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Recap: impact of UNIX
• Clean abstraction — everything as a file 
• File system — will discuss in detail after midterm 
• Portable OS 

• Written in high-level C programming language 
• The unshakable position of C programming language 

• We are still using it!



Recap: Each process has a separate virtual memory space
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Processor
Virtually, every process seems to have a 
processor, but only a few of them are 

physically executing.

They are isolated from one 
another. Each of them is not 
supposed to know what 
happens to another one
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Recap: impact of UNIX
• Clean abstraction — everything as a file 
• File system — will discuss in detail after midterm 
• Portable OS 

• Written in high-level C programming language 
• The unshakable position of C programming language 

• We are still using it!



Recap: Review the first demo
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• UNIX 
• Protection is associated with each file — described in the metadata 
of a file 

• Each file contains three (only two in the original paper) types of 
users 

• Each type of users can have read, write, execute permissions 
• setuid to promote right amplifications
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Recap: Protection mechanisms



Current scoreboard
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• The process interface in UNIX 
• Mach: A New Kernel Foundation For UNIX Development
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Outline



The interface of managing 
processes
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• fork 
• wait 
• exec 
• exit
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The basic process API of UNIX



• pid_t fork(); 
• fork used to create processes (UNIX) 
• What does fork() do? 

• Creates a new address space (for child) 
• Copies parent’s address space to child’s 
• Points kernel resources to the parent’s resources (e.g. open files)  
• Inserts child process into ready queue 

• fork() returns twice  
• Returns the child’s PID to the parent 
• Returns “0” to the child
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fork()



• What happens if we execute the following code?
int main() { 
     int pid; 
         if ((pid = fork()) == 0) { 
             printf (”My pid is %d\n", getpid()); 
         } 
         printf (”Child pid is %d\n", pid); 
          return 0; 
} 
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What will happen?

# of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume 
the parent’s PID is 2; 
child’s PID is 7. 

Poll close in
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fork()
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Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid());  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

Assume 
the parent’s PID is 2; 
child’s PID is 7. 
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Virtual memory
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fork()
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• What happens if we execute the following code?
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What will happen?

# of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
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• void exit(int status) 
• exit frees resources and terminates the process 

• Runs an functions registered with atexit 
• Flush and close all open files/streams 
• Releases allocated memory. 
• Remove process from kernel data structures (e.g. queues) 

• status is passed to parent process 
• By convention, 0 indicates “normal exit”
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exit()



• What happens if we add an exit?
int main() { 

     int pid; 
         if ((pid = fork()) == 0) { 
             printf (”My pid is %d\n", getpid()); 
             exit(0); 
         } 
         printf (”Child pid is %d\n", pid); 
          return 0; 
}
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If we add an exit …

# of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7
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the parent’s PID is 2; 
child’s PID is 7. 

Poll close in
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If we add an exit …
Assume 
the parent’s PID is 2; 
child’s PID is 7. 

# of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7



fork() and exit()
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26

Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

7 0



fork() and exit()
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fork() and exit()
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fork() and exit()
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Virtual memory
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fork() and exit()
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Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
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} 
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• What happens if we add an exit?
int main() { 

     int pid; 
         if ((pid = fork()) == 0) { 
             printf (”My pid is %d\n", getpid()); 
             exit(0); 
         } 
         printf (”Child pid is %d\n", pid); 
          return 0; 
}
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If we add an exit …
Assume 

the parent’s PID is 2; 
child’s PID is 7. 

# of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7



• Consider the following code
fork(); 
printf(“moo\n”); 
fork(); 
printf(“oink\n”); 
fork(); 
printf(“baa\n”); 
How many animal noises will be printed? 
A. 3 
B. 6 
C. 8 
D. 14 
E. 24
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More forksPoll close in
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More forksPoll close in
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More forks

2x
4x
8x



• int execvp(char *prog, char *argv[]) 
• fork does not start a new program, just duplicates the current 
program 

• What execvp does: 
• Stops the current process  
• Overwrites process’ address space for the new program 
• Initializes hardware context and args for the new program  
• Inserts the process into the ready queue  

• execvp does not create a new process
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Starting a new program with execvp()



• Windows only has exec 
• Flexibility 
• Allows redirection & pipe 

• The shell forks a new process whenever user invoke a program 
• After fork, the shell can setup any appropriate environment 
variable to before exec 

