Design philosophy of operating
systems (lll)

Hung-Wel Tseng

Recap: impact of UNIX

Clean abstraction — everything as a file

File system — will discuss in detail after midterm

Portable OS

- Written in high-level C programming language
- The unshakable position of C programming language

We are still using it!

Perhaps paradoxically, the success of uvix js Jargely
due to the fact that it was not designed to meet any
predefined objectives. The first version was written
whe one of us (Thompson), dissatishied with rthe
available computer facilities, discovered a little-used
PDP-7 and scl oul to create 2 more hospitable environ-
ment. This essertielly personul cffort was sufficiently
successful to pain the mterest of the remaining author
and others. and laler (o justifv the acguisition of the
rpr-11720, specifically to support a text editing and
formatting svstem. Whean in turn the 11,20 vwas out-
grown, UNIX had proved useful enough to persuade
manzgement to invest n the poe-[1/45. Our gouls
throughout the efort, when articulzted at all, have
always concerned themsclves with building a camfort-
uble relationship with the machine and with cxploring
ideas znd mventions in operaung systems. We have
not been faced with the nead to satisfy someone else’s
requirements, and for this freedom we are grateful.

Recap: Each process has a separate virtual memory space

code code code code

static data static data static data static data

heap heap

heap

heap

They are isolated from one
another. Each of them is not Virtually, every process seems to have a
supposed to know what Processor processor, but only a few of them are

happens to another one physically executing.

Recap: impact of UNIX

Clean abstraction — everything as a file

File system — will discuss in detail after midterm

Portable OS

- Written in high-level C programming language
- The unshakable position of C programming language

We are still using it!

Perhaps paradoxically, the success of uvix js Jargely
due to the fact that it was not designed to meet any
predefined objectives. The first version was written
whe one of us (Thompson), dissatishied with rthe
available computer facilities, discovered a little-used
PDP-7 and scl oul to create 2 more hospitable environ-
ment. This essertielly personul cffort was sufficiently
successful to pain the mterest of the remaining author
and others. and laler (o justifv the acguisition of the
rpr-11720, specifically to support a text editing and
formatting svstem. Whean in turn the 11,20 vwas out-
grown, UNIX had proved useful enough to persuade
manzgement to invest n the poe-[1/45. Our gouls
throughout the efort, when articulzted at all, have
always concerned themsclves with building a camfort-
uble relationship with the machine and with cxploring
ideas znd mventions in operaung systems. We have
not been faced with the nead to satisfy someone else’s
requirements, and for this freedom we are grateful.

Recap: Review the first demo

[2] 19110
[3] 19111

Process A is using : 1. Value o is 1052337033.000000 and address of a is 0x601080
Process is using : 3. Value is 1841722078.000000 and address of a is 0x601080
Process C is using : 0. Value is 451378955.000000 and address of a is 0x601090
Process D is using CPU: 0. Value is 1227583454.000000 and address of a is 0x601090
Process A is using CPU: 1. Value is 1052337033.000000 and address of a is 0x601090
Process is using : 3. Value is 1841722078.000000 and address of a is 0x601090
Process C is using Value is 451378955.000000 and address of a is 0x601090
(1] Done ./virtualization A

12] Done ./virtualization B

|3] Done ./virtualization C

Process D 1is using CPU: 0., Value of a is 1227583454.000000 and address of a is 0x601090
escal02 [/home/htseng3/courses/CSC501/virtualization] —htseng3-

Recap: Protection mechanisms

- UNIX
- Protection is associated with each file — described in the metadata
of afile
- Each file contains three (only two in the original paper) types of
users

- Each type of users can have read, write, execute permissions
- setuid to promote right amplifications

Current scoreboard

Red Blue

Outline

- The process interface in UNIX
- Mach: A New Kernel Foundation For UNIX Development

The interface of managing
processes

The basic process API of UNIX

e fork
e walt
e eXec
e X1t

fork()

e pid t fork();:
- Tork used to create processes (UNIX)

- What does fork () do?
- Creates a hew address space (for child)
. Copies parent’s address space to child'’s
- Points kernel resources to the parent’s resources (e.g. open files)
- Inserts child process into ready queue

- fork () returns twice
. Returns the child’s PID to the parent
- Returns “0" to the child

1

What will happen?

