
Design philosophy of operating
systems (II)

Hung-Wei Tseng

• Implemented in “trap” instructions
• Raise an exception in the processor
• The processor saves the exception PC and jumps

to the corresponding exception handler in the OS
kernel

• The OS kernel only get involved when necessary
• System calls
• Hardware interrupts
• Exceptions

• The OS kernel works on behave of the
requesting process — not a process

• Somehow like a function call to a dynamic linking library
• As a result — overhead of copying registers, allocating local

variables for kernel code and etc…
2

Recap: How applications can use privileged operations?

add 0x1bad(%eax),%dh
add %al,(%eax)
decb 0x52(%edi)
in $0x8d,%al
mov %eax,0x101c
lea -0x2bb84(%ebx),%eax
mov %eax,-0x2bb8a(%ebx)
lgdtl -0x2bb8c(%ebx)
lea -0x2bf3d(%ebx),%eax
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx)
and %cl,(%rbx)
xor $0x19,%al
add %edx,(%rbx)
add %al,(%rax)
syscall
add %al,(%rbx)
……
……
……
……
……
……
……
……

trap

return-from-trap

• Why should people care about this paper in 1968?
• Turn-around time of short programs
• Economic use of peripherals
• Automatic control of backing storage
• Economic use of the machine
• Designing a system is difficult in 1968

• Difficult to verify soundness
• Difficult to prove correctness
• Difficult to deal with the complexities

3

Recap: THE

Layered Design

Process Abstraction
Virtual memory

Mutex

Recap: THE

4

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

THE

privilege
boundary

privilege
boundary

privilege
boundary

privilege
boundary

• On a 3.7GHz intel Core i5-9600K Processor, please make a
guess of the overhead of switching from user-mode to kernel
mode.

A. a single digit of nanoseconds
B. tens of nanoseconds
C. hundreds of nanoseconds
D. a single digit of microseconds
E. tens of microseconds

5

The overhead of kernel switches/system calls

Operations Latency (ns)
L1 cache reference 1 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100 ns
Read 1 MB sequentially from memory 3,000 ns
Compress 1K bytes with Zippy 2,000 ns
Read 4K randomly from SSD* 16,000 ns
Read 1 MB sequentially from SSD* 49,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from disk 825,000 ns
Disk seek 2,000,000 ns
Send packet CA-Netherlands-CA 150,000,000 ns

Recap: THE v.s. Hydra

6

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

THE Hydra

Kernel

privilege
boundary

privilege
boundary

privilege
boundary

privilege
boundary

privilege
boundary

Recap: the concept “Kernel” in Hydra

7

Current scoreboard

8

Red Blue

1 3

• Hydra (cont.)
• The UNIX time-sharing operating system
• Mach: A New Kernel Foundation For UNIX Development

9

Outline

• Supporting multiple processors
• Separation of mechanism and policy
• Integration of the design with implementation methodology
• Rejection of strict hierarchical layering
• Protection
• Reliability

10

What HYDRA proposed
• Separation of mechanism and policy

• How many of the following terms belongs to “policies”?
! Least-recently used (LRU)
" First-in, first-out
Paging
$ Preemptive scheduling
% Capability
A. 0
B. 1
C. 2
D. 3
E. 4

11

Who’s policy?Poll close in

• How many of the following terms belongs to “policies”?
! Least-recently used (LRU)
" First-in, first-out
Paging
$ Preemptive scheduling
% Capability
A. 0
B. 1
C. 2
D. 3
E. 4

12

Who’s policy?Poll close in

• How many of the following terms belongs to “policies”?
! Least-recently used (LRU)
" First-in, first-out
Paging
$ Preemptive scheduling
% Capability
A. 0
B. 1
C. 2
D. 3
E. 4

13

Who’s policy?
— Policy
— Policy
— Mechanism
— Mechanism
— Mechanism

• Flat system design to provide flexibility
• A unified abstraction of system resources (objects)

• Object oriented programming
• Protection mechanism — exists in many modern OSes with

different implementations (will talk about this in Mach)

14

Impacts of HYDRA

What the OS kernel should do?

15

The UNIX Time-Sharing System
Dennis M. Ritchie and Ken Thompson

Bell Laboratories

16

17

• How many of following statements is/are the motivations of building
UNIX?
! Reducing the cost of building machines with powerful OSes
" Reducing the burden of maintaining the OS code
Reducing the size of the OS code
$ Supporting networks and multiprocessors
A. 0
B. 1
C. 2
D. 3
E. 4

18

Why they built “UNIX”Poll close in

• How many of following statements is/are the motivations of building
UNIX?
! Reducing the cost of building machines with powerful OSes
" Reducing the burden of maintaining the OS code
Reducing the size of the OS code
$ Supporting networks and multiprocessors
A. 0
B. 1
C. 2
D. 3
E. 4