• The shell can easily redirect the output in shell: a.out > file
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Why separate fork() and exec()



exec()
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Virtual memory

int pid;  
if ((pid = fork()) == 0) {
  execvp(“a.out”,NULL);  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ?

stack

heap

code



exec()
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exec()
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Virtual memory
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exec()
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Virtual memory

int pid;  
if ((pid = fork()) == 0) {
  execvp(“a.out”,NULL);  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: 5

stack

heap

code

Virtual memory

int main() { 
  printf(“New program!”); 
  return 0; 
} 

static data

stack

heap

code

Output: 
Child pid is 7
New program!



Let’s write our own shells

41



• Say, we want to do ./a > b.txt 
• fork 
• The forked code opens b.txt 
• The forked code dup the file descriptor 
• The forked code assigns b.txt to stdin/stdout 
• The forked code closes b.txt 
• exec(“./a”, NULL)

42

How to implement redirection in shell



• Say, we want to do ./a > b.txt 
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How to implement redirection in shell

Virtual memory

int pid, fd; 
char cmd[2048], prompt = “myshell$” 
while(gets(cmd) != NULL) { 
  if ((pid = fork()) == 0) {
    fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR | 
S_IWUSR);
    dup2(fd, stdout);
    close(fd);
    execv(“./a”,NULL);  
  } 
  else 
    printf(“%s ”,prompt); 
}

static data

stack

heap

code

Virtual memory

int pid, fd; 
char cmd[2048], prompt = “myshell$” 
while(gets(cmd) != NULL) { 
  if ((pid = fork()) == 0) {
    fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR | 
S_IWUSR);
    dup2(fd, stdout);
    close(fd);
    execv(“./a”,NULL);  
  } 
  else 
    printf(“%s ”,prompt); 
}

static data

stack

heap

code

The shell can respond to next input

Homework for you:
Think about the case when 
your fork is equivalent to fork+exec()



• pid_t wait(int *stat) 
• pid_t waitpid(pid_t pid, int *stat, int 
opts) 

• wait / waitpid suspends process until a child process ends 
• wait resumes when any child ends 
• waitpid resumes with child with pid ends 
• exit status info 1 is stored in *stat 
• Returns pid of child that ended, or -1 on error 

• Unix requires a corresponding wait for every fork
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wait()



• Zombie: process that exits but whose parent doesn’t call wait 
• Can’t be killed normally 
• Resources freed but pid remains in use 

• Orphan: Process whose parent has exited before it has 
• Orphans are adopted by init process, which calls wait periodically
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Zombies, Orphans, and Adoption



Mach: A New Kernel Foundation For UNIX 
Development

Mike Accetta , Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian , 
Michael Young 

Computer Science Department, Carnegie Mellon University
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• How many of the following statements is/are true regarding the motivations 
of developing Mach in 1986? 
! Modern UNIX systems do not provide consistent interfaces for system facilities 
" System level services can only be provided through fully integration of the UNIX 

kernel 
# The process abstraction cannot use multiprocessors efficiently 
$ Network communication is not protected 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

47

Why is “Mach” proposed?Poll close in
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Why is “Mach” proposed?



• The hardware is changing 
• Multiprocessors 
• Networked computing 

• The software 
• The demand of extending an OS easily 
• Repetitive but confusing mechanisms for similar stuffs
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Why “Mach”?

Make UNIX great again!



• How many pairs of the “why” and the “what” in Mach are correct?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Poll close in



• How many pairs of the “why” and the “what” in Mach are correct?
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Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
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Poll close in



Recap: Each process has a separate virtual memory space
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Processor
Virtually, every process seems to have a 
processor, but only a few of them are 

physically executing.

They are isolated from one 
another. Each of them is not 
supposed to know what 
happens to another one



Intel Sandy Bridge
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Core Core Core Core

Core Core Core Core

Share L3 $



Concept of chip multiprocessors
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Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Main memory
Main memory is eventually shared among processor 

cores



• How many pairs of the “why” and the “what” in Mach are correct?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Microkernel/Object-oriented design



• Reading quizzes due next Tuesday 
• Project groups in 2 

• Will release the project by the end of the week
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Announcement
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