX1800.EXE       |
| 02/11/2016 | 01:30 AM | <dir></dir> |         | Links             |
| 11/04/2015 | 02:23 AM | <dir></dir> |         | Music             |
| 11/04/2015 | 02:23 AM | <dir></dir> |         | Pictures          |
| 07/02/2019 | 08:06 AM |             | Ø       | qms-bmh1.bmp      |
| 07/02/2019 | 08:06 AM |             | Ø       | qms-bmh2.bmp      |
| 07/02/2019 | 08:06 AM |             | Ø       | qms-bmh3.bmp      |
| 06/28/2016 | 08:30 AM |             | 462     | quartus2.ini      |
| 07/11/2019 | 04:39 AM |             | 51,806  | quartus2.greg     |
| 07/02/2019 | 08:06 AM |             | 0       | quartus_web_rule: |
| 02/11/2016 | 01:30 AM | <dir></dir> |         | Saved Games       |
| 02/11/2016 | 01:30 AM | <dir></dir> |         | Searches          |
| 11/04/2015 | 02:23 AM | <dir></dir> |         | Videos            |
|            | 10 File  | (s) 20,     | 681,964 | bytes             |

### s\_file.txt

## DOS

- Disk Operating System
  - Originally Quick and Dirty Operating System
  - Introduced in 1981 for IBM PC based on 8086/8088
- Only 640KB memory available for applications
  - No virtual memory
  - Need quite a few tricks (EMS, XMS, QEMM, and etc.) to use all memory that you installed on the computer
- No multi-user, no multi-tasking, no multi-threading
- Notorious 8.3 filename restrictions
- No GUI
  - Now the command line environment of Windows
  - Windows is originally a graphic user interface running on DOS like X-Window



# MacOS "Classic"

- Released in 1984 w/ the legendary Macintosh
- Adopted GUI/mouses from Xerox PARC
- The first popularized all GUI OS
- Support multitasking
- Not a multi-user system





- Released in 1987, discontinued in 2006
- First true 32-bit OS on x86
- Was developed together by IBM/MS to be the GUI OS alternative to DOS




### **Windows 95/98/ME**

- Before Windows 95, "Windows" (e.g., Windows 3.1) was just a GUI operating "environment" on DOS
  - You cannot directly boot your machine using early versions of Windows
  - Similar to X-window, Xorg in UNIX/Linux
- First full-fledged Windows OS introduced in 1995 as Windows 95







**Recycle Bin** misc





于写的人前 -8210-513... ISSD-SDK-V...

Ð

2 Google Chrome

2











anime







Manual.pdf





### 🔺 🖿 📑 📴 🌒 🛛 11:49 AM

### Windows NT/2000/XP/Vista/7/8/10

- Originally for servers, initially released in 1993
- First true 32-bit Windows OS, Windows Vista/7 started to become natively 64-bit
- Support multi-user, multi-tasking
- NTFS: more secure, modernized file system
- Different driver model than DOS/Windows 95
- Most code in C/C++, reasonably portable (IA-32, x86-64, DEC) Alpha, MIPS, PowerPC, ARM, Itanium)





### MacOS X

- Initially released in 2001
- Originated from NeXTSTEP, a company Steve Jobs funded after leaving from Apple in 1985
- Darwin: based on Mach and BSD kernels
  - Inherits all the good things from UNIX
  - Better integration with GUI
- Shares the same kernel with iOS

### iOS

- Share the same kernel foundation with MacOS X
- The 2nd most popular mobile OS



### Android

- Based on Linux
- The most popular operating system since 2014



### What modern operating systems support?

- Virtualize hardware/architectural resources
  - Easy for programs to interact with hardware resources
  - Share hardware resource among programs
  - Protect programs from each other (security)
- Execute multithreaded programs concurrently
  - Support multithreaded programming model
  - Execute multithreaded programs efficiently
- Store data persistently
  - Store data safely
  - Secure





## CS202: Advanced Operating Systems

## 



### Why? What? How?





## CS202 Lecture What? CS202 Project





### Logistics

### **Course resource**

- Lectures: TuTh 6:30p-7:50p on Zoom
- Office Hours: M 1p-3p on Zoom
- Schedule, slides on course webpage: <u>https://www.escalab.org/classes/cs202-2021wi/</u>
- Discussion on piazza: https://piazza.com/class/kizaqe6jw251qj
- Reading quizzes, homework submissions on iLearn: https://ilearn.ucr.edu/
- Youtube Channel <u>https://www.youtube.com/profusagi</u>