- What happens if we execute the following code?

)) Assume
int main() { , .
int pid; the parent’'s PID is 2;
if ((pid = fork()) == @) { child's PID is 7.

printf ("My pid is %d\n", getpid());

¥
printf (”"Child pid is %d\n", pid);
return 0;

my pid values printed # of times "child pid" is printed child pid values printed

7 2 7,0

2 2 7,0
7,2 1 7

0 2 7,2

7 1 7
12

What will happen?

- What happens if we execute the following code?

)) Assume
int main() { , .
int pid; the parent’'s PID is 2;
if ((pid = fork()) == @) { child's PID is 7.

printf ("My pid is %d\n", getpid());

¥
printf (”"Child pid is %d\n", pid);
return 0;

my pid values printed # of times "child pid" is printed child pid values printed

7 2 7,0

2 2 7,0
7,2 1 7

0 2 7,2

7 1 7
13

What will happen?

- What happens if we execute the following code?

)) Assume
int main() { , .
int pid; the parent’'s PID is 2;
if ((pid = fork()) == @) { child's PID is 7.

printf ("My pid is %d\n", getpid());

¥
printf (”"Child pid is %d\n", pid);
return 0;

my pid values printed # of times "child pid" is printed child pid values printed

7 2 7,0

2 2 7,0
7,2 1 7

0 2 7,2

7 1 7
14

Assume

the parent's PID is 2; f oY k ()
child's PID is 7.

int pid: code

if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

15

Assume
the parent’'s PID is 2;
child's PID is 7.

int pid; code int pid; code
if ((pid = fork()) == 0) { if ((pid = fork()) == 0) {
printf(”My pid is %d\n”, getpid()); printf(”My pid is %d\n", getpid());

} ¥
printf(”Child pid is %d\n", pid): printf(”Child pid is %d\n", pid):

static data static data

Virtual memory Virtual memory

Assume
the parent’'s PID is 2;
child's PID is 7.

int pid: code

if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());
S

printf(“Child pid is %d\n", pid);

static data

Virtual memory

Output:
My pid is 7

int pid: code
if ((pid = fork()) == @) {
printf(”My pid is %d\n", getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

Assume
the parent’'s PID is 2;
child's PID is 7.

int pid: code
if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

Output:
My pid is 7
Child pid is O

int pid: code
if ((pid = fork()) == @) {
printf(”My pid is %d\n", getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

Assume
the parent’'s PID is 2;
child's PID is 7.

int pid: code
if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

Output:
My pid is 7
Child pid is O

int pid:
if ((pid = fork()) == @) {
printf(”My pid is %d\n", getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

What will happen?

- What happens if we execute the following code?

int main() { Assume .
int pid; the parent’'s PID is 2;
if ((pid = fork()) == 0) { child’'s PID is 7.

printf ("My pid is %d\n", getpid());
}
printf (”"Child pid is %d\n", pid);

return 9;
my pid values printed # of times "child pid" is printed child pid values printed

7 2 7,0

1 2 2 7,0

1 O 2 7,2

1 7 1 7
20

}
A

ex1t()

e vold exit(int status)

. ex1t frees resources and terminates the process

- Runs an functions registered with atexit

- Flush and close all open files/streams

- Releases allocated memory.

- Remove process from kernel data structures (e.g. gueues)
- status is passed to parent process

- By convention, O indicates “normal exit”

21

If we add an exit ...

