
Design philosophy of operating
systems (III)

Hung-Wei Tseng

2

Recap: impact of UNIX
• Clean abstraction — everything as a file
• File system — will discuss in detail after midterm
• Portable OS

• Written in high-level C programming language
• The unshakable position of C programming language

• We are still using it!

Recap: Each process has a separate virtual memory space

3

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Processor
Virtually, every process seems to have a
processor, but only a few of them are

physically executing.

They are isolated from one
another. Each of them is not
supposed to know what
happens to another one

4

Recap: impact of UNIX
• Clean abstraction — everything as a file
• File system — will discuss in detail after midterm
• Portable OS

• Written in high-level C programming language
• The unshakable position of C programming language

• We are still using it!

Recap: Review the first demo

5

• UNIX
• Protection is associated with each file — described in the metadata
of a file

• Each file contains three (only two in the original paper) types of
users

• Each type of users can have read, write, execute permissions
• setuid to promote right amplifications

6

Recap: Protection mechanisms

Current scoreboard

7

Red Blue

3 4

• The process interface in UNIX
• Mach: A New Kernel Foundation For UNIX Development

8

Outline

The interface of managing
processes

9

• fork
• wait
• exec
• exit

10

The basic process API of UNIX

• pid_t fork();
• fork used to create processes (UNIX)
• What does fork() do?

• Creates a new address space (for child)
• Copies parent’s address space to child’s
• Points kernel resources to the parent’s resources (e.g. open files)
• Inserts child process into ready queue

• fork() returns twice
• Returns the child’s PID to the parent
• Returns “0” to the child

11

fork()

• What happens if we execute the following code?
int main() {
 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

12

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

Poll close in

• What happens if we execute the following code?
int main() {
 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

13

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

Poll close in

• What happens if we execute the following code?
int main() {
 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

14

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

15

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

16

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

17

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Output:
My pid is 7

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

18

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Child pid is 0
Output:
My pid is 7

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

19

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Child pid is 0

Output:
My pid is 7

Child pid is 7

Assume
the parent’s PID is 2;
child’s PID is 7.

• What happens if we execute the following code?
int main() {
 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

20

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

• void exit(int status)
• exit frees resources and terminates the process

• Runs an functions registered with atexit
• Flush and close all open files/streams
• Releases allocated memory.
• Remove process from kernel data structures (e.g. queues)

• status is passed to parent process
• By convention, 0 indicates “normal exit”

21

exit()

• What happens if we add an exit?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 exit(0);
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

22

If we add an exit …

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

Poll close in

• What happens if we add an exit?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 exit(0);
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

23

If we add an exit …

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

Poll close in

• What happens if we add an exit?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 exit(0);
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

24

If we add an exit …
Assume
the parent’s PID is 2;
child’s PID is 7.

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

fork() and exit()

25

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

fork() and exit()

26

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

fork() and exit()

27

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Output:
My pid is 7

fork() and exit()

28

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Output:
My pid is 7

fork() and exit()

29

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7

Output:
My pid is 7

fork() and exit()

30

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7

Output:
My pid is 7
Child pid is 7

• What happens if we add an exit?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 exit(0);
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

31

If we add an exit …
Assume

the parent’s PID is 2;
child’s PID is 7.

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

• Consider the following code
fork();
printf(“moo\n”);
fork();
printf(“oink\n”);
fork();
printf(“baa\n”);
How many animal noises will be printed?
A. 3
B. 6
C. 8
D. 14
E. 24

32

More forksPoll close in

• Consider the following code
fork();
printf(“moo\n”);
fork();
printf(“oink\n”);
fork();
printf(“baa\n”);
How many animal noises will be printed?
A. 3
B. 6
C. 8
D. 14
E. 24

33

More forksPoll close in

• Consider the following code
fork();
printf(“moo\n”);
fork();
printf(“oink\n”);
fork();
printf(“baa\n”);
How many animal noises will be printed?
A. 3
B. 6
C. 8
D. 14
E. 24

34

More forks

2x
4x
8x

• int execvp(char *prog, char *argv[])
• fork does not start a new program, just duplicates the current
program

• What execvp does:
• Stops the current process
• Overwrites process’ address space for the new program
• Initializes hardware context and args for the new program
• Inserts the process into the ready queue

• execvp does not create a new process

35

Starting a new program with execvp()