### Instructor — Hung-Wei Tseng

- Website: <u>https://intra.engr.ucr.edu/~htseng/</u>
- Office hour: M 1:00p-3:00p on Zoom
- E-mail: htseng@ucr.edu
- BS/MS in Computer Science, National Taiwan University
- PhD in Computer Science, University of California, San Diego
- Research Interests
  - Intelligent storage devices
  - Non-volatile memory based systems
  - Near-data processing
  - Anything could accelerate applications



### **Your tasks**

- Login/discussion in iLearn and piazza.
- Read the text before class! •
  - Operating Systems: Three Easy Pieces Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau (free online http://pages.cs.wisc.edu/~remzi/OSTEP/)
  - I'm not going to cover everything in class, but you are responsible for all the assigned text. •
  - Papers
- Reading quizzes in iLearn (15%)
  - Come to class answering at least 50% of Zoom Polls during 4 grading periods, counted as 4 reading quizzes
  - We will drop at least 5 of your lowest reading quizzes, so it's OK if you don't attend
- Project (25%) intensive C programming in the system/kernel level
- Midterm (20%) take home/online, format TBA
- Final (40%) take home/online, format TBA



• You can see your grades on iLearn.

| UC San Diego                               | TritonEd                                                      | 🛓 Test Eur                                                                                                    |
|--------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1                                          |                                                               | TritonEd Community                                                                                            |
| A 🔿 Teols                                  |                                                               |                                                                                                               |
| 🚔 💩                                        | Tools                                                         |                                                                                                               |
| kome hage<br>Information<br>Cuisses        | Create and view Course Annuncements                           | Groups<br>Create and manage formal groups of students to callaborate on work.                                 |
| Discussions<br>Tools                       | Open Blockboard Help for Students                             | Jeumals<br>Create and menopojournals that can be assigned to each user in a group jor the perposes of private |
| help<br>Library Help<br>Academic Integrity | Blogs<br>Create and manage Mags for Caurses and Course Groups | Displaye detailed information about your anotes.                                                              |
|                                            | _0080886,                                                     |                                                                                                               |

- Errors in grading
  - If you feel there has been an error in how an assignment or test was graded, you have one week from when the assignment is return to bring it to our attention. You must submit (via email to the instructor and the appropriate TAs) a written description of the problem. Neither I nor the TAs will discuss regrades without receiving an email from you about it first.
- For arithmetic errors (adding up points etc.)
  - you do not need to submit anything in writing, but the one week limit still applies.

### **Academic Honesty**

- Don't cheat.
  - Cheating on a test will get you an F in the class and no option to drop, and a visit with your college dean.
  - Cheating on homework means you don't have to turn them in any more, but you don't get points either. You will also take at least 25% penalty on the exam grades.
- Copying solutions of the internet or a solutions manual is cheating
  - They are incorrect sometimes
- Review the UCR student handbook
- When in doubt, ask.

## Learning eXperience

### Most lectures today ...







### Me





### **Peer instruction**

- An Active Learning teaching method proposed by Prof. Eric Mazur from Harvard University in the early 1990s
- Before the lecture You will first try your best to go through and understand the required reading
- During the lecture I'll bring in activities to ENGAGE you in exploring your understanding of the material
  - Popup questions
  - Individual thinking use polls in Zoom to express your opinion
  - Group discussion
    - Discuss in breakout rooms
    - Use polls in Zoom to express your group's opinion
  - Whole-classroom **discussion** we would like to hear from you
  - I will explain and lecture on those related concepts •



### **Before lectures: reading quizzes**

- This is a peer instruction class
  - The lecture will require you to read and try your best to understand the material first
  - We need to make sure that you read the material first to achieve the best learning outcome
- Reading assignments from
  - Textbook: Operating Systems: Three Easy Pieces Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau (free online http://pages.cs.wisc.edu/~remzi/OSTEP/)
  - Papers at least get through those "focuses" listed in the schedule
- Reading quizzes:
  - On iLearn
  - Due before the lecture, usually once a week. Check the schedule on our webpage
  - You will have two chances. We take the average
  - No time limitation until the deadline
  - No make up reading quizzes we will drop probably one or two lowest at least



### Why attend live sessions and discuss?

- I'll bring in activities to ENGAGE you in exploring your understanding of the material
  - Let you practice
  - Bring out misconceptions
  - Let us LEARN from each other about difficult parts
  - It's going to be fun!
- You will be GET CREDIT for your efforts to learn in class
  - By answering questions with polls within Zoom
  - Answer **50%** of the clicker questions in class, get full credits for 4 reading quizzes
- Group Discussion
  - We will divide the class into two groups
  - The best group the group with the most correct answers after group discussions, will receive a USD 5 amazon gift card for each of its members





- We will work on "real Linux systems" and implement a linux kernel module
- Details will come soon
- Real human beings work on real systems!