- What happens if we add an exit? Assume
int main() { r : .
int bid: thg parent s PID is 2;
if ((pid = fork()) == @) { child's PID is 7.
printf (”"My pid is %d\n", getpid());
exit(0);
}
printf (”"Child pid is %d\n", pid);
return 0;
}
i s ey bt o s
- R 7 z e
ﬂ 1 2 2 7,0
2 7,2 1 7
o 1 : :
ﬂ 1 7 1 7

If we add an exit ...

- What happens if we add an exit? Assume
int main() { r : .
{ne oid; thg parent S PID is 2;
if ((pid = fork()) == 0) { child's PID is 7.
printf (”"My pid is %d\n", getpid());
exit(0);
}
printf (”"Child pid 1is %d\n", pid);
return 0;

of times "my pid" is printed # of times "child pid" is printed
7 2 7,0
2 2 7,0
7,2 1 7
0 2 7,2
7 1 7

23

If we add an exit ...

- What happens if we add an exit? Assume
int main() { r : .
{ne oid; thg parent s PID is 2;
if ((pid = fork()) == @) { child's PID is 7.
printf (”"My pid is %d\n", getpid());
exit(0);
}
printf (”"Child pid is %d\n", pid);
return 0;
}
i s ey bt o s
n 1 7 2 7,0
ﬂ 1 2 2 7,0
2 7,2 1 7
o 1 : :
H 1 7 1 7

24

fork() and exit()

int pid;

if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());
exit():

}
printf(”Child pid is %d\n", pid);

static data

Virtual memory

25

fork() and exit()

int pid; int pid:

if ((pid = fork()) == 0) { if ((pid = fork()) == 0) {
printf(”My pid is %d\n”, getpid()); printf(”My pid is %d\n", getpid());
exit(); exit();

} ¥
printf(”Child pid is %d\n", pid): printf(”Child pid is %d\n", pid):

static data static data

Virtual memory Virtual memory

fork() and exit() outpan:

My pid is 7

int pid; int pid:

if ((pid = fork()) == 0) { if ((pid = fork()) == 0) {
printf(”My pid is %d\n”, getpid()); printf(”My pid is %d\n", getpid());
exit(); exit();

} ¥
printf(”Child pid is %d\n", pid): printf(”Child pid is %d\n", pid):

static data static data

Virtual memory Virtual memory

fork() and exit() outpan:

My pid is 7

int pid; int pid:

if ((pid = fork()) == 0) { if ((pid = fork()) == 0) {
printf(”My pid is %d\n”, getpid()); printf(”My pid is %d\n", getpid());
exit(); exit();

} ¥
printf(”Child pid is %d\n", pid): printf(”Child pid is %d\n", pid):

static data static data

Virtual memory Virtual memory

fork() and exit() outpan:

My pid is 7

int pid;

if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());
exit():

}
printf(”Child pid is %d\n", pid);

static data

Virtual memory

29

fork() and exit() outpan:

My pid is 7
Child pid is 7

int pid;

if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());
exit():

}
printf(”Child pid is %d\n", pid);

static data

Virtual memory

30

If we add an exit ...

° I I ? um
What happens if we add an exit” e e
1nt ir"r?tl”;i) ; 1 child's PID is 7.

if ((pid = fork()) == 0) {
printf (”"My pid is %d\n", getpid());

exit(0);

I

printf ("Child pid is %d\n", pid);

return 0;

of times "my pid" is printed my pid values printed # of times "child pid" is printed

1 7 2 7,0
1 2 2 7,0
2 7,2 1 7
1 0 2 7,2
1 7 1 7

31

More forks

- Consider the following code

fork();
printf(“moo\n");
fork();
printf(“oink\n");
fork():
printf(“baa\n");

How many animal noises will be printed?
A.

moOow
RN
hOOO)oo

N
D

32

More forks

- Consider the following code

fork();
printf(“moo\n");
fork();
printf(“oink\n");
fork():
printf(“baa\n");

How many animal noises will be printed?
A.

moOow
RN
hOOO)oo

N
D

33

More forks

- Consider the following code
fork();
printf(”moo\n"); 2X
fork();
printf(“oink\n"); 4x
fork():
printf(“baa\n"); 8X

How many animal noises will be printed?