• Windows only has exec
• Flexibility
• Allows redirection & pipe

• The shell forks a new process whenever user invoke a program
• After fork, the shell can setup any appropriate environment
variable to before exec

• The shell can easily redirect the output in shell: a.out > file

36

Why separate fork() and exec()

exec()

37

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ?

stack

heap

code

exec()

38

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 7

stack

heap

code

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 0

stack

heap

code

exec()

39

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 7

stack

heap

code

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 0

stack

heap

code

Output:
Child pid is 7

exec()

40

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 5

stack

heap

code

Virtual memory

int main() {
 printf(“New program!”);
 return 0;
}

static data

stack

heap

code

Output:
Child pid is 7
New program!

Let’s write our own shells

41

• Say, we want to do ./a > b.txt
• fork
• The forked code opens b.txt
• The forked code dup the file descriptor
• The forked code assigns b.txt to stdin/stdout
• The forked code closes b.txt
• exec(“./a”, NULL)

42

How to implement redirection in shell

• Say, we want to do ./a > b.txt
• fork
• The forked code opens b.txt
• The forked code dup the file descriptor to stdin/stdout
• The forked code closes b.txt
• exec(“./a”, NULL)

43

How to implement redirection in shell

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

The shell can respond to next input

Homework for you:
Think about the case when
your fork is equivalent to fork+exec()

• pid_t wait(int *stat)
• pid_t waitpid(pid_t pid, int *stat, int
opts)

• wait / waitpid suspends process until a child process ends
• wait resumes when any child ends
• waitpid resumes with child with pid ends
• exit status info 1 is stored in *stat
• Returns pid of child that ended, or -1 on error

• Unix requires a corresponding wait for every fork

44

wait()

• Zombie: process that exits but whose parent doesn’t call wait
• Can’t be killed normally
• Resources freed but pid remains in use

• Orphan: Process whose parent has exited before it has
• Orphans are adopted by init process, which calls wait periodically

45

Zombies, Orphans, and Adoption

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta , Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian ,
Michael Young

Computer Science Department, Carnegie Mellon University

46

• How many of the following statements is/are true regarding the motivations
of developing Mach in 1986?
! Modern UNIX systems do not provide consistent interfaces for system facilities
" System level services can only be provided through fully integration of the UNIX

kernel
The process abstraction cannot use multiprocessors efficiently
$ Network communication is not protected
A. 0
B. 1
C. 2
D. 3
E. 4

47

Why is “Mach” proposed?Poll close in

• How many of the following statements is/are true regarding the motivations
of developing Mach in 1986?
! Modern UNIX systems do not provide consistent interfaces for system facilities
" System level services can only be provided through fully integration of the UNIX

kernel
The process abstraction cannot use multiprocessors efficiently
$ Network communication is not protected
A. 0
B. 1
C. 2
D. 3
E. 4

48

Why is “Mach” proposed?Poll close in

• How many of the following statements is/are true regarding the motivations
of developing Mach in 1986?
! Modern UNIX systems do not provide consistent interfaces for system facilities
" System level services can only be provided through fully integration of the UNIX

kernel
The process abstraction cannot use multiprocessors efficiently
$ Network communication is not protected
A. 0
B. 1
C. 2
D. 3
E. 4

49

Why is “Mach” proposed?

• The hardware is changing
• Multiprocessors
• Networked computing

• The software
• The demand of extending an OS easily
• Repetitive but confusing mechanisms for similar stuffs

50

Why “Mach”?

Make UNIX great again!

• How many pairs of the “why” and the “what” in Mach are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

51

Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Poll close in

• How many pairs of the “why” and the “what” in Mach are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

52

Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Poll close in

Recap: Each process has a separate virtual memory space

55

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Processor
Virtually, every process seems to have a
processor, but only a few of them are

physically executing.

They are isolated from one
another. Each of them is not
supposed to know what
happens to another one

Intel Sandy Bridge

59

Core Core Core Core

Core Core Core Core

Share L3 $

Concept of chip multiprocessors

60

Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Main memory
Main memory is eventually shared among processor

cores

• How many pairs of the “why” and the “what” in Mach are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

83

Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Microkernel/Object-oriented design

• Reading quizzes due next Tuesday
• Project groups in 2

• Will release the project by the end of the week

143

Announcement

ͺͻͥ

Computer
Science &
Engineering

202