### Schedule

|                     | Торіс                                                               | Reading                                                                                      | Slides<br>(Previe |
|---------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|
| 1/5/2021            | Intro                                                               |                                                                                              |                   |
| 1/7/2021            | The Structure of Operating Systems and the Abstraction of Processes | Arpaci-Dusseau Chapter 2, 4, 6                                                               |                   |
| 1/9/2021            | The Structure of Operating Systems                                  | The Structure of the 'THE'-Multiprogramming System                                           |                   |
| 4/44/0004           | Due a constante de                                                  |                                                                                              |                   |
| 1/14/2021           | Processes & Threads                                                 | Ine UNIX Time-Sharing System Mash: A New Karnel Foundation For UNIX Development              |                   |
|                     |                                                                     | Arpaci-Dusseau Chapter 5, 26, 27                                                             |                   |
| 1/16/2021           | Processes & Threads                                                 | Arpaci-Dusseau Chapter 28, 29, 30, 31                                                        | _                 |
| 1/21/2021           | Processes/Threads Scheduling                                        | Arpaci-Dusseau Chapter 7                                                                     |                   |
|                     |                                                                     | An experimental time-sharing system                                                          |                   |
| 1/23/2021           | Processes/Threads Scheduling                                        | Lottery Scheduling: Flexible Proportional-Share Resource Management.                         | -                 |
|                     |                                                                     | Scheduler Activations: Effective Kernel Support for the User-level Management of Parallelism |                   |
| 1/28/2021           | Virtual memory                                                      | Arpaci-Dusseau Chapter 13, 15, 16, 18                                                        | _                 |
| 2/2/2021            | Virtual memory                                                      | Arpaci-Dusseau Chapter 20, 21, 22                                                            |                   |
| 2/4/2021            | Virtual memory                                                      | Machine-Independent Virtual Memory Management for Paged Uniprocessor and Multiprocessor      |                   |
|                     |                                                                     | Architectures                                                                                |                   |
| 2/9/2021            | Virtual memory                                                      | Converting a Swap-Based System to do Paging in an Architecture Lacking Page-Reference Bits   |                   |
|                     |                                                                     | WSCLOCK-A Simple and Effective Algorithm for Virtual Memory Management                       |                   |
| 2/11/2021           | File systems                                                        | Arpaci-Dusseau Chapter 39, 40, 41                                                            |                   |
| 2/16/2021           | File systems                                                        | A Fast File System for Unix                                                                  |                   |
|                     |                                                                     | The Design and Implementation of a Log-Structured File System                                |                   |
| 2/18/2021           | Fast, non-volatile memory-based storage devices                     | Arpaci-Dusseau Appendix-Flash-based SSDs                                                     |                   |
|                     |                                                                     | eNVy: a non-volatile, main memory storage system                                             |                   |
|                     |                                                                     | Don't stack your log on my log                                                               |                   |
| 2/23/2021           | Networked & cloud storage                                           | Arpaci-Dusseau Chapter 49                                                                    |                   |
|                     |                                                                     | The Google File System                                                                       |                   |
| 2/25/2021           | Networked & cloud storage                                           | Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency      |                   |
|                     |                                                                     | f4: Facebook's Warm BLOB Storage System                                                      |                   |
| 3/2/2021            | Distributed systems                                                 | The Sprite Network Operating System                                                          |                   |
|                     |                                                                     | The Distributed V Kernel and its Performance for Diskless Workstations                       |                   |
| 3/4/2021            | Distributed systems                                                 | Web Search for a Planet: The Google Cluster Architecture                                     |                   |
|                     |                                                                     | Implementing Global Memory Management in a Workstation Cluster                               |                   |
| 3/9/2021            | Virtual machine                                                     | Arpaci-Dusseau Appendix-Virtual machines<br>A You need to complete the reading of the        |                   |
| 3/11/2021           | Virtual machine                                                     | Hints textbook and papers before lectures                                                    |                   |
| 2/12/2021_2/17/2021 | <b>Subject to change</b>                                            |                                                                                              |                   |

| 9W() | Slides (Release) | Due     |
|------|------------------|---------|
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  |         |
|      |                  | Proiect |
|      |                  |         |
|      |                  | Спеск   |
|      | Download         | due     |
|      | slides           | dates   |
|      | after            | here    |
|      |                  |         |