0w >
0O O W

Ol
[N

34

Starting a new program with execvp()

. int execvp(char xprog, char xargv[])

.- Tork does not start a new program, just duplicates the current
program

- What execvp does:

. Stops the current process
- Overwrites process’ address space for the new program

- Initializes hardware context and args for the new program
- Inserts the process into the ready queue
« €eXecvVp does not create a new Process

35

Why separate fork () and exec ()

- Windows only has exec
- Flexibility
- Allows redirection & pipe

- The shell forks a new process whenever user invoke a program

- After Tork, the shell can setup any appropriate environment
variable to before exec

- The shell can easily redirect the output in shell: a.out > file

36

exec()

int pid;

if ((pid = fork()) == 0) {
execvp(“a.out”,NULL);
printf("My pid is %d\n", getpid());
exit();

}
printf(“Child pid is %d\n", pid);

static data

37

int pid;

if ((pid = fork()) == 0) {
execvp(“a.out”,NULL);
printf("My pid is %d\n", getpid());
exit();

}
printf(“Child pid is %d\n", pid);

static data

exec()

38

int pid;

if ((pid = fork()) ==0) {
execvp(“a.out”,NULL);
printf("My pid is %d\n", getpid());
exit();

}
printf(“Child pid is %d\n", pid);

static data

exec() -

Child pid is 7

int pid; int pid;

if ((pid = fork()) == 0) { if ((pid = fork()) ==0) {
execvp(“a.out”,NULL); execvp(“a.out”,NULL);
printf("My pid is %d\n", getpid()); printf("My pid is %d\n", getpid());
exit(); exit();

¥ 3
printf (" Child pid is %d\n", pid); printf("Child pid is %d\n", pid);

static data static data

39

exec() -

Child pid is 7
New program!

int pid;

int main() {
printf(“New program!");
return O;

}

if ((pid = fork()) == 0) {
execvp(“a.out”,NULL);
printf("My pid is %d\n", getpid());
exit();

}
printf(“Child pid is %d\n", pid);

static data static data

40

Let's write our own shells

How to implement redirection in shell

- Say, we want to do ./a > b.txt

. fork

- The forked code opens b.txt

- The forked code dup the file descriptor

- The forked code assigns b.txt to stdin/stdout
- The forked code closes b.txt

- exec("./a", NULL)

42

How to implement redirection in shell

Say, we want to do ./a > b.txt Homework for you:
fork Think about the case when
The forked code opens b.txt your fork isequivalentto fork+exec()

The forked code dup the file descriptor to stdin/stdout
The forked code closes b.txt
exec("./a", NULL)

int pid, fd;
char cmd[2048], prompt = "myshell$"
while(gets(cmd) != NULL) {
if ((pid = fork()) ==0) {
fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
dup2(fd,)z
close(fd);
execv(”./a",NULL);
}
else
printf(“%s ", prompt);
}

int pid, fd;
char cmd[2048], prompt = “myshell$"
while(gets(cmd) != NULL) {

+ ((pid = fork()) == 0) {

fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);

dup2(fd,);
close(fd);
execv(”./a",NULL);

}

else
orintf("%s ", prompt);

5

The shell can respond to next input

static data

walit()

e pid_t wait(int sxstat)

e p1d _t wailtpid(pid_t pid, 1int xstat, 1int
opts)

- walt /waltpid suspends process until a child process ends
- walt resumes when any child ends
- waltpid resumes with child with pid ends
- ex1t statusinfo 1is stored in *stat
- Returns pid of child that ended, or -1 on error

- Unix requires a corresponding wa1t for every fork

44

Zombies, Orphans, and Adoption

- Zombie: process that exits but whose parent doesn't call wait
- Can't be killed normally
- Resources freed but pid remains in use

- Orphan: Process whose parent has exited before it has
- Orphans are adopted by init process, which calls wait periodically

45

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta, Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian,
Michael Young
Computer Science Department, Carnegie Mellon University

46

Why is “Mach" proposed?