19

Why they built “UNIX”Poll close in

• How many of following statements is/are the motivations of building
UNIX?
! Reducing the cost of building machines with powerful OSes
" Reducing the burden of maintaining the OS code
Reducing the size of the OS code
$ Supporting networks and multiprocessors
A. 0
B. 1
C. 2
D. 3
E. 4

20

Why they built “UNIX”

• A powerful operating system on “inexpensive” hardware (still
costs USD $40,000)

• An operating system promotes simplicity, elegance, and ease
of use

• They made it

21

Why should we care about “UNIX”

• Providing a file system
• File as the unifying abstraction in UNIX
• Remind what we mentioned before

22

What UNIX proposed

• How many of the following statements about UNIX is/are correct?
! The semantics of accessing a device and accessing a text file is the same
" For the file name /alpha/beta/gamma, alpha, beta, gamma are all files.
Altering the content of directory requires privileged operations
$ The programmer needs to treat random and sequential file accesses

differently
A. 0
B. 1
C. 2
D. 3
E. 4

23

The file abstractionPoll close in

• How many of the following statements about UNIX is/are correct?
! The semantics of accessing a device and accessing a text file is the same
" For the file name /alpha/beta/gamma, alpha, beta, gamma are all files.
Altering the content of directory requires privileged operations
$ The programmer needs to treat random and sequential file accesses

differently
A. 0
B. 1
C. 2
D. 3
E. 4

24

The file abstractionPoll close in

• How many of the following statements about UNIX is/are correct?
! The semantics of accessing a device and accessing a text file is the same
" For the file name /alpha/beta/gamma, alpha, beta, gamma are all files.
Altering the content of directory requires privileged operations
$ The programmer needs to treat random and sequential file accesses

differently
A. 0
B. 1
C. 2
D. 3
E. 4

25

The file abstraction

doesn’t

• Regarding the protection in the assigned UNIX paper, how many of the
followings is/are correct?
! The same file may have different permissions for different user-id
" The owner of the file may not have the permission of writing a file
If the user does not have a permission to access a device, set-user-id will

guarantee that the user will not be able to access that device
$ In the UNIX system described in this paper, if the file owner is “foo”, then the user

“bar” will have the same permission as another user (e.g. “xyz”).
A. 0
B. 1
C. 2
D. 3
E. 4

26

ProtectionPoll close in

• Regarding the protection in the assigned UNIX paper, how many of the
followings is/are correct?
! The same file may have different permissions for different user-id
" The owner of the file may not have the permission of writing a file
If the user does not have a permission to access a device, set-user-id will

guarantee that the user will not be able to access that device
$ In the UNIX system described in this paper, if the file owner is “foo”, then the user

“bar” will have the same permission as another user (e.g. “xyz”).
A. 0
B. 1
C. 2
D. 3
E. 4

27

ProtectionPoll close in

• Regarding the protection in the assigned UNIX paper, how many of the
followings is/are correct?
! The same file may have different permissions for different user-id
" The owner of the file may not have the permission of writing a file
If the user does not have a permission to access a device, set-user-id will

guarantee that the user will not be able to access that device
$ In the UNIX system described in this paper, if the file owner is “foo”, then the user

“bar” will have the same permission as another user (e.g. “xyz”).
A. 0
B. 1
C. 2
D. 3
E. 4

28

Protection

allow the user to have the same permission as the creator of the

The UNIX system at that time doesn’t have “group” — everyone other than the owner is “others”

Right amplification

29

• chmod u+s allows “others” to execute the program as the
creator

• There exists a file “others” cannot read
• Another program can dump the content
• Without setuid, others still cannot read the content
• With setuid, others can read that!

30

Demo: setuid

• How many of the following UNIX features/functions are implemented
in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

31

What’s in the kernel?Poll close in

• How many of the following UNIX features/functions are implemented
in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

32

What’s in the kernel?Poll close in

• How many of the following UNIX features/functions are implemented
in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

33

What’s in the kernel?

user-level

kernel

shell

Kernel

privilege
boundary

• A user program provides an interactive UI
• Interprets user command into OS functions
• Basic semantics:

command argument_1 argument_2 …
• Advanced semantics

• Redirection
• >
• <

• Pipe
• I

• Multitasking
• &

34

Shell

• Clean abstraction
• File system — will discuss in detail after midterm
• Portable OS

• Written in high-level C programming language
• The unshakable position of C programming language

• We are still using it!

35

The impact of UNIX

• Reading quizzes due next Tuesday
• Welcome new friends! — will drop a total of 6 reading quizzes for

the quarter
• Attendance count as 4 reading quizzes

• Change of office hour next week — W 9a-11a (since Monday is
MLK day)

• Project groups in 2
• Will release the project by the end of the next week

75

Announcement

ͺͻͥ

Computer
Science &
Engineering

202