# Lots of paper reading — up to 4 per week, a total of 23 this quarter!



### Why papers?

### **No alternative facts**

- Papers are written by authors who create/invent these artifacts
  - First-hand information
  - Not being cooked by media/press...
- Papers are reviewed based on originality
- Papers are reviewed by experts without conflict of interests



### **FERNATIVE FACTS' ARE LIES**



### **Papers give you insights!**

- Papers contain design principles that are missing in your textbook or online documents
- You can apply these design principles and the skills of analyzing these principles to anywhere (e.g. you will surprisingly find how the paper you read next week affects software engineering)
- You can learn those whys for those proposed work



### Industry cares

|        | @intel.com><br>寄給 h1tseng I                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2011/                                            | 2/15 🟠 🏠 🔭                                                                                               |                                                                                                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|        | Hi Hung-Wei,<br>I am very interested in your topic you presented yesterday. If possible, may I get a copy of<br>Best Regards,                                                                                                                                                                                                                                                                                                                                                                           | 奇給 h1t<br>Hung-V<br>I just f<br>Memor<br>this pa | seng 💌<br>Vei<br>inished reading you<br>y", very interestir<br>per?                                      | freescale.com 透過<br>ur <mark>paper</mark> "Understandi<br>ng information, do you                            |
| N H    | 新治 Hung-Wei、<br>lung-wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                          | 2                                                                                                           |
| G<br>n | Given we are also working on in-memory and near-memory computing at my Boston team, I would like to see<br>nodels/workloads in both datacenters and edge devices and instigate new research directions.                                                                                                                                                                                                                                                                                                 | how do we                                        | e work more closely to chu                                                                               | im out even more useful results a                                                                           |
|        | sap.com 透過 cs.ucsd.edu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2012                                             | /11/12 ☆ 🖡 🕚                                                                                             |                                                                                                             |
|        | 寄給 h1tseng<br>Hi Tseng,<br>I have read your paper titled "Understanding the Impact of Power Loss on Flash Memory".<br>work. I would like to understand what specific tools did you use to observe the page-read a<br>the FTL level. Did you use some sort of Flash simulator to get all the statistics about the nu<br>and the energy consumption? My second question would be regarding FTL algorithms. Did<br>real SSD or you used some kind of simulator and simulated the FTL algorithm?<br>Thanks. | It<br>and<br>um<br>d y                           | 寄給 h1tseng<br>Hi, Hung-Wei,<br>from<br>processing in ssds ma<br>slides presented in the<br>Best regards, | @huawei.com><br>Huawei, and I am impresse<br>ay be a promising solution for<br>e conference? I really appre |
|        | SAP Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                |                                                                                                          |                                                                                                             |

cs.ucsd.edu

2012/1/10

### ing the Impact of Power Loss on Flash have a PowerPoint presentation that goes along

2019年7月9日 茜二 下午2:12 🛛 🟠

and applications for Facebook's ML


v.mit.edu/courses/electrical-engineering-and-compute  $\leftarrow$   $\rightarrow$  C