- How many of the following statements is/are true regarding the motivations
of developing Mach in 19867

® Modern UNIX systems do not provide consistent interfaces for system facilities

@ System level services can only be provided through fully integration of the UNIX
kernel

® The process abstraction cannot use multiprocessors efficiently

@ Network communication is not protected
A. O

moOoOw
A WN -

47

Why is “Mach" proposed?

- How many of the following statements is/are true regarding the motivations
of developing Mach in 19867

® Modern UNIX systems do not provide consistent interfaces for system facilities

@ System level services can only be provided through fully integration of the UNIX
kernel

® The process abstraction cannot use multiprocessors efficiently

@ Network communication is not protected
A. O

moOoOw
A WN -

48

Why is “Mach" proposed?

- How many of the following statements is/are true regarding the motivations
of developing Mach in 19867

® Modern UNIX systems do not provide consistent interfaces for system facilities

@ System level services can only be provided through fully integration of the UNIX
kernel

® The process abstraction cannot use multiprocessors efficiently
@ Network communication is not protected
A. O

O 0OW
w N -

[
I

49

Why “Mach"?

- The hardware is changing

be built and future development of UNIX-like systems for new architectures

* MU|tIprOCeSSOrS can continue. The computing environment for which Mach is targeted spans a

wide class of systems, providing basic support for large, general purpose mul-

* Networked ComDUtlng tiprocessors, smaller multiprocessor networks and individual workstations (see
- The software

- The demand of extending an OS easily
- Repetitive but confusing mechanisms for similar stuffs

As the complexity of distributed environments and multiprocessor archi-
tectures increases, it becomes increasingly important to return to the original
UNIX model of consistent interfaces to system facilities. Moreover, there is a
clear need to allow the underlying system to be transparently extended to allow
user-state processes to provide services which in the past could only be fully
integrated into UNIX by adding code to the operating system kernel.

Make UNIX great again! N

50

Whys v.s. whats

- How many pairs of the "why" and the “what"” in Mach are correct?

Support for multiprocessors Threads

Networked computing Messages/Ports
OS Extensibility Kernel debugger
Repetitive but confusing mechanisms Messages/Ports

mo oW >
P WOWN-—-O

57

Whys v.s. whats

- How many pairs of the "why" and the “what"” in Mach are correct?

Support for multiprocessors Threads

Networked computing Messages/Ports
OS Extensibility Kernel debugger
Repetitive but confusing mechanisms Messages/Ports

mo oW >
P WOWN-—-O

52

Recap: Each process has a separate virtual memory space

code code code code

static data static data static data static data

heap heap

heap

heap

They are isolated from one
another. Each of them is not Virtually, every process seems to have a
supposed to know what Processor processor, but only a few of them are

happens to another one physically executing.

55

Intel Sandy Bridge

. 21 S | uu-- |
Core|Core Core !

-{

3’

Q!?

!

l

ShareL3 $

Core|Core|Core|Core

Concept of chip multiprocessors

Processor

Core Core Core Core
Registers Registers Registers Registers

L1-$ L1-$ L1-$ L1-$
LY LY LY LY
L2-$ L2-$ L2-$ L2-$

SR SR SR SR

Main memory is eventually shared among processor
cores

60

Whys v.s. whats

- How many pairs of the "why" and the “what"” in Mach are correct?

Support for multiprocessors Threads
Networked computing Messages/Ports
OS Extensibility Microkernel/Object-oriented design
Repetitive but confusing mechanisms Messages/Ports
A. O
B. 1
C. 2

Ul
w

[m
I

83

Announcement

- Reading quizzes due next Tuesday
- Project groups in 2
- Will release the project by the end of the week

143

Computer

Engineering