Courses.cs.washington.edu/courses/csep551/14au/

| - H         |            |                                                                                                                                                         |                                                                         |                        |                                                                       |
|-------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------|
|             | 11         | File System Performance and Tweedie,                                                                                                                    |                                                                         |                        | na Custa                                                              |
| 3           | Csew       | veb.ucsd.edu/classes/fa17/cse221-a/readings. UC San Diedo                                                                                               | cs.wisc.edu/~bart/736/f2019/rea                                         | ading_lis              | t.html Wisco                                                          |
| list        | torical    | Perspective                                                                                                                                             | VERSITY OF WISCO                                                        | C                      | es523-uiuc.github.io/fa                                               |
|             |            |                                                                                                                                                         | Computer Sciences                                                       | Lint                   | - vised Devenue ativ                                                  |
| Tue<br>10/3 | • E        | . W. Diikstra. The Structure of the 'THE'-Multiprogramming System.                                                                                      |                                                                         | HIStorical Perspective |                                                                       |
|             | ē          | communications of the ACM, Vol. 11, No. 5, May 1968, pp. 341-346.                                                                                       | CS 726: Deadi                                                           | _                      |                                                                       |
|             | (/         | Additional historical background on semaphores in Wikipedia.)                                                                                           | C5 730; Readi                                                           |                        | E. W. Dijkstra, The S                                                 |
|             | a<br>ti    | Q: Dijkstra explicitly states their goals for the THE operating system. How do these goals compare to, say, Microsoft's goals for the Windows operating | pyright limitations,<br>f you want to down                              | Fri                    | of the 1st ACM Symp<br>1967.                                          |
|             | s<br>T     | ystem? Why do we no longer build operating systems with the same goals as<br>THE?                                                                       |                                                                         | 8/30                   | <ul> <li>P. B. Hansen, The Nu<br/>ACM, Vol. 13, No. 4</li> </ul>      |
|             | 3 • P<br>0 | P. B. Hansen, The Nucleus of a Multiprogramming System, Communications<br>of the ACM, Vol. 13, No. 4, April 1970, pp. 238-241, 250.                     | jement                                                                  |                        | Acim, 101, 10, 10, 10, 1                                              |
|             | 0          | ptional related paper on a deployment experience of RC 4000:                                                                                            | d Jerome H. Saltzer, /                                                  |                        | <ul> <li>D. G. Bobrow, J. D. E<br/>Time Sharing System</li> </ul>     |
|             |            | P. B. Hansen, The RC 4000 Real-Time Control System at Pulway,<br>BIT 7, pp. 279-288, 1967.                                                              | Rings, Communicatic                                                     |                        | on Operating System                                                   |
|             | a          | $\mathfrak{D}$ : How does synchronization in the RC 4000 system compare with                                                                            |                                                                         |                        | <ul> <li>Additional history</li> </ul>                                |
|             | s,         | ynchronization in the THE system?                                                                                                                       | yer, Peter Drushel and<br><u>iperpages</u> , 5th Sympo<br>December 2002 | Wed<br>9/4             | <ul> <li>W. Wulf, E. Cohen, V<br/>HYDRA: The Kernel</li> </ul>        |
| Thu<br>10/5 | • <u>B</u> | . G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, TENEX, a                                                                               | December 2002.                                                          |                        | ACM, VOI. 17, NO. 6,                                                  |
|             | V          | ol. 15, No. 3, March 1972, pp. 135-143.                                                                                                                 | n and Comm                                                              |                        | <ul> <li>H. M. Levy, Ch<br/>Systems, Digit</li> </ul>                 |
|             | a<br>s     | 2: What features in TENEX are reminiscent of features in Unix (a later<br>system)?                                                                      | ating Sequential Proc                                                   |                        | <ul> <li>W. Wulf and C</li> </ul>                                     |
|             | 5 • W      | V. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F.                                                                                    | -677.                                                                   |                        | AFIPS Fall Joi                                                        |
|             | P          | ollack, HYDRA: The Kernel of a Multiprocessor Operating System,                                                                                         |                                                                         |                        |                                                                       |
|             |            | ). How is a Hydra procedure different from the procedures we are familiar                                                                               | r 1974, pp. 549-557                                                     | Unix and Plan 9 (and   |                                                                       |
|             | , N        | vith in a typical language and runtime environment?                                                                                                     |                                                                         |                        |                                                                       |
|             | 1          |                                                                                                                                                         | id D. Redell, <u>Experien</u>                                           |                        |                                                                       |
|             |            |                                                                                                                                                         | 1017, <b>20</b> 2, 1 cordery 1                                          |                        | <ul> <li>D. M. Bitchie and K. Ti<br/>the 4th Annual Sympo-</li> </ul> |
| Sur         | 10 UIB     |                                                                                                                                                         | itin T. Clements, Yand                                                  |                        | 1973.                                                                 |
|             |            |                                                                                                                                                         | sium on Operating Sv                                                    |                        | <ul> <li>R. Pike, D. Presotto, S</li> </ul>                           |
|             | •          | B. Lampson, Protection, Operating Systems Review, Vol. 8, No. 1, January 1974, pp. 18-24.                                                               | ada, October 2010.                                                      | Fri                    | Winterbottom, Plan 9<br>Summer 1995, pp. 22                           |
|             |            | Q: What are the concepts in HYDRA that correspond to Lampson's definitions of "Domain" "Object" and "Access Matrix'? What about Multice?                | t, <u>Concurrent Reading</u>                                            | 9/6                    | <ul> <li>Linux's History v</li> </ul>                                 |

## **University of Washington**

UIUC

## onsin

fall19/readings.html

### es

| ructure of the "THE"-Multiprogramming System, In Proceedings<br>osium on Operating System Principles (SOSP '67), October                                            | ıg       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| cleus of a Multiprogramming System, Communications of the<br>April 1970, pp. 238-241.                                                                               |          |
| urchfiel, D. L. Murphy, and R. S. Tomlinson, TENEX, a Paged<br>for the PDP-10, In Proceedings of the 3rd Annual Symposium<br>s Principles (SOSP '71), October 1971. |          |
| rical background about PDP-10                                                                                                                                       |          |
| /. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack,<br>of a Multiprocessor Operating System , Communications of the<br>June 1974, pp. 337-345.               |          |
| apter 8: The Hydra System, Capability-Based Computer<br>al Press, 1984.                                                                                             |          |
| G. Bell, C.mmp: a multi-mini-processor, In Proceedings of<br>at Computing Conference, December 1972.                                                                | ime<br>l |
| MINIX and Linux)                                                                                                                                                    |          |
|                                                                                                                                                                     | n        |
| nompson, The UNIX Time-Sharing System, In Proceedings of<br>sium on Operating Systems Principles (SOSP '73), October                                                | ng       |
| Dorward, B. Flandrena, K. Thompson, H. Trickey, and P.<br>From Bell Labs, USENIX Computing Systems, Vol. 8, No. 3,<br>-254.                                         |          |

written by Linus Torvalds

## Make yourself more valuable

- Every top 20 CS MS/PhD program has their students reading papers in OS classes and every instructor at UCR teaches similar sets of materials
- You have to compete with them when you're on the market
- You need some context to prove that you're also geeky enough to be one of their colleagues

https://www.whitehouse.gov/the-press-office/2017/04/18/presidential-executive-order-buy-american-and-hire-american supersede or revise previous rules and guidance if appropriate, to protect the interests of United States workers in the administration of our immigration system, including through the prevention of fraud or abuse.

> (b) In order to promote the proper functioning of the H-1B visa program, the Secretary of State, the Attorney General, the Secretary of Labor, and the Secretary of Homeland Security shall, as soon as practicable, suggest reforms to help ensure that H-1B visas are awarded to the most-skilled or highest-paid petition beneficiaries.

impair or otherwise affect:

Sec. 6. General Provisions. (a) Nothing in this order shall be construed to

## **Academic honesty**

- Don't cheat.
  - Cheating on a test will get you an F in the class and no option to drop, and a visit with your college dean.
  - Cheating on project means you don't have to turn them in any more, but you don't get points either. You will also take at least 25% penalty on the exam grades.
- Copying solutions/code of the internet or a solutions manual is cheating — we do random sampling, we do check/compare all coding projects
- When in doubt, ask.
- Final grading is based your relative ranking in class if you help people cheat, you hurt yourself



## **Term of Service**

- CS202 is an operating system related class for graduate students. It's not our responsibility to recap everything that should be covered by an undergraduate operating system class from a regular computer science undergraduate program.
- This class requires intensive readings in research papers and the assigned textbook.
- This class requires you to speak and discuss your opinion with your classmates as well as the instructor.
- This class requires programming projects that uses the C programming language. It is your responsibility to learn how to program in C. It is also your responsibility to design the architecture, implementation details and tests for your coding projects.
- The instructor and course staffs reserve the right to refuse to answer inappropriate questions (e.g. directly telling if an answer is right or not).
- It is your responsibility to track the latest schedule, information, grades and materials from our course website, e-mails from the course staffs and the piazza forum.



• Any cheating will be treated seriously. You will get an F and we will report to the Dean's office By clicking this box, you are agreeing to the Terms and Conditions of CS202, Winter 2021.

# UC San Diego NC STATE

















2019 Sprin













79

# WHITE HO WASHINGTON





## Announcement

- The first reading quiz due this Thursday before class!
  - Please find the reading quiz in iLearn!
  - Please visit the course webpage for the most accurate reading list